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Carlos Lourenço: When we find the answer,
we may have forgotten the question.

How can we study quark deconfinement in the laboratory
and measure the temperature of the quark-gluon plasma?

• Theory:
the QGP modifies quarkonium binding differently at

different temperatures & for different quarkonia.

• Experiment:

quarkonium production in AA collisions (medium) is
different from that in pp collisions (no medium)

• Phenomenology:

the whole process begins with cc̄/bb̄ production
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Charm production in hadron-hadron collisions:
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– fixed partitioning of total cc̄ into open and hidden charm:

∼ 90% open, ∼ 10% hidden

– fixed partitioning of hidden charm into different charmonia

σhh→J/ψ(s) = gcc̄→J/ψ σhh→cc̄(s) (color evaporation)

– fixed partitioning of open charm into different D etc.

σhh→D+(s) = gD+ σhh→cc̄(s) (statistical hadronisation)
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– observed J/ψ receives feed-down from higher excitations

60 % direct (1S), 30 % from χc(1P), 10 % from ψ′(2S)

similar pattern for bottomonia; basic question:

how are these pp features modified in AA collisions?

NB: ∃ two questions: [HS, arXiv:1303.3493;

Adv. High Energy Phys. 2013 (2012) 242910]

1. how is heavy flavor (cc̄/bb̄) production modified?

2. how is the subsequent quarkonium formation modified?

Heavy flavor production in nuclear collisions modified in

• initial state: pdf modification (shadowing),
energy loss of incident partons (gluons)

• final state: energy loss of secondary partons c, c̄; b, b̄
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Experimental examples:
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800 GeV fixed target pA
at FNAL, σ(pA) = Aασ(pp)
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Such modifications are passed on to quarkonium production,
but say nothing re quarkonium suppression (or enhancement).

RAA(J/ψ) ∼ σAA(J/ψ)/Ncolσpp(J/ψ) is modified,
but only because the initial cc̄/bb̄ production was modified,
not because something happened to the J/ψ.

to illustrate:
if in the kinematic regime studied
the medium has no effect
on J/ψ production,
then RAA for D and for J/ψ
should coincide: they do.
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decrease of RAA(J/ψ) does NOT mean J/ψ suppression;
overall charm decreases in AA vs. pp, J/ψ gets same fraction.
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Conclude:

to determine effects of the medium on quarkonium formation,
we first have to eliminate prior effects on cc̄/bb̄ production.

Two possibilities:

• measure double ratio

S(J/ψ) =
{σAA(J/ψ)/σAA(D)}

{σpp(J/ψ)/σpp(D)}

so that modifications of cc̄/bb̄ formation cancel.

• measure ratios of excited states to ground state,

R(Υ′/Υ) =
σAA(Υ

′)

σAA(Υ)

so that again modifications of cc̄/bb̄ formation cancel.
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RHIC Data
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Data from PHENIX & STAR: J/ψ vs. open charm production at high & low transverse momenta
(thanks to Torsten Dahms)

at high pT , strong cc̄ suppression, no additional effect on J/ψ;
at low pT , up to 80 % J/ψ suppression:

here ∃ no medium effect on cc̄ production,
only on charmonium binding.
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Complementary aspect: so-called “RHIC puzzle”
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Could it be that there are just fewer cc̄ pairs produced
at forward than at mid rapidity?
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Check by looking at open charm production in pA collisions
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Rapidity dependence of open charm production in pA at 800 GeV, with parametriztionσpA = Aασpp.

(thanks to Mike Leitch)

The puzzle seems not so puzzling with correct calibration;
but need to check quantitatively by more detailed studies of
open charm production in pA collisions
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LHC Data
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Data from ALICE & CMS: J/ψ vs. open charm production at intermediate & high transverse momenta

(thanks to Zaida Conesa del Valle)

in AA at high PT , as many cc̄ pairs make J/ψ as in scaled pp,
but there just are fewer now to begin with

hence here neither J/ψ suppression nor enhancement.
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low PT?

NB: cannot compare these data to any model of in-medium
quarkonium behavior;
first need to know what happens to open charm:
shifted to low PT or overall suppressed re scaled pp?
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Second Probe: excited vs. ground state

ratio of excited to ground state in AA: Υ(1S) : Υ(2S) : Υ(3S)

does the presence of a medium change this from pp?
initial state effects cancel here as well; example
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Quarkonium Dissociation in a hot QGP: A New Approach

• QGP consists of deconfined color charges, hence

∃ color screening for QQ̄ state

• screening radius rD(T ) decreases with temperature T

• if rD(T ) falls below binding radius ri of QQ̄ state i,

Q and Q̄ cannot bind, quarkonium i cannot exist

• quarkonium dissociation points Ti, from rD(Ti) = ri,

specify temperature of QGP

when force range/screening radius

become less than binding radius,

Q and Q̄ cannot “see” each other
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Now: a new approach based on emergent entropic QGP force
Verlinde 2011, Kharzeev 2014, HS 2014

Consider difference of thermodynamic potentials for QGP with
and without a heavy QQ̄ pair (Schwinger screening)
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B(x)

K(x)
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entropic force:

K(r, T ) = σµre−µr = σxe−x

When entropic force ≥ dynamic (binding) force:
no more binding possible

B(x) = K(x) ⇒ x = 1 ⇒ rb = rD

When color screening radius < in-medium binding radius,

entropic force exceeds binding force:

quarkonium dissociation - emergent phenomenon.
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• new physics:

– dynamic force ∼ QFT, gauge bosons, ...

– entropic force ∼ collective effect in many-body system

not the end of the story: so far, only behavior in hot QGP

what happens in critical temperature region of QGP?
Entropic force:

K(x) ⇒ [σxe−x]
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while B(x) is unaffected.

Does singular behavior of entropy at Tc mean that the entropic
force destroys all hadrons there?
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Conclusions

• Measurements of hidden/open heavy flavor production,
of excited/ground state quarkonium production
in pp, pA, AA
will in the future provide model-independent answers
to model-independent questions.
But the future is still to come.

• Quarkonium dissociation can be studied as an
emergent phenomenon,
arising when the entropic force overcomes the dynamical
binding force.
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