Polyakov loop correlators and cyclic Wilson loop from lattice QCD

A. Bazavov¹, M. Berwein², N. Brambilla², P.Petreczky³, A.Vairo², J. Weber²

¹Universität Bielefeld

²Technische Universität München

³Brookhaven National Laboratory

INT Workshop, October 1st 2014, Seattle

Overview

- Motivation and overview
- Short review: static quark potential and free energies
- 3 Perturbative predictions
- Output Numerical results
 - Free energies
 - **2** Screening functions
 - **③** Thermal modification of the potential
 - **④** Effective (running) coupling
 - Screening masses
 - 6 Cyclic Wilson loops
- Summary and outlook

Motivation

Screening of colour charges in the deconfined phase

- At finite temperature $(T > T_c)$, QCD has deconfined QGP phase
- In QGP, interactions between colour charges are screened

Motivation

Screening of colour charges in the deconfined phase

- At finite temperature $(T > T_c)$, QCD has deconfined QGP phase
- In QGP, interactions between colour charges are screened
- Scale separation: in which distance regime is perturbation theory applicable?
- Screened charges: what is the effective running coupling constant for several scales?
- Screening masses: how to define the concept of screening?

[0. Kaczmarek, F. Zantow (2005))], [0. Kaczmarek et. al. (2004))], [0. Kaczmarek (2007))]

Simulation setup

- HotQCD configurations with 2+1 flavours of HISQ fermions
- $\bullet\,$ Lines of constant physics, Goldstone pion mass of $M_\pi\sim 160\,MeV,\,m_s=20m_l$

NT	$N_{ m ens}$	$N_{ m cfg}$	β	$T \mathrm{MeV}$
4	21	$\lesssim 6000$	[5.900, 8.000]	[200, 1400]
6	19	\lesssim 3000	[6.050, 8.000]	[154, 947]
8	25	$\lesssim 12000$	[6.245, 8.400]	[139, 999]

• All data shown are preliminary

Relation to temporal Wilson lines

• Interquark forces between static quarks from static quark 4-point correlation function

$$G_{Q\bar{Q}}(r,T) = \langle W(r)W^{\dagger}(0) \rangle$$

with temporal Wilson line $W(\mathbf{x}) = \mathcal{P} \exp(ig \int_0^{1/T} d\tau A_0(\tau, \mathbf{x}))$ [L. McLerran, B. Svetitsky (1981)]

- Physical quarks represented by colour-averaged Wilson lines $\text{Tr}_{c}W/3$ (Polyakov loop)
- Colour singlet/octet components defined with colour projectors $P_{1,8}$

$$G_{Q\bar{Q}}^{1,8}(r,T) = \frac{\text{Tr}_{c}P_{1,8}G_{Q\bar{Q}}(r,T)}{\text{Tr}_{c}P_{1,8}} = \exp(-\frac{F_{1,8}(r,T)}{T})$$

[P. Petreczky, hep-lat/0502008]

Relation to temporal Wilson lines

• Interquark forces between static quarks from static quark 4-point correlation function

$$G_{Q\bar{Q}}(r,T) = \langle W(r)W^{\dagger}(0) \rangle$$

with temporal Wilson line $W(\mathbf{x}) = \mathcal{P} \exp(ig \int_0^{1/T} d\tau A_0(\tau, \mathbf{x}))$ [L. McLerran, B. Svetitsky (1981)]

- Physical quarks represented by colour-averaged Wilson lines ${\rm Tr}_c W/3$ (Polyakov loop)
- Colour singlet/octet components defined with colour projectors $P_{1,8}$

$$G_{Q\bar{Q}}^{1,8}(r,T) = \frac{\operatorname{Tr}_{c}P_{1,8}G_{Q\bar{Q}}(r,T)}{\operatorname{Tr}_{c}P_{1,8}} = \exp\left(-\frac{F_{1,8}(r,T)}{T}\right)$$

$$(P. \ Petreczky, \ hep-lat/0502008]$$

$$G_{Q\bar{Q}}^{1}(r,T) = \frac{1}{3}\operatorname{Tr}_{c}\langle W(r)W^{\dagger}(0)\rangle$$

$$G_{Q\bar{Q}}^{8}(r,T) = \frac{1}{8}\left(\langle \operatorname{Tr}_{c}W(r)\operatorname{Tr}_{c}W^{\dagger}(0)\rangle - \frac{1}{3}\operatorname{Tr}_{c}\langle W(r)W^{\dagger}(0)\rangle\right)$$

Singlet and octet configurations not gauge-invariant: fix to Coulomb gauge

イロト イロト イヨト イヨー

Relation to temporal Wilson lines

• Interquark forces between static quarks from static quark 4-point correlation function

$$G_{Q\bar{Q}}(r,T) = \langle W(r)W^{\dagger}(0) \rangle$$

with temporal Wilson line $W(\mathbf{x}) = \mathcal{P} \exp(ig \int_0^{1/T} d\tau A_0(\tau, \mathbf{x}))$ [L. McLerran, B. Svetitsky (1981)]

- Physical quarks represented by colour-averaged Wilson lines ${\rm Tr}_c W/3$ (Polyakov loop)
- Colour singlet/octet components defined with colour projectors $P_{1,8}$

$$\begin{array}{c}
\overbrace{r}^{r} \widetilde{G}_{Q\bar{Q}}^{1,8}(r,T) = \frac{\operatorname{Tr}_{c}P_{1,8}G_{Q\bar{Q}}(r,T)}{\operatorname{Tr}_{c}P_{1,8}} = \exp\left(-\frac{F_{1,8}(r,T)}{T}\right) \\
\overbrace{r}^{P. \ Petreczky, \ hep-lat/0502008]} \\
\overbrace{r}^{r} \widetilde{G}_{Q\bar{Q}}^{1}(r,T) = \frac{1}{3}\operatorname{Tr}_{c}\langle S(r;0)W(r)S^{\dagger}(r;N_{t})W^{\dagger}(0)\rangle \\
\widetilde{G}_{Q\bar{Q}}^{8}(r,T) = \frac{1}{8}\left(\langle \operatorname{Tr}_{c}W(r)\operatorname{Tr}_{c}W^{\dagger}(0)\rangle - \frac{1}{3}\operatorname{Tr}_{c}\langle S(r;0)W(r)S^{\dagger}(r;N_{t})W^{\dagger}(0)\rangle\right)
\end{array}$$

Singlet and octet configurations not gauge-invariant: fix to Coulomb gauge

イロト イポト イヨト イヨー

Colour-averaged free energy

• Colour-averaged correlation function is gauge-invariant sum of colour components

$$G_{Q\bar{Q}}^{\mathrm{avg}}(r,T) = \frac{\mathrm{Tr}_{c}(P_{1}+8P_{8})G_{Q\bar{Q}}(r,T)}{\mathrm{Tr}_{c}(P_{1}+8P_{8})} = \frac{1}{9}\langle \mathrm{Tr}_{c}W(r)\mathrm{Tr}_{c}W^{\dagger}(0)\rangle$$

• Exponentiated colour-averaged free energy is related to singlet and octet by

$$G_{Q\bar{Q}}^{\mathrm{avg}}(r,T) = \exp\left(-\frac{F_{\mathrm{avg}}(r,T)}{T}\right) = \exp\left(-\frac{F_{1}(r,T)}{T}\right) + 8\exp\left(-\frac{F_{8}(r,T)}{T}\right)$$
[N. Brambilla et. al. (2010)]

• Colour averaged free energy of single static (anti-)quark is the Polyakov loop $G_Q(T)=\,G_{\bar Q}(T)=\langle 1/3\,{\rm Tr}_c W(0)\rangle$

イロン イロン イヨン イヨン

Very short distance regime (vacuum physics)

- Screening of charges not yet in effect, remnant of confining force seen
- Match $F_1(r, T)$ to static potential V(r) at T = 0 for $r < r_0$; r_0 independent of T

Very short distance regime (vacuum physics)

- Screening of charges not yet in effect, remnant of confining force seen
- Match $F_1(r, T)$ to static potential V(r) at T = 0 for $r < r_0$; r_0 independent of T

Large distance regime (medium effects)

- Free energy of two charges in screened potential eventually flattens for large separation
- Contribution of two fully-screened charges $2\langle F_Q(T) \rangle$ independent of colour configuration
- Divide out asymptotic contribution from correlators and study

$$C^{1}_{Q\bar{Q}}(r,T) = G^{1}_{Q\bar{Q}}(r,T) / \left(G_{Q}(T)\right)^{2}, \quad C^{\mathrm{avg}}_{Q\bar{Q}}(r,T) = G^{\mathrm{avg}}_{Q\bar{Q}}(r,T) / \left(G_{Q}(T)\right)^{2}$$

Large distance regime (medium effects)

- Free energy of two charges in screened potential eventually flattens for large separation
- Contribution of two fully-screened charges $2\langle F_Q(T) \rangle$ independent of colour configuration
- Divide out asymptotic contribution from correlators and study

$$C_{Q\bar{Q}}^{1}(r,T) = G_{Q\bar{Q}}^{1}(r,T) / \left(G_{Q}(T)\right)^{2}, \quad C_{Q\bar{Q}}^{\mathrm{avg}}(r,T) = G_{Q\bar{Q}}^{\mathrm{avg}}(r,T) / \left(G_{Q}(T)\right)^{2}$$

Leading contribution to quark anti-quark scattering [P. Petreczky, hep-lat/0502008]

- Quark anti-quark potential perturbatively related to scattering amplitude
- Leading contribution: one-gluon exchange in non-relativistic limit

$$V^{ab}(r) = \langle T^a T^b \rangle g^2 \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{r}} D_{00}(k)$$

• In general, temporal part of gluon propagator reads $D_{00}(k) = (k^2 + \Pi_{00}(k))^{-1}$

Leading contribution to quark anti-quark scattering [P. Petreczky, hep-lat/0502008]

- Quark anti-quark potential perturbatively related to scattering amplitude
- Leading contribution: one-gluon exchange in non-relativistic limit

$$V^{ab}(r) = \langle T^a T^b \rangle g^2 \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{r}} D_{00}(k)$$

• In general, temporal part of gluon propagator reads $D_{00}(k) = (k^2 + \Pi_{00}(k))^{-1}$

Group structure

- Colour factors $\langle T^a T^b \rangle$ evaluate to -4/3 for singlet and +1/6 for octet contribution
- Colour-averaged term is subject to cancellations between singlet and octet

イロン イロン イヨン イヨン

Cutoff effects at short distance in $D_{00}(k)$

[S. Necco, R. Sommer (2002))]

[O. Kaczmarek, F. Karsch, P. Petreczky, F. Zantow (2004))]

イロト イヨト イヨト イヨト

• $D_{00}(k)$ in Coulomb gauge for Symanzik-improved action sensitive to violation of rotational symmetry at short distance (free theory expression)

$$D_{00}^{-1}(k) = 4a^2 \sum_{i=1}^{3} \left(\sin^2(\frac{ak_i}{2}) + \frac{1}{3}\sin^4(\frac{ak_i}{2}) \right)$$

 $\bullet\,$ Use of improved radii $r_{\rm I}$ to smooth out lattice artefacts for short distances

$$r_{\rm I}^{-1} = 4\pi \int \frac{d^3k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{r}} D_{00}(k)$$

• Numerical data shown always uses $r_{\rm I}$ instead of r in the following

Debye mass pole of $D_{00}(k)$ at finite temperature

[E. Braaten, A. Nieto (1995))]

< □ > < □ > < □ > < □ > < □ >

 $\bullet\,$ Gluon propagator has non-trivial infrared limit of $\Pi_{00}(k)$ for $\mathcal{T}\neq 0$

$$\Pi_{00}(k \to 0) = m_D^2 = (gT)^2 (N_c/3 + N_f/6) + \mathcal{O}(g^4)$$

• Extract effective coupling $\tilde{\alpha}=\sqrt{(m_D/T)^2/(4\pi)}$ from Debye mass

Debye mass pole of $D_{00}(k)$ at finite temperature

[E. Braaten, A. Nieto (1995))]

 $\bullet\,$ Gluon propagator has non-trivial infrared limit of $\Pi_{00}(k)$ for $\mathcal{T}\neq 0$

$$\Pi_{00}(k \to 0) = m_D^2 = (gT)^2 (N_c/3 + N_f/6) + \mathcal{O}(g^4)$$

• Extract effective coupling $\tilde{\alpha}=\sqrt{(m_D/T)^2/(4\pi)}$ from Debye mass

Screening for large distances $r \gg 1/T$

[P. Petreczky, hep-lat/0502008]

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

• For large distances, Debye mass pole dominates $V^{ab}(r) = \langle T^a T^b \rangle \frac{g^2}{4\pi r} e^{(-m_D r)}$

$$F_{1,8}(r,T) = \left(-\frac{4}{3}, +\frac{1}{6}\right) \frac{g^2}{4\pi r} \exp\left(-m_D r\right)$$

 \bullet Cancellations in colour-averaged term predict for $r\gg 1/T$

$$F_{\rm avg}(r) = -\frac{1}{9T} \left(\frac{g^2}{4\pi r}\right)^2 \exp\left(-2m_D r\right)$$

Screening functions

Colour singlet screening function $S_1(r, T)$

• Effective coupling defined by colour singlet screening function $S_1(r, T)$

$$S_1(r, T) = -r(F_1(r, T) - F_\infty(T)) = -r \log C^1_{Q\bar{Q}}(r, T)$$

• Rise for $rT \lesssim 0.5,$ weak temperature depence for $rT \gtrsim 0.8$

Screening function $S_1 = -r(F_1 - F_\infty)$

Screening functions

Colour-averaged screening function $S_{avg}(r, T)$

• Effective coupling defined by colour-averaged screening function $S_{avg}(r, T)$

$$S_{\mathrm{avg}}(r,T)) = -r^2(F_{\mathrm{avg}}(r,T) - F_{\infty}(T)) = -r^2 \log C_{Q\bar{Q}}^{\mathrm{avg}}(r,T)$$

• Order of magnitude suppression, screening mass weakly temperature dependent

Thermal modification of the potential

- Singlet free energy $F_1(r, T)$ approximates zero temperature vacuum potential $V_0(r)$
- $\bullet\,$ Steep rise of thermal corrections within interval of $\approx 0.1\,{\rm fm}$

۵

Thermal modification of the potential

- $\bullet\,$ Singlet free energy $F_1(r,T)$ approximates zero temperature vacuum potential $V_0(r)$
- $\bullet\,$ Steep rise of thermal corrections within interval of $\approx 0.1\,{\rm fm},$ occurs at $rT\gtrsim 0.4$

Thermal modification of the potential

- Singlet free energy $F_1(r, T)$ approximates zero temperature vacuum potential $V_0(r)$
- $\bullet\,$ Steep rise of thermal corrections within interval of $\approx 0.1\,{\rm fm},\,{\rm occurs}$ at $rT\gtrsim 0.4$
- Perturbative calculations with 4-loop running coupling close to numerical data [M. Berwein]

Very short distance regime

Thermal modification of the potential

- Singlet free energy $F_1(r, T)$ approximates zero temperature vacuum potential $V_0(r)$
- $\bullet\,$ Steep rise of thermal corrections within interval of $\approx 0.1\,{\rm fm},\,{\rm occurs}$ at $rT\gtrsim 0.4$
- Perturbative calculations with 4-loop running coupling close to numerical data [M. Berwein]

J.Weber (Technische Universität München)

Remnant of confining force

Effective coupling $\alpha_{\rm qq}(r, T)$

- Interpolate $F_1(r, T)$ in radius r at short distance, compute force as derivative
- Study effective coupling $\alpha_{qq}(r, T) \equiv \frac{3}{4}r^2 \frac{\partial F_1(r, T)}{\partial r}$ obtained from force $-\frac{\partial F_1(r, T)}{\partial r}$

Remnant of confining force

Effective coupling $\alpha_{qq}(r, T)$

- Interpolate $F_1(r, T)$ in radius r at short distance, compute force as derivative
- Study effective coupling $\alpha_{qq}(r, T) \equiv \frac{3}{4}r^2 \frac{\partial F_1(r, T)}{\partial r}$ obtained from force $-\frac{\partial F_1(r, T)}{\partial r}$

Remnant of confining force

Effective coupling $\alpha_{qq}(r, T)$

- Interpolate $F_1(r, T)$ in radius r at short distance, compute force as derivative
- Study effective coupling $\alpha_{qq}(r, T) \equiv \frac{3}{4}r^2 \frac{\partial F_1(r, T)}{\partial r}$ obtained from force $-\frac{\partial F_1(r, T)}{\partial r}$
- Quadratic rise of $\alpha_{Q\bar{Q}}(r, T)$, smooth passage through transition temperature T_c

- Effective coupling exhibits maximum $\alpha_{\max}(T) = \alpha_{qq}(r_{\max}, T)$
- $\alpha_{\max}(T)$ is smooth function of T

- Effective coupling exhibits maximum $\alpha_{\max}(T) = \alpha_{qq}(r_{\max}, T)$
- $\alpha_{\max}(T)$ is smooth function of T, strongly correlated with $r_{\max}(T)$

- Effective coupling exhibits maximum $\alpha_{\max}(T) = \alpha_{qq}(r_{\max}, T)$
- $\alpha_{\max}(T)$ is smooth function of T, strongly correlated with $r_{\max}(T)$

- Effective coupling exhibits maximum $\alpha_{\max}(T) = \alpha_{qq}(r_{\max}, T)$
- $\alpha_{\max}(T)$ is smooth function of T, strongly correlated with $r_{\max}(T)$
- Radius $r_{\max}(T)$ determined from interpolation points, $r_{\max}(T)T$ nearly constant

Onset of screening at radius $r_{\max}(T)$

- Effective coupling exhibits maximum $\alpha_{\max}(T) = \alpha_{qq}(r_{\max}, T)$
- $\alpha_{\max}(T)$ is smooth function of T, strongly correlated with $r_{\max}(T)$
- Radius $r_{\max}(T)$ determined from interpolation points, $r_{\max}(T)T$ nearly constant

J.Weber (Technische Universität München)

Regime for perturbation theory?

• Coupling $\alpha_{\max}(T) \lesssim 0.5$ for T > 300 MeV – start of perturbative regime?

Regime for perturbation theory?

- Coupling $\alpha_{\max}(T) \lesssim 0.5$ for T > 300 MeV start of perturbative regime?
- Fit screening functions for $r_{\max}(T) \lesssim r \lesssim 1/T$ with perturbative ansatz

$$S_1(r,T) = \frac{4}{3}\alpha_{\rm sng}\exp\left(-m_{\rm sng}r\right), \quad S_{\rm avg}(r,T) = \frac{1}{9}\alpha_{\rm avg}^2\exp\left(-2m_{\rm avg}r\right)$$

Regime for perturbation theory?

- Coupling $\alpha_{\max}(T) \lesssim 0.5$ for T > 300 MeV start of perturbative regime?
- $\bullet\,$ Fit screening functions for $r_{\rm max}(T) \lesssim r \lesssim 1/T$ with perturbative ansatz

$$S_1(r,T) = \frac{4}{3}\alpha_{\rm sng}\exp\left(-m_{\rm sng}r\right), \quad S_{\rm avg}(r,T) = \frac{1}{9}\alpha_{\rm avg}^2\exp\left(-2m_{\rm avg}r\right)$$

Comparison to perturbation theory

Screening masses

 \bullet Determine screening masses $m_{\rm sng}$ and $m_{\rm avg}$ for $r_{\rm max}(T) \lesssim r \lesssim 1/T$

Comparison to perturbation theory

Screening masses

- Determine screening masses $m_{\rm sng}$ and $m_{\rm avg}$ for $r_{\rm max}(T) \lesssim r \lesssim 1/T$
- No logarithmic rise of screening mass $m_{\rm avg}$ for low temperatures

Comparison to perturbation theory

Relation between running coupling and screening mass

- $\widetilde{\alpha}_{sng}(T) = \sqrt{(m_{sng}/T)^2/(4\pi))}$ and α_{sng} consistent for $T \gtrsim 500 \,\mathrm{MeV}$
- $\bullet\,$ Effective coupling indicates that $\,{\cal T}<300\,{\rm MeV}$ is strongly coupled QGP

Large distance regime

Weakly coupled QGP

- Long distance regime $r \ll 1/T$ is weakly coupled QGP
- Fit screening functions with perturbative ansatz $S_1(r, T) = \frac{4}{3}\alpha_1 \exp(-m_1 r)$
- General underestimation of Debye mass taken care of as systematic error

 $N_t = 8, T = 611 \,\mathrm{MeV}$

Cutoff effects and continuum limit

• Conservative estimate of systematic error and evidence of cutoff effects

۲

Cutoff effects and continuum limit

- Conservative estimate of systematic error and evidence of cutoff effects
- Continuum limit agrees with $N_t = 8$ within errors

Comparison of m_D/T with LO and NLO prediction [E. Braaten, A. Nieto (1995))]

• Leading order prediction below data

Comparison of m_D/T with LO and NLO prediction [E. Braaten, A. Nieto (1995))]

• Leading order prediction below data, next-to-leading order even lower

Comparison of m_D/T with LO and NLO prediction [E. Braaten, A. Nieto (1995))]

- Leading order prediction below data, next-to-leading order even lower
- Screening masses at intermediate distance lie closer to perturbative prediction

Effective coupling α_1

• Perturbative prediction $\alpha_1 \rightarrow \alpha_s$

Effective coupling α_1

- Perturbative prediction $\alpha_1 \rightarrow \alpha_s$
- Definition via Debye mass as $\tilde{\alpha}_1 = \sqrt{(m_1/T)^2/4\pi}$ agrees within errors for $T > 500 \,\mathrm{MeV}$

Effective coupling α_1

- Perturbative prediction $\alpha_1 \rightarrow \alpha_s$
- Definition via Debye mass as $\tilde{\alpha}_1 = \sqrt{(m_1/T)^2/4\pi}$ agrees within errors for $T > 500 \,\mathrm{MeV}$
- Qualitatively consistent with pure gauge results (quantitative comparison still missing)

Effective coupling α_1

- Perturbative prediction $\alpha_1 \rightarrow \alpha_s$
- Definition via Debye mass as $\tilde{\alpha}_1 = \sqrt{(m_1/T)^2/4\pi}$ agrees within errors for $T > 500 \,\mathrm{MeV}$
- Qualitatively consistent with pure gauge results (quantitative comparison still missing)

Summary & Outlook

Summary & Outlook

- Study of colour-singlet and colour-averaged free energies is work in progress
- Short distance effects in medium: thermal modification of the potential
- Intermediate distance: onset of screening
- Large distance: Debye screening, weakly coupled, but non-perturbative.
- $T < 300\,{\rm MeV}:$ strongly coupled QGP. $T > 500\,{\rm Mev}:$ weakly coupled QGP.
- Correlation of running coupling and screening mass in weakly coupled QGP.
- Need more statistics for study of colour averaged free energy
- Utilise cyclic Wilson loops for study of singlet free energy
- Still far away from perturbative regime

< □ > < 同 > < 回 > < 回 >

Free energies

Free energies $F_1/T = -\log C_1(r, T)$ and $F_{avg}/T = -\log C_{avg}(r, T)$

 $F_{\rm avg}(r, T)$ decays faster than $F_1(r, T)$ in high temperature region $(T > 2T_c \simeq 310 \,{\rm MeV})$

Free energies

Free energies $F_1/T = -\log C_1(r, T)$ and $F_{avg}/T = -\log C_{avg}(r, T)$

Quantitatively good agreement between NT = 4 and NT = 6

Free energies

Free energies $F_1/T = -\log C_1(r, T)$ and $F_{avg}/T = -\log C_{avg}(r, T)$

Signal-to-noise ratio worse. Much more statistics required.

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

$$NT = 4$$

• Fit as
$$F_1(r, T) = -\frac{4}{3}\alpha_1 \frac{\exp(-m_1 r)}{r}$$
 and $F_{avg}(r, T) = -\frac{1}{9}\alpha_{avg}^2 \frac{\exp(-2m_{avg} r)}{r^2}$

More screening functions

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

$$NT = 4$$

[P. Petreczky, hep-lat/0502008]

メロト メタト メヨト メヨト

• Fit as
$$F_1(r, T) = -\frac{4}{3}\alpha_1 \frac{\exp(-m_1 r)}{r}$$
 and $F_{avg}(r, T) = -\frac{1}{9}\alpha_{avg}^2 \frac{\exp(-2m_{avg} r)}{r^2}$

More screening functions

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

NT = 6

 $\bullet\,$ Increase of noise for larger lattices severe for $T\gtrsim T_c$

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

NT = 6

 $\bullet\,$ Increase of noise for larger lattices severe for $T\gtrsim T_c$

 $N_t = 6, T = 666 \,\mathrm{MeV}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More screening functions

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

NT = 8

• Screening masses m_1 and $2m_{avg}$ not related by factor two

Screening functions $S_1 = -rF_1(r, T)$ and $S_{avg} = -r^2F_{avg}(r, T)$

NT = 8

• Screening masses m_1 and $2m_{avg}$ not related by factor two

 $N_t = 8, T = 611 \,\mathrm{MeV}$

Relation to singlet free energy

- Cyclic Wilson loop $W_c(r, T) = \frac{1}{3} \text{Tr}_c \langle S(r; 0) W(r) S^{\dagger}(r; N_t) W^{\dagger}(0) \rangle$
- Cyclic Wilson loop and potential loop both observables for $\exp(-F_1(r, T)/T)$

Why potential loops are easier

- $\bullet\,$ Zero temperature Wilson loop: cusp divergences at corners
- Cyclic Wilson loop: additional intersection divergences [M. Berwein, N. Brambilla, A. Vairo (2014)]
- Divergences not present in Coulomb gauge or for link-smeared Wilson loops

Why potential loops are easier

- Zero temperature Wilson loop: *cusp* divergences at corners
- Cyclic Wilson loop: additional intersection divergences [M. Berwein, N. Brambilla, A. Vairo (2014)]
- Divergences not present in Coulomb gauge or for link-smeared Wilson loops

Why cyclic Wilson loops are still very interesting

- Gauge-invariant difference $[W_c P_{\text{avg}}](r, T)$ projected to colour octet with Polyakov loop correlator $P_{\text{avg}} = \frac{1}{9} \langle \text{Tr}_c W(r) \text{Tr}_c W^{\dagger}(0) \rangle$
- Renormalisation as $[W_c P_{avg}]^{ren}(r, T) = \exp[-2\Lambda_F/T \Lambda_A r] Z_{int} [W_c P_{avg}](r, T)$ with Λ_F , Λ_A linerally divergent constants [M. Bervein, M. Brambilla, A. Vairo (2014)]

• Divergence-free ratio
$$\frac{[W_c - P_{\text{avg}}](r, T)[W_c - P_{\text{avg}}](2r_0 - r, T)}{([W_c - P_{\text{avg}}](r_0, T))^2} \text{ useful for colour octet study?}$$

イロン イ団 とく ヨン イヨン

• CWL computed without gauge fixing

イロト イロト イヨト イヨト

Backup slides Cy

Cyclic Wilson loops

 $N_t = 4, T = 200 \,\mathrm{MeV}$

• CWL computed without gauge fixing

• Unsmeared CWL agrees within errors close for $T \sim T_c$, smeared CWL too high

Backup slides Cyclic Wilson loops

Cyclic Wilson loops

 $N_t = 4, T = 333 \,\mathrm{MeV}$

- CWL computed without gauge fixing
- Unsmeared CWL agrees within errors close for $T \sim T_c$, smeared CWL too high
- Discrepancy for unsmeared CWL arises with increasing temperature

Backup slides Cyclic Wilson loops

Cyclic Wilson loops

 $N_t = 4, T = 668 \,\mathrm{MeV}$

• CWL computed without gauge fixing

- Unsmeared CWL agrees within errors close for $T \sim T_c$, smeared CWL too high
- Discrepancy for unsmeared CWL arises with increasing temperature

Backup slides Cyclic Wilson loops

Cyclic Wilson loops

$N_t = 4, T = 819 \,\mathrm{MeV}$

- CWL computed without gauge fixing
- Unsmeared CWL agrees within errors close for $T \sim T_c$, smeared CWL too high
- Discrepancy for unsmeared CWL arises with increasing temperature

Backup slides Cyclic Wilson loops

Cyclic Wilson loops

• Finite size effects in CWL

• Comparable in smeared and unsmeared CWL

• Finite size effects in CWL

• Comparable in smeared and unsmeared CWL

[•] Finite size effects in CWL

• Comparable in smeared and unsmeared CWL