

In-medium heavy quarkonium from a Bayesian point of view

Alexander Rothkopf

Institute for Theoretical Physics Heidelberg University

References:

Y. Burnier (EPFL), A.R.: PRL 111 (2013) 18, 182003

S. Kim (Sejong-U.), P. Petreczky (BNL), A.R.: arXiv:1409.3630

Y.Burnier, O.Kaczmarek (Bielefeld-U.), AR.: in preparation

DFG Deutsche Forschungsgemeinschaft

HEAVY FLAVOR AND ELECTROMAGNETIC PROBES IN HEAVY-ION COLLISIONS, INT-14-3, SEATTLE USA

Outline

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Physics Motivation: Relativistic heavy-ion collisions and heavy quarkonium
- **Technical progress:** Bayesian spectral function reconstruction in lattice QCD
- Project I: The static in-medium heavy quark potential
- **Project II:** Bottomonium spectral functions from lattice NRQCD

Conclusion

Relativistic Heavy-Ion collisions

Probes that are susceptible to medium but distinguishable from it: Q_{probe}>>T_{med}

Bound states of $c\bar{c}$ or $b\bar{b}$: **Heavy quarkonium** $m_Q >> T_{med}$

- **b** produced in the early stages of the collision (M_b =4.65GeV)
- rapid bound state formation expected
- Iong lifetime due to OZI rule (Γ^{γ} =54keV)

Bottomonium as QGP probe

Goal: Non-perturbative understanding of in-medium Bottomonium via lattice QCD

Two distinct paths, One common challenge

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The T>0 static interquark potential

- Simplification: Infinitely heavy quarks
- Allows a real-time description of the approach towards equilibrium
- Also describes in-medium spectra of thermalized QQbar

in collaboration with Y. Burnier and O. Kaczmarek

In-medium Bottomonium spectra

- Realistic heavy quark masses
- Determination of melting/survival
- Full kinetic equilibration
- Based on the effective field theory NRQCD, also used in T=0 lattice QCD

in collaboration with S. Kim and P. Petreczky

Lattice simulations in Euclidean time, no direct access to dynamical information

Analytic continuation from a finite and noisy dataset necessary: ill-defined problem M. Jarrell, J. Gubernatis, , Physics Reports 269 (3) (1996)

Approach via lattice spectral functions: Improve on the Maximum Entropy Method

M. Asakawa, T. Hatsuda and Y. Nakahara, Prog. Part. Nucl. Phys. 46, 459 (2001)

Bayesian spectral function reconstruction in lattice QCD

Novel Bayesian Spectral Reconstruction

Inversion of Laplace transform required to obtain spectra from correlators

$$D_{i} = \sum_{l=1}^{N_{\omega}} exp[-\omega_{l}\tau_{i}] \rho_{l} \Delta \omega_{l}$$

1. N_{ω} parameters $\rho_{l} >> N_{\tau}$ datapoints

2. data D_i has finite precision

Give meaning to problem by incorporating prior knowledge: Bayesian approach M. Jarrell, J. Gubernatis, Physics Reports 269 (3) (1996)

- Bayes theorem: Regularize the naïve χ^2 functional P[D|ho] through a prior P[ho|I] $P[
 ho|D,I]\propto P[D|
 ho]$ P[ho|I]
- New prior enforces: ρ positive definite, smoothness of ρ, result independent of units

$$P[\rho|I] \propto e^{S} \qquad S = \alpha \sum_{l=1}^{N_{\omega}} \Delta \omega_l \left(1 - \frac{\rho_l}{m_l} + \log \left[\frac{\rho_l}{m_l} \right] \right) \qquad \text{Y.Burnier, A.R.} \\ \text{PRL 111 (2013) 18, 182003}$$

Different from Maximum Entropy Method: S not entropy, no more flat directions

 $\frac{\delta}{\delta\rho} \mathsf{P}[\rho|\mathsf{D},\mathsf{I}] \bigg|_{\rho=\rho^{\mathsf{B}\mathsf{R}}} = \mathsf{0}$

- No apriori restriction on the search space
- Convergence to unique global extremum

IN-MEDIUM HEAVY QUARKONIUM FROM A BAYESIAN POINT OF VIEW

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

The static in-medium interquark potential

The static inter-quark potential at T>0

UNIVERSITAT HEIDELBERG ZUKUNFT SEIT 1386

- A lot of intuition has been accumulated over the years:
 - Lattice QCD at T=0: Confining linear rise + string breaking
 - Analogy with an Abelian plasma: Debye screening Matsui & Satz 1986
 - Modeling: Color singlet free energies or internal energies from lattice QCD see e.g. Nadkarni 1986
- For static quarks a clean definition of the potential from QCD is available
 - Use heavy meson operators: $M(x,y,t) = Q(x,t) \Gamma U(x,y) \overline{Q}(y,t)$

 $D^{>}(R,t) = \langle M(x,y,t) \ M^{\dagger}(x,y,0) \rangle_{med}$

In the static limit: D[>] becomes the real-time Wilson loop

$$D^{>}(\mathbf{R},\mathbf{t}) \stackrel{m \to \infty}{=} W_{\Box}(\mathbf{R},\mathbf{t}) = \langle \mathrm{Tr}\Big(\exp\Big[-\mathrm{i}g\int_{\Box} \mathrm{d}z^{\mu}A_{\mu}(z)\Big]\Big)\rangle$$

 $V^{QCD}(\mathbf{R}) = \lim_{t \to \infty} \frac{i\partial_t W_{\Box}(\mathbf{R}, t)}{W_{\Box}(\mathbf{R}, t)}$

Potential emerges at late times: QQbar timescale much slower than gluons

$$i\partial_t W_{\Box}(\mathbf{R},t) \stackrel{t \to \infty}{=} V^{QCD}(\mathbf{R}) W_{\Box}(\mathbf{R},t)$$

The high temperature potential

T>>T_c: Asymptotic freedom of QCD allows weak coupling evaluation

- Re[V] from Debye screening: presence of deconfined color charges
- Im[V] from gluon scattering (Landau damping) and absoprtion (singlet octet transition) Beraudo et. al. NPA 806:312,2008
 Brambilla et. al. PRD 78 (2008) 014017
- Presence of Im[V] is a QCD result not a model assumption

Extracting V^{QQ} from lattice QCD

HEIDELBERG ZUKUNFT **SEIT 1386**

- Real-time not directly accessible!
- How to connect to the Euclidean domain: spectral functions

How are the spectrum and the potential related?

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$\rho_{\Box}(\mathbf{R},\omega) = \frac{1}{\pi} e^{\gamma_{1}(\mathbf{R})} \frac{\Gamma_{0}(\mathbf{R}) \cos[\gamma_{2}(\mathbf{R})] - (\omega_{0}(\mathbf{R}) - \omega) \sin[\gamma_{2}(\mathbf{R})]}{\Gamma_{0}^{2}(\mathbf{R}) + (\omega_{0}(\mathbf{R}) - \omega)^{2}} + \kappa_{0}(\mathbf{R}) + \kappa_{1}(\mathbf{R})(\omega_{0}(\mathbf{R}) - \omega) + \dots$$
$$\lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R},\omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R},\omega)} = \omega_{0}(\mathbf{R}) + i\Gamma_{0}(\mathbf{R})$$

technical details: Y.Burnier, A.R. Phys.Rev. D86 (2012) 051503

The extraction strategy

From lattice QCD Euclidean Wilson loops to the complex heavy quark potential

- technical detail: avoid cusp divergences using Wilson line correlators in CG
- Quenched lattice QCD: anisotropic lattices with naïve Wilson action 32³xN_τ

Ν _τ	24	32	40	48	56	64	72	80	96
T/T _c	3.11	2.33	1.86	1.55	1.33	1.17	1.04	0.93	0.78
N _{meas}	2750	1570	1680	1110	760	1110	700	940	690

Towards V^{QQ}(r) on quenched lattices

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Presence of Im[V] at high T already visible from curvature in the correlator data

The potential in quenched lattice QCD

- Transition from a confining to a Debye screened behavior
- Re[V] lies close to the color singlet free energies F¹(r)

$$\mathcal{E}^{(1)}(\mathbf{r}) = -\frac{1}{\beta} \log \left[W_{||}(\mathbf{r}, \tau = \beta) \right]_{CG}$$

For small r: good agreement between Im[V] and HTL prediction down to 1.17T_c

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386 IN-MEDIUM HEAVY QUARKONIUM FROM A BAYESIAN POINT OF VIEW

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

In-medium Bottomonium spectral functions from lattice QCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

PRACTICAL: High cost if light and heavy d.o.f share the same spacetime grid

$$a \ll \frac{1}{2m_b} \approx 0.02 \text{fm} \quad \frac{1}{T} = N_\tau a \sim 1 \text{fm}$$

Turn the separation of scales into an advantage: effective field theory NRQCD Thacker, Lepage Phys.Rev. D43 (1991) 196-208

Effective Field Theory: Lattice NRQCD

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

$$L_{\text{NRQCD}} = \psi^{\dagger} \left(iD_{t} + \frac{D_{i}^{2}}{2M_{Q}} + \dots \right) \psi + \xi^{\dagger} \left(\dots \right) \xi - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{q} \left(\dots \right) q$$

Lepage et.al, Phys.Rev. D46 (1992) 4052-4067 Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

Hevay quark ψ and antiquark ξ as separate non- relativistic Pauli spinors

Light medium d.o.f. from a fully relativistic lattice simulation

- Separation of scales T/M_Q << 1, Λ_{QCD}/M_Q << 1, p/M_Q << 1 : systematic expansion in 1/M_Q
- Individual Q or anti-Q in a medium background: Initial value problem $G(\tau) = \langle \psi(\tau) \psi^{\dagger}(0) \rangle$

$$G(\mathbf{x}, \tau + \alpha) = U_4^{\dagger}(\mathbf{x}, \tau) \left(1 - \frac{\mathbf{p}_{lat}^2}{4M_Q \alpha} + \dots\right) G(\mathbf{x}, \tau) \qquad \text{well behaved if } \mathbf{M}_Q \alpha > 1.5$$
Davies, Thacker Phys.Rev. D45 (1992)

S $^{3}S_{1}(\Upsilon)$ and $^{3}P_{1}(\chi_{b1})$ channel correlators D(τ) from products of heavy quark propagators G(τ)

$$D(\tau) = \sum_{\mathbf{x}} \langle O(\mathbf{x}, \tau) G_{\mathbf{x}\tau} O^{\dagger}(\mathbf{x}_{0}, \tau_{0}) G_{\mathbf{x}\tau}^{\dagger} \rangle_{med} \qquad O(^{3}S_{1}; \mathbf{x}, \tau) = \sigma_{i}, \quad O(^{3}P_{1}; \mathbf{x}, \tau) = \stackrel{\leftrightarrow}{\Delta_{i}} \sigma_{j} - \stackrel{\leftrightarrow}{\Delta_{j}} \sigma_{i}$$
Thacker, Lepage Phys.Rev. D43 (1991)

A Medium With Nf=2+1 Light HISQ Flavors

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Light d.o.f. (gluons, u d s quarks) represented by HotQCD configurations

A. Bazavov et. al., Phys. Rev. D 85 (2012) 054503

• 48³x12 with relatively light pions $M_{\pi} \sim 161 MeV$ and a T_{c} =159±3MeV

HotQCD HISQ/tree action $48^3 \times N_{\tau}$ $m_{u,d}/m_s = 0.05$											
β	6.664	6.700	6.740	6.770	6.800	6.840	6.880				
a[fm]	0.1169	0.1130	0.1087	0.1057	0.1027	0.09893	0.09528				
Mba	2.759	2.667	2.566	2.495	2.424	2.335	2.249				
$T/T_C(N_{\tau}=12)$	0.911	0.944	0.980	1.008	1.038	1.078	1.119				
β	6.910	6.950	6.990	7.030	7.100	7.150	7.280				
a[fm]	0.09264	0.08925	0.086	0.08288	0.07772	0.07426	0.06603				
Mba	2.187	2.107	2.030	1.956	1.835	1.753	1.559				
$T/T_C(N_{\tau}=12)$	1.151	1.194	1.240	1.286	1.371	1.436	1.614				

- Important property for the use with lattice NRQCD: 2.759 > M_ba > 1.559 > 1.5
- Temperature changed by variation of the lattice spacing 140MeV < T < 249MeV For a study based on the fixed scale approach see: FASTSUM G. Aarts et. al. JHEP 1407 (2014) 097, JHEP 1111 (2011) 103
- Low temperature configurations available at b=6.664, 6.8, 6.95, 7.28

Spectral Functions In NRQCD

"Integrating out M_b" in setting up NRQCD introduces a scale dependent frequency shift

Drawback: setting absolute frequency scale at T>0 requires additional T=0 calibration

Advantage: Correlator not periodic in 1/T and linked to spectra via simple T=0 Kernel,

$$D(\tau) = \int_{-2M_Q}^{\infty} d\omega e^{-\tau \omega} \rho(\omega)$$

Bottomonium Correlators Close To T=0

Linear dependence: interpolated values to calibrate mass shift at intermediate β

Spectral Functions Close To T=0

S-wave ground state peak very well resolved, next peak mostly from Y(2S)
 P-wave ground state broader: worse s/n ratio and smaller physical peak size
 M_{χ_{b1}(1P)} = M^{NRQCD}_{χ_{b1}} + C(β) = 9.917(3)GeV > M^{exp}_{χ_{b1}(1P)} = 9.89278(26)(31)GeV

Reconstruction Accuracy: S-wave

- High precision of the improved Bayesian reconstruction (narrow width resolved)
- Bow does accuracy suffer from limited available information at T>0 (Nτ=12) ?
- One of the tests we ran: truncate T=0 dataset (N τ =32/64) to N τ =12

$$\begin{array}{ll} \mbox{Overall Limits:} & \beta = 6.664: \quad \Delta m_T < 2 MeV, \quad \Delta \Gamma_T < 5 MeV \\ \beta = 7.280: \quad \Delta m_T < 40 MeV, \quad \Delta \Gamma_T < 21 MeV \end{array}$$

Reconstruction Accuracy: P-wave

- Estimate systematics: truncate T=0 dataset (Nτ=32/64) to Nτ=12
- Due to a worse signal-to noise ratio, effect in P-wave is larger than for S-wave

Bottomonium Correlators At Finite T

- Statistically significant in-medium modification above T=160MeV
- Side remark: similar qualitative and quantitative behavior for η_b and h_b (scalar)

S-wave Spectral Functions At T>0

- New Bayesian method resolves peaks much better than MEM
 - observed broadening and peak shifts at finite T smaller than accuracy limits
- Well defined ground state peak present up to 1.61T_c

P-wave Spectral Functions At T>0

- Worse signal to noise ratio leads to larger Jackknife errors than for S-wave
 - observed broadening and peak shifts also smaller than accuracy limits
- New approach finds well defined peak up to highest T investigated 249 MeV MEM result similar to FASTSUM G. Aarts et. al. JHEP 1407 (2014) 097

How To Verify Survival Of A Bound State?

Inspection by eye insufficient: systematic comparison to non-interacting spectra

Numerically: Reconstruct from free NRQCD correlator (U_u=1)

Expectation: Presence of peaked features due to numerical Gibbs ringing

UNIVERSITÄT

HEIDELBERG ZUKUNFT SEIT 1386

S-wave And P-wave Survival At T=249MeV

At T=140MeV clear difference between ground state peak and numerical ringing

At T=249 MeV: Ground state peak still stronger than numerical ringing

Conclusion

- Improved Bayesian approach to spectral function reconstruction is promising
 - Outperforms MEM consistently: higher resolution on same datasets
 - No restricted search space: accuracy suffers from loss of information alone
- The in-medium potential between static quarks can be accessed in lattice QCD
 - Re[V] lies close to color singlet free energies in Coulomb gauge at all T
 - Im[V] in quenched QCD: same order of magnitude as HTL perturbation theory at T>T_c
- Bottomonium spectra on HotQCD lattices with N_f=2+1 light HISQ flavors
 - In-medium modification of correlators above T=160MeV [up to 1% (Y) and 5% (χ_{b1})]
 - N_{τ} =12 datapoints allow us to set upper bounds on in-medium modification
 - A systematic comparison between free and interacting spectra show:

S-wave and P-wave ground state survive up to at least T=249MeV

Thank you for your attention

Dependence On The NRQCD Discretization

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Reduce the effective temporal step size for NRQCD propagator E.O.M.

As expected: high momentum behavior changes but IR unaffected

Default Model Dependence

Free Spectra: Default Model Dependence

