Dimuon Production In PbPb Collisions at 20-160 AGeV at the CERN SPS: Mapping the QCD Phase Diagram in the Transition Region with a New NA60-like Experiment

Gianluca Usai – University of Cagliari and INFN

Workshop on Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions Seattle - 29/09/2014

NA60+: prime physics goal

Systematic measurement of EM radiation over the full energy range from SIS-100/300 to top SPS: ≈20 AGeV to 160 AGeV

Comparison of ion beams

SPS				SIS100/300
Energy range: 11 – 158 [AGeV]			< 11 – 35 (45)	
	beam intensity [Hz]	target thickness [λ _i]	interaction rate [Hz]	interaction rate [Hz]
NA60 (2003)	2.5×10 ⁶	20%	5×10 ⁵	
new injection scheme	10 ⁸ 10 ⁸	10% 1%	10 ⁷ 10 ⁶	10 ⁵ - 10 ⁷
LHC AA			5×10 ⁴	

- Luminosity at the SPS comparable to that of SIS100/300
- > No losses of beam quality at lower energies except for emittance growth
- ➢ RP: seems not a problem in EHN1
- Pb beams presently scheduled for the SPS in 2016-2017, 2019-2021

Dileptons in the LMR (M<1 GeV): ρ spectral function

- High energy: 160 AGeV In-In
 - Phys. Rev. Lett. 96 (2006) 162302 Phys. Rev. Lett. 91 (2003) 042301 10⁻⁴ dN/dM per 20 MeV Pb-Au 40 AGeV CERES/NA45 In-In SemiCentral <dN_{ee}/dm_{ee}>/<N_{ch}> (100 MeV/c²)⁻¹ Rapp/Wambach σ/σ_{αeo}≈ 30 % Brown/Rho **Enhancement factor:** all p_{τ} 5.9±1.5(stat.)±1.2(syst.) <dN_cH/dη>=210 Vacuum p <<u>dN_{ch}>=140</u> 4000 2.1<n<2.65 cockt. p (dashed) p,>200 MeV/c DD (dashed) ⊖_m>35 mrad 0 10 2000 -8 10 10⁻⁹ 0.2 1.2 0.2 0.4 0.6 0.8 0.4 0.6 0.8 1.2 0 0 1.4 M (GeV) m_{ee} (GeV/c²)

- Broadening of ρ spectral function driven by the total baryon density \geq
 - should get maximal at low energy Ο
 - commonly linked to chiral symmetry restoration though in model dependent way Ο
- \rightarrow Measurement of ρ spectral function with utmost precision
 - Possible surprises? Critical point? Ο

Low energy: only one low-statistics measurement in Pb-Au at 40 AGeV

Dileptons in the IMR: chiral symmetry restoration

 improved sensitivity to excess from hadronic radiation

- Physics processes in IMR
 - Drell-Yan (power law ~ *Mn*)
 - o Thermal radiation
 - QGP
 - Hadron gas

Chiral symmetry restoration

• hadronic radiation for M<1.5 GeV dominated by 4π processes via $a_1\pi \rightarrow \mu\mu$ (chiral mixing)

Dileptons in the IMR: source temperature

- Physics processes in IMR
 - Drell-Yan (power law ~ *Mn*)
 - o Thermal radiation
 - QGP
 - Hadron gas
- Thermal spectrum for M>1.5 GeV (flat spectral function) ~ M^{3/2} exp(-M/T):
 fit gives average T of emitting source
 - (M Lorentz invariant, i.e. no blueshift)
- Full SPS energy: NA60 In-In

 Fit to range
 1.1-2.0 GeV: T=205±12 MeV
 1.1-2.4 GeV: T=230±10 MeV

 $T > T_c \rightarrow$ deconfinement at full SPS energy

- Decrease of T for decreasing energy expected plateau around onset of deconfinement?
- Requires systematic measurement of T vs beam energy with precision on the MeV level to assess the slope of T decrease and the possible flattening

Partonic radiation and onset of deconfinement

 \blacktriangleright Disentangling QGP vs hadronic radiation \rightarrow m_T spectra in different mass bins

- → Hadronic radiation: T_{eff} rise consistent with radial flow of a hadronic source: $\pi^+\pi^- \rightarrow \rho \rightarrow \mu^+\mu^-$ in LMR; 4π in IMR (the latter negligible at 160 AGeV)
- QGP radiation: T_{eff} almost flat, consistent with an early source with low flow (dominant at 160 AGeV)
- T_{eff} vs M sensitive to QGP vs hadronic yield for decreasing collision energy, increase of HG radiation/decrease of QGP → progressive reduction/disappearance of drop
- Systematic precision measurement from SPS energies down to SIS100 energies

Dileptons in LMR: measurement in fireball lifetime

NA60 precision measurement of excess yield (ρ-clock): provided the most precise constraint in the fireball lifetime (6.5±0.5 fm/c) in heavy ion collisions to date!

Crucial in corroborating extended lifetime due to soft mixed phase around CP: if increased τ_{FB} observed with identical final state hadron spectra (in terms of flow) \rightarrow lifetime extension in a soft phase (example of complementary measurements with NA61)

Charmonium production in AA: top to low SPS energies

- Anomalous suppression relevant for PbPb collisions, but almost no suppression for the lighter Inln system at 158 AGeV
- Identify thresholds for charmonium suppression via SPS energy scan
- Topmost SPS energy: detailed study of χ_c by detecting the decay photon (originally part of NA60 program)

450

Running conditions foreseen

- Energy scan
 - tentatively : 20-(30)-40-(60)-80-(120)-160 AGeV
- Objectives for total sample of reconstructed pairs
 - $\circ~$ isolation of hadronic spectrum up to M~2 GeV
 - $\,\circ\,\,$ measurements of T and $\rm T_{eff}$ vs M with an accuracy on the MeV level
 - \rightarrow > 10⁷ rec pairs from thermal radiation at each energy
 - → statistics increase by a factor ≈100 over NA60 at each energy
- Ion beams
 - Consistent use of Pb ions for all energies
- Proton beams
 - Needed for reference measurements (Drell-Yan and charmonium)

NA60+ detector concept

Two-spectrometer concept: already proven to be very successful by NA60

- Hybrid silicon pixel detectors (High luminosity of dimuon experiments must be maintained)
- Tracking and trigger stations: GEMs and/or MWPCs
- Track matching in coordinate and momentum space
 - improved dimuon mass resolution
 - distinguish prompt from decay dimuons

Measuring dimuons at 20<E_{lab}<160 GeV

Longitudinally scalable setup for running at different energies

- > angular coverage down to η≈1.8 at 20 AGeV (ϑ~0.3 rad)
- ➢ 5 silicon pixel stations at 7<z<40 cm</p>
- > Pixel plane:
 - 400 μm silicon + 1 mm carbon substrate
 - silicon material budget $\approx 1\% X_0$
 - 10-15 μm spatial resolution

The vertex spectrometer

The muon spectrometer

Performance studies: Pb-Pb 0-5% central collisions

Signal

- Hadron cocktail generator derived from NA60 Genesis using statistical model (Becattini et al.); $dN_{ch}/d\eta$ =270
- Thermal radiation generator based on theoretical calculation in PbPb at 40 GeV (R. Rapp)
- o Drell-Yan and open charm estimated with Pythia
- Fast simulation tool and reconstruction tool
- \circ $\,$ Apparatus defined in terms of geometry and material for each layer $\,$
- Multiple scattering generated in gaussian approximation (Geant code)
- Energy loss simulated with Bethe-Bloch neglecting energy fluctuations
- Reconstruction based on Kalman filter with embedding on full event in pixel detector
- Fake match: one or more wrong hits associated to track

Combinatorial background

- Full hadronic shower development in absorber
- Punch-through of primary and secondary hadrons (p, K, π)
- Muons from secondary hadrons
- Background generation
 - Parametric π and K event generator (built-in decayer for π and K)
 - Apparatus geometry defined in consistent way with fast simulation tool
 - Hits in detector planes recorded in external file for reconstruction

Triggering on dimuons and expected sample size

- Triggering scheme under investigation:
 - tracklet reconstruction in trigger stations after muon wall + fast track reconstruction in muon stations
- > Beam intensity: L \approx 2.5.10⁶/s, λ_i =0.15 (past NA60 conditions)
 - → minimum bias trigger rate (essentially bkg rate) ≈ 15-20 kHz
- > NA60+ improvements over NA60:
 - \circ Higher trigger rate capability (limited to < ≈ 4 kHz in NA60)
 - Significantly larger acceptance, in particular for M<0.5 GeV: > 10
 - Pb-Pb vs In-In
- > 15-20 days of beam time in Pb-Pb at 40 GeV
- \Rightarrow \approx 10⁷ reconstructed pairs from thermal radiation in central collisions

Pb-Pb 0-5% central collisions: data sample

- Subtraction of:
- Combinatorial background
- Fake matches
- Precision of combinatorial background subtraction: 0.5%
- 2.10⁷ reconstructed signal pairs
- Mass resolution: 10-15
 MeV at the ω position
- ➢ lower field toroid: increase of S/B by just 30-40%
 ➔ measurement still very precise

NA60 vs NA60+

 \blacktriangleright Minimum bias collisions: progress in statistics over NA60 by a factor \approx 100

Pb-Pb 0-5% central collisions: LMR (M<1 GeV)

- Thermal radiation yield dominated by in-medium ρ+ω
- Precise isolation of excess à la NA60

Pb-Pb 0-5% central collisions: full mass spectrum

- Thermal radiation yield up to 2.5-3 GeV
- QGP yield still significant at 40 GeV
- Drell-Yan gets stronger than QGP above 2.5 GeV
- Open charm yield negligible

Inclusive excess mass spectrum: NA60+ (40 AGeV PbPb) vs NA60 (160 AGeV InIn)

All known sources subtracted; mass spectra integrated over p_T

Mass spectra fully corrected for acceptance

Inclusive excess mass spectrum: hadronic radiation

Mass Spectrum fully corrected for acceptance

- Performance for study of hadronic radiation in IMR. Scenario with
 - Negligible QGP radiation
 - Hadronic radiation for Pb-Pb central collisions at 20/40 GeV
 - Same background level as Pb-Pb 40 GeV

- Stand-alone study of excess up to M ≈ 2 GeV
- → Best sensitivity to ρ -a₁ chiral mixing

Pb-Pb 0-5% central collisions: performance of T_{eff} measurement from m_T spectra

Thermal radiation in Pb-Pb at 40 GeV (Rapp)

- hadronic radiation: T_{eff} increases monotonically from LMR to IMR up to highest masses
- QGP radiation: T_{eff} variation almost negligible
- Experimental measurement
- T_{eff} can be extracted in several mass intervals up to ≈ 2.5 GeV
- Strong sensitivity to distinguish even a small contribution of QGP down to the onset

NA60+: charmonium measurements in Pb-Pb at low energy

Kinematic cuts and reconstruction efficiency: Ο

- 0<y<1; cosθ_{CS}<0.5; ε_{rec} ≈ 10%
- \blacktriangleright J/ ψ suppression: assume a factor 3 as at 160 AGeV (pessimistic ansatz)
- Energy scan down to E_{lab}≈60 AGeV
- → Measurement with comparable statistics as at topmost SPS energy (N $_{J/\psi} \approx 10^4$) possible within the proposed frame

Magnets and muon system

Dipoles: investigating re-use of PT7 or MEP48

MEP48

- o Gap width 410 mm, diameter 1000 mm
- B=1.47 T @ 200 Amp, 200 V
- B~2.5 T reducing the gap size to 200 mm

Toroid magnet options

- o new magnet with field integral similar to ACM to cover all energies
- \circ re-use of ACM down to ≈ 60 AGeV and new low-field magnet at 20-40 AGeV
- ongoing discussion with CERN experts
- Muon tracking stations
 - Option of complete construction with GEMs considered ($\approx 140 \text{ m}^2$)
 - Estimated cost ≈ 7-10 MEuro

Options for the pixel telescope

- Baseline option investigated: detector based on hybrid pixels
 - \circ Pitch 40-50 μ m
 - pixel station material budget \approx 1% X₀
- Exploration of existing technologies or new developments for LHC upgrades (past example in NA60: ATLAS pixels)
- Monolithic pixels?
- Estimated cost: 2-3 MEuro (was 0.5 MCHF in NA60)

2 Planes with different geometry using ATLAS pixel modules built and operated in NA60 2004 proton run

Summary

- Systematic measurement of EM radiation over the full energy range from
 ≈ 20 AGeV to 160 AGeV
- \blacktriangleright Charmonium also part of the program from \approx 60 AGeV to 160 AGeV
- NA60+ at the CERN SPS: unique opportunity for dilepton measurements of utmost precision over the widest possible energy range
 - Progress in statistics of a factor \approx 100 over NA60 within reach
 - New horizon for quantitative understanding of dilepton production (chiral symmetry restoration, onset of deconfinement)
- > NA60+: two-spectrometer detector concept as NA60
 - Relatively low cost experiment at a running machine: 10-15 Meuro
 - Collaboration would require 50-100 people
- > Ongoing work:
 - Submission of an expression of interest to SPSC
 - Preparation of document to serve as a basis for a letter of intent