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Carlos Lourenco: When we find the answer,
we may have forgotten the question.

How can we study quark deconfinement in the laboratory
and measure the temperature of the quark-gluon plasma?

e Theory:
the QGP modifies quarkonium binding differently at
different temperatures & for different quarkonia.
e Experiment:
quarkonium production in AA collisions (medium) is
different from that in pp collisions (no medium)
e Phenomenology:

the whole process begins with ¢¢/bb production



Charm production in hadron-hadron collisions:
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— fixed partitioning of total cc into open and hidden charm:

~ 90% open, ~ 10% hidden
— fixed partitioning of hidden charm into different charmonia
o hh—>J/zb(3) = Gce—J/p T hh—cc(8) (color evaporation)
— fixed partitioning of open charm into different D etc.

OhhoD+(8) = gp+ Orn_cz(s) (statistical hadronisation)
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— observed J/1 receives feed-down from higher excitations
60 % direct (1S), 30 % from x.(1P), 10 % from v’(2S)

similar pattern for bottomonia; basic question:

how are these pp features modified in AA collisions?

NB: d two questions: [HS, arXiv:1303.3493;
Adv. High Energy Phys. 2013 (2012) 242910]

1. how is heavy flavor (cé&/bb) production modified?

2. how is the subsequent quarkonium formation modified?

Heavy flavor production in nuclear collisions modified in

e initial state: pdf modification (shadowing),
energy loss of incident partons (gluons)

e final state: energy loss of secondary partons c,c; b, b
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Experimental examples:

rapidity dependence of open charm,

800 GeV fixed target pA
at FNAL, o(pA) = A% (pp)

centrality dependence of
open charm, 2.76 TeV PbPb
at RHIC, for large pr
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Such modifications are passed on to quarkonium production,
but say nothing re quarkonium suppression (or enhancement).

RAA(J/’lb) ~/ U'AA(J/’lp)/Ncolo'pp({/’lp) 1S modiﬁed,

but only because the initial c¢/bb production was modified,
not because something happened to the J/4.
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decrease of Rp4(J/1) does NOT mean J/v suppression;
overall charm decreases in AA vs. pp, J/1¢ gets same fraction.



Conclude:

to determine effects of the medium on quarkonium formation,
we first have to eliminate prior effects on c¢/bb production.

Two possibilities:

e measure double ratio

S(J /) = {oaa(J/Y)/oaa(D)}

{ow(J/Y)/opp(D)}

so that modifications of ¢é/bb formation cancel.

e measure ratios of excited states to ground state,
O'AA(T/)
O'AA(T)

so that again modifications of ¢¢/bb formation cancel.

R(Y'/Y) =




RHIC Data
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Data from PHENIX & STAR: J/4 vs. open charm production at high & low transverse momenta
(thanks to Torsten Dahms)

at high pr, strong c¢ suppression, no additional effect on J/4;
at low pr, up to 80 % J /1 suppression:

here 4 no medium effect on cc production,

only on charmonium binding.



Complementary aspect: so-called “RHIC puzzle”

Hm 2004 Au+Au, |y|<0.35, global sys. =+ 12% _;

® 2007 Au+Au, 1.2<|y|<2.2, global sys. =+ 9.2% ?
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Could it be that there are just fewer cc pairs produced
at forward than at mid rapidity?



Check by looking at open charm production in pA collisions
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Rapidity dependence of open charm production in pA at 800 GeV, with parametriztion op4 = A% pp.
(thanks to Mike Leitch)

The puzzle seems not so puzzling with correct calibration;
but need to check quantitatively by more detailed studies of
open charm production in pA collisions
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LHC Data
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Data from ALICE & CMS: J /1) vs. open charm production at intermediate & high transverse momenta
(thanks to Zaida Conesa del Valle)

in AA at high Pr, as many cc pairs make J /1 as in scaled pp,
but there just are fewer now to begin with

hence here neither J/1 suppression nor enhancement.
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NB: cannot compare these data to any model of in-medium
quarkonium behavior;

first need to know what happens to open charm:

shifted to low Pr or overall suppressed re scaled pp?
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Second Probe: excited vs. ground state

ratio of excited to ground state in AA: Y(1S5) : Y(2S) : Y(35)

does the presence of a medium change this from pp?

initial state effects cancel here as well; example
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Evidence of sequential suppression?...pA results?
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Quarkonium Dissociation in a hot QGP: A New Approach

® QOGP consists of deconfined color charges, hence

3 color screening for QQ state
e screening radius rp(7T) decreases with temperature T

e if »p(T) falls below binding radius r; of QQ state 1,

Q and Q cannot bind, quarkonium % cannot exist

e quarkonium dissociation points T;, from rp(T;) = r;,

specify temperature of QGP

e/T4

when force range/screening radius
become less than binding radius,

Q and (@) cannot “see” each other | X T
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Now: a new approach based on emergent entropic QGP force
Verlinde 2011, Kharzeev 2014, HS 2014

Consider difference of thermodynamic potentials for QGP with
and without a heavy QQ pair (Schwinger screening)

) =or |- O =T — e
TS(r,T)=-T <8F(§;:T)) = Z 1— (14 pr)e ™

U(r,T)=F+TS = 7 2 — (24 pr)e |
v
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behavior as f(x = ur)

QQ pair is subject . ) —

to overall force

M(r,T) = (aU(r, T)) _ (8F(r, T)) T (BS(T, T))
or or Or
(i 0
dynamic entropic

force
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dynamic force (x = ur)
B(r,T) =oce™®

entropic force:

K(r,T) =ocure " = oxe™™

When entropic force > dynamic (binding) force:
no more binding possible

B(x)=K(x) = zz=1 = r,=r7rp

When color screening radius < in-medium binding radius,
entropic force exceeds binding force:

quarkonium dissociation - emergent phenomenon.
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e new physics:
— dynamic force ~ QFT, gauge bosons, ...

— entropic force ~ collective effect in many-body system

not the end of the story: so far, only behavior in hot QGP

what happens in critical temperature region of QGP?
Entropic force:

K(z) = [oxe™ ] (Zg;)

while B(x) is unaffected.

Does singular behavior of entropy at T, mean that the entropic
force destroys all hadrons there?
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Conclusions

e Measurements of hidden/open heavy flavor production,
of excited /ground state quarkonium production
in pp, pA, AA
will in the future provide model-independent answers
to model-independent questions.
But the future is still to come.

e Quarkonium dissociation can be studied as an
emergent phenomenon,
arising when the entropic force overcomes the dynamical
binding force.
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