# **Recent Developments for Quarkonia in Medium**



Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA





INT Program on "Heavy-Flavor and EM Probes in Heavy-Ion Collisions" INT (Seattle, WA), 29.09. - 02.10.14

# 1.) Introduction: A "Calibrated" QCD Force



- Vacuum charm-/bottomonium spectroscopy well described
- Confinement?! Operational criterion: linear part of potential
- most sensitive to  $J/\psi + \Upsilon$ ' ( $E_B^{Coul}(J/\psi) \sim 0.05 \text{ GeV vs.} 0.6 \text{ GeV exp.}$ )
- nonperturbative treatment
- potential approach in medium?

# **Outline**

#### 1.) Introduction

#### 2.) <u>T-Matrix for Heavy Flavor in QGP</u>

#### 3.) <u>Quarkonium Transport at RHIC + LHC</u>

#### 4.) Heavy-Quark Potential in Medium

#### 5.) <u>Conclusions</u>

# 2.) <u>Thermodynamic T-Matrix for Quarkonia in QGP</u>

Lippmann-Schwinger equation

In-Medium Q-Q T-Matrix:



 $T_{\alpha}(E;q,q') = V_{\alpha}(q,q') + \int k^2 dk \ V_{\alpha}(q,k) \ G_{Q\overline{Q}}^0(E,k) \ T_{\alpha}(E;k,q')$ 

- potential  $V_{\alpha}$  real
- imaginary parts: unitarization (cuts in in-med.  $Q\bar{Q}$  propagator  $G_{QQ}$ )



- led channel)
- gluo-dissosciation (coupled channel) [Bhanot+Peskin '85]
- Landau damping (HQ selfenergy)



## **2.3 Free vs. Internal Energy in Lattice QCD**





weak QQ̄ potential
small m<sub>o</sub>\* ~ m<sub>o</sub> + F<sub>1</sub>(∞,T)/2

• strong  $\mathbf{Q}\mathbf{\bar{Q}}$  potential,  $\mathbf{U} = \langle \mathbf{H}_{int} \rangle$ 

- large  $m_Q^* \sim m_Q^* + U_1(\infty,T)/2$
- F, U, S thermodynamic quantities
- Entropy: many-body effects

# **3.)** Quarkonium Transport in Heavy-Ion Collisions

• Inelastic Reactions:

• Rate

[PBM+Stachel '00, Thews et al '01, Grandchamp+RR '01, Gorenstein et al '02, Ko et al '02, Andronic et al '03, Zhuang et al '05, Ferreiro et al '11, ...]

detailed balance:  $J/\psi + g \longrightarrow c + \bar{c} + X$ 

**Rate**  
Equation: 
$$\frac{dN_{\psi}}{d\tau} = -\Gamma_{\psi} \left( N_{\psi} - N_{\psi}^{eq} \right)$$



#### • Theoretical Input: Transport coefficients

- chemical relaxation rate  $\Gamma_{w}$
- equilibrium limit  $N_{\psi}^{eq}(\varepsilon_{\psi}^{B}, m_{c}^{*}, \tau_{c}^{eq})$

#### • Phenomenological Input:

- $J/\psi, \chi_c, \psi'+c, b$  initial distributions [pp, pA]
- space-time medium evolution [AA: hydro,...]



# **3.1 Thermal Charmonium Properties**

(a) <u>Equilibrium Ψ number:</u>

$$N_{\psi}^{eq} = V_{FB} \, 3 \, \gamma_c^2 \, \int \frac{d^3 q}{(2\pi)^3} \, f^{\psi}(m_{\psi}, T)$$

- $\gamma_c$  from fixed  $c\bar{c}$  number:  $N_{c\bar{c}} = \frac{1}{2} V_{FB} \gamma_c n_c(m_c^*, T) I_1 / I_0 + \sum_{\psi} N_{\psi}^{eq}$
- interplay of  $\mathbf{m}_c^*$  and  $\mathbf{m}_{\psi} = 2\mathbf{m}_c^* \varepsilon_{\psi}^B$
- constrain spectral shape by lattice-QCD correlators

$$R_{\alpha}(\tau;T) = \frac{\int dE \,\sigma_{\alpha}(E,T) \,\mathcal{K}(\tau,E,T)}{\int dE \,\sigma_{\alpha}(E,T_{\rm rec}) \,\mathcal{K}(\tau,E,T)}$$

#### (b) <u>Inelastic Ψ Width</u>

• controlled by  $\alpha_s$  (parameter)



### **3.2 Incomplete c-Quark Thermalization**

• Relaxation time ansatz:  $N_{\psi}^{eq}(\tau) \sim N_{\psi}^{therm}(\tau) \cdot [1-exp(-\tau/\tau_c^{eq})]$ 



• regeneration sensitive to charm-quark spectra



• Fix two main parameters:

 $\alpha_{s} \sim 0.3$ , charm relax.  $\tau_{c}^{eq} = 4(2)$  fm/c for U(F) vs.  $\sim 5(10)$  from T-matrix

### **3.4 J/y Excitation Function: BES at RHIC**



- suppression pattern varies little (expected from transport) [Grandchamp +RR '02]
- quantitative **pp** + **pA** baseline critical to extract systematics

# **3.5 J/w Predictions at LHC**

[Zhao+RR '11]



- regeneration becomes dominant
- uncertainties in  $\sigma_{cc}$ +shadowing

- low **p**<sub>T</sub> maximum confirms regeneration
- too much high-**p**<sub>T</sub> suppression?



- [Grandchamp et al '06, Emerick et al '11]
- sensitive to color-screening + early evolution times
- clear preference for strong binding (U potential)
- similar results by [Strickland '12]
- possible problem in rapidity dependence

# **3.7 Summary of Phenomenology**

- Quarkonium discoveries in URHICs:
  - increase of  $J/\psi R_{AA}$  SPS, RHIC  $\rightarrow$  LHC
  - low-**p**<sub>T</sub> enhancement
  - sizable v<sub>2</sub>
  - increasing suppression of  $\Upsilon'$  ( $\epsilon_B^{\Upsilon'} \sim \epsilon_B^{J/\psi}$ )



- Fair predictive power of theoretical modeling
  - based on description of SPS+RHIC with 2 main parameters

#### • Implications

- $-T_0^{SPS}(\sim 230) < T_{diss}(J/\psi,\Upsilon') < T_0^{RHIC}(\sim 350) < T_0^{LHC}(\sim 550) \le T_{diss}(\Upsilon)$
- confining force screened at RHIC+LHC
- marked recombination of diffusing charm quarks at LHC

# **3.8 Future Improvements of Approach**

- Check expanding fireball with hydrodynamic evolution
- Microscopic calculation of gain term with time-evolving heavy-quark spectra
- Nonperturbative calculation of dissociation rate
- Better determination of HQ potential (thus far: V=F vs. U)
- Scrutinize cold nuclear matter and formation time effects

### **3.9 Back to Charmonium: dAu**



• "Standard" procedure produces significant fireball

• Some extra suppression from hot medium

[X.Du+RR in progress]



### **4.1 Calculate Free Energy in Potential Approach**

$$\begin{split} \exp(-\beta F_{Q\bar{Q}}) &= \frac{1}{Z} \sum_{n} \left\langle n \left| e^{-\beta H} (e^{\beta H} \chi(r_2) e^{-\beta H}) (e^{\beta H} \psi(r_1) e^{-\beta H}) \psi^{\dagger}(r_1) \chi^{\dagger}(r_2) \right| n \right\rangle \\ &\equiv G^{>}(-i\beta, r_1, r_2 | r'_1, r'_2) |_{r'_1 = r_1, r'_2 = r_2} \end{split}$$
$$F_{Q\bar{Q}}(r_1 - r_2) &= -\frac{1}{\beta} \ln \left( G^{>} (-i\beta, r_1 - r_2) \right) = -\frac{1}{\beta} \ln \left( \int_{-\infty}^{\infty} d\omega \sigma \left( \omega, r_1 - r_2 \right) e^{-\beta \omega} \right) \\ &= \sigma(\omega, r) = \frac{1}{\pi} \frac{(V + \Sigma)_I(\omega)}{(\omega - (V + \Sigma)_R)^2 + (V + \Sigma)_I^2(\omega)} \end{split}$$
[S.Liu+RR in progress]

• first step: utilize heavy-quark selfenergies from previous microscopic calculations



### **4.2 Free Energy, Potential + T-Matrix**



 long-range confining force induces substantial enhancement in near-threshold Qq T-matrix



# 5.) <u>Conclusions</u>

- Quarkonium transport approach, gauged at SPS + RHIC, yields fair predictive power at LHC
- ⇒ formation of deconfined medium with interplay of suppression + recombination of diffusing charm/bottom quarks
- Further refinements in progress
  - medium effects in p/dA small
  - improved determination of in-medium potential

**3.2.2** J/ $\psi$  at LHC:  $v_2$ 



[He et al '12]

• further increase at mid-y

## **<u>3.1.2 J/\psi p<sub>T</sub> Spectra + Elliptic Flow at RHIC</u>**



(strong binding)

- shallow minimum at low **p**<sub>T</sub>
- high **p**<sub>T</sub>:
  - formation time, b feeddown, Cronin
- small v<sub>2</sub> limits regeneration, but does not exclude it

### **3.2.2 D-Meson Thermalization at LHC**



#### • to be determined...

### 3.3.3 J/ψ at LHC III: High-p<sub>t</sub> – ATLAS+CMS





• underestimate for peripheral (spherical fireball reduces surface effects ...)

### **3.3.4 Time Evolution of J/y at LHC**



• finite "cooking-time" window, determined by inelastic width

[Zhao+RR '11]

# **3.2 Charmonia in QGP: T-Matrix Approach**

- U-potential, selfconsist. **c**-quark width
- <u>Spectral Functions</u>
- J/ $\psi$  melting at ~1.5T<sub>c</sub>
- $\chi_c$  melting at  $\sim T_c$ -  $\Gamma_c \sim 100 \text{MeV}$
- Correlator Ratios

 $R_{\alpha}(\tau;T) = \frac{\int dE \,\sigma_{\alpha}(E,T) \,\mathcal{K}(\tau,E,T)}{\int dE \,\sigma_{\alpha}(E,T_{\rm rec}) \,\mathcal{K}(\tau,E,T)}$ 

- rough agreement with IQCD within uncertainties

[Mocsy+ Petreczky '05+'08, Wong '06, Cabrera+RR '06, Beraudo et al '06, Satz et al '08, Lee et al '09, Riek+RR '10, ...]



### **3.2.2 T-Matrix Approach with F-Potential**

- selfcons. **c**-quark width
- Spectral Functions
- J/ $\psi$  melting at ~1.1T<sub>c</sub>
- $\chi_c$  melting at  $\leq T_c$
- $\Gamma_c \sim 50 \text{MeV}$
- <u>Correlator Ratios</u>
- slightly worse agreement with lQCD

[Riek+RR '10]



## **3.3 Charm-Quark Susceptibility in QGP**



- sensitive to in-medium charm-quark mass
- finite-width effects can compensate in-medium mass increase

## **3.1.3 Momentum Dependence of Inelastic Width**



• dashed lines: gluo-dissociation



• solid lines: quasifree dissociation



• similar to full NLO calculation [Park et al '07]

# **4.3** $J/\psi$ at Forward Rapidity at RHIC



[Zhao+ RR '10]

### **4.2.Thermalization Rate from T-Matrix**



• thermalization 4(2) times faster using U(F) as potential than pert. QCD

• momentum dependence essential (nonpert. effect  $\neq$  **K**-factor!)

[Riek+RR '10]

# **3.) Thermodynamic T-Matrix in QGP**

Lippmann-Schwinger equation

In-Medium Q-Q T-Matrix:



 $T_{\alpha}(E;q,q') = V_{\alpha}(q,q') + \int k^2 dk \ V_{\alpha}(q,k) \ G_{Q\overline{Q}}^0(E,k) \ T_{\alpha}(E;k,q')$ 

- potential  $V_{\alpha}$  real
- imaginary parts: unitarization (cuts in in-med.  $Q\bar{Q}$  propagator  $G_{QQ}$ )
- simultaneous treatment of:
  - bound + scattering states
  - quarkonia (QQ) + heavy-quark diffusion (Qq,g)