

Quarkonium Results at PHENIX

Marzia Rosati Iowa State University

PHENIX J/ψ Measurement

- J/ψ is mostly produced by gluon fusion, and thus sensitive to gluon pdf
- Phenix probes different momentum fraction of Au gluons
 - South (y < -1.2) : large X₂ (in gold) ~ 0.090
 - North (y > 1.2) : small X₂ (in gold) ~ 0.003
 - >Central (y ~ 0) : intermediate X_2 ~ 0.020

PHENIX J/ ψ Measurement in A+A

- > 200 GeV
 - Au+Au
 - Cu+Cu
 - Cu+Au
 - U+U
- > 62.4 GeV
 - Au+Au
- > 39 GeV
 - Au+Au

Suppression in Au+Au at 200 GeV

 Smooth suppression with increasing collision centrality
 Forward rapidity more suppressed than mid-rapidity

$J/\psi R_{AuAu} vs$ Collision energy

200 GeV Au+Au Cu+Cu Cu+Au U+U 62.4 GeV Au+Au 39 GeV Au+Au

62 GeV suppression follows the trend of the 200 GeV and constrains theoretical models...

J/ψ R_{AuAu} vs Collision energy Theory comparison

200 GeV Au+Au Cu+Cu Cu+Au U+U 62.4 GeV Au+Au 39 GeV Au+Au

62 agrees with data, suggesting similarity of R_{AA} from 39 to 200 GeV originates from cancellation of suppression and regeneration

$J/\psi\;R_{AA}\,vs$ System Size

200 GeV Au+Au Cu+Cu Cu+Au U+U 62.4 GeV Au+Au 39 GeV Au+Au

- Qualitatively similar suppression from Cu+Cu to U+U.
- Somewhat weaker
 suppression in central
 U+U collisions? Higher
 coalescence?

J/ψ in Asymmetric Collision R_{CuAu}

200 GeV Au+Au Cu+Cu Cu+Au U+U 62.4 GeV Au+Au 39 GeV Au+Au

- suppression in
 Cu+Au comparable to
 Au+Au but somewhat
 smaller
- Cu-going more suppressed than Au-going.

J/ψ in CuAu

200 GeV Au+Au Cu+Cu U+U 62.4 GeV Au+Au 39 GeV Au+Au

CNM effects:

- Cu-going R_{AA} probes low x gluons in Au long proper crossing time.
- Au-going R_{AA} probes low x in Cu, short proper crossing time.

CNM = EPS09 + 4mb breakup (Phys. Rev. C84, 044911, 2011)

PHENIX J/ ψ Measurement in d+Au

 Strong centrality dependence not expected from EPS09 or breakup cross section

Ψ and J/ Ψ R_{dAu} at midrapidity

PRL 111, 202301 (2013)

- Ψ' is ~3 times more suppressed in most central collisions than J/Ψ.
- Very different trend with N_{COLL}.

$\Psi'/J/\Psi$ ratio

PRL111, 202301 (2013)

 Bound ccbar cross nucleus as a preresonant state
 Ψ' and J/Ψ should have the same suppression

Relative suppression of Ψ' and J/Ψ

- Relative modification in *all* systems follows common trend with increasing produced particle density.
- Co-mover (or medium) density seems to be the relevant quantity.

PHENIX Y(1S+2S+3S) Measurement

Mass resolution doesn't unable PHENIX to separate the 1S+2S+3S states.

Y cross section in pp at mid-rapidity

Y Invariant Yield/N_{coll} versus N_{part}

For central Au+Au collisions Y invariant yield at midrapidity is reduced relative to expected N_{coll} scaling

Υ R_{AA} vs Collision Energy

- > Expected maximum R_{AA} : No 2S and 3S: 0.65 \pm 0.11 No 2S, 3S and chi_B: 0.37 \pm 0.09
- Measured R_{AA} consistent with melting of 2S+3S.
- Consistent with LHC results for the same N_{PART}.

Comparison to Theory (I)

Model based on rate equation by Emerick, Zhao and Rapp [Eur. Phys. J. A48,72(2012)] ➢ Model includes Y primordial formation, nuclear absorption and regeneration (very small at RHIC) Model consistent

with data

Comparison to Theory (II)

- Potential Model with finite momentum– space anisotropy by Strickland and Barzov [Nucl.Phys. A 879,23(2012)]
- Data prefers model with potential B which includes entropy contribution to the free energy but unable to constrain η/s

PHENIX 2014 Au+Au dataset

- > Integrated luminosity ($|z|\pm 30$ cm) $\mathcal{L} = 6.6$ nb⁻¹
 - ×5 2010 dataset
 - ×8 2007 dataset

In 2015 RHIC pA Run Projected uncertainties for J/Ψ and Ψ '

BACKUP

R_{dAu} vs binding energy

Upsilons in d+Au at forward rapidity

PHENIX, PRC 87, 044909 (2013)

Suppression consistent with NLO +EPS09 trend (R. Vogt, PRC C81, 044903, 2010)

Unable to constrain breakup cross section due to large experimental uncertainties.