Suppression of Heavy Quarkonium Production in pA Collisions

Jianwei Qiu Brookhaven National Laboratory

Based on works done with Z.-B. Kang, G. Sterman, P. Sun, J.P. Vary, B.W. Xiao, F. Yuan, X.F. Zhang, ...

INT Program (INT-14-3) – Focused workshop on *"Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions"* Institute for Nuclear Theory, University of Washington, Seattle, WA 9/15-10/10, 2014

Outline

□ Introduction – heavy quarkonium production

□ Suppression of heavy quarkonium production in p+A:

- ♦ Total production rate
- ♦ pT spectrum

□ Heavy quarkonium production in polarized p+A collisions

- Transverse single spin asymmetry (or phenomenon)
- ♦ New and complimentary probe of small-x physics

Given Summary

Introduction

 \Box J/ ψ is unlikely to be formed at:

$$r_H \le \frac{1}{2m_c} \sim \frac{1}{15} \text{ fm}$$

Production of a heavy quark pair is likely to be perturbative!

Basic production mechanism

QCD factorization is likely to be valid for producing the pairs:

- ♦ Momentum exchange is much larger than 1/fm
- ♦ Spectators from colliding beams are "frozen" during the hard collision

Approximation: on-shell pair + hadronization

$$\sigma_{AB\to J/\psi}(P_{J/\psi}) \approx \sum_{n} \int dq^2 \left[\sigma_{AB\to [Q\bar{Q}](n)}(q^2) \right] F_{[Q\bar{Q}(n)]\to J/\psi}(P_{J/\psi}, q^2)$$

Models & Debates

 \Leftrightarrow Different assumptions/treatments on $F_{[Q\bar{Q}(n)] \rightarrow J/\psi}(P_{J/\psi}, q^2)$ how the heavy quark pair becomes a quarkonium?

A long history for the production

Color singlet model: 1975 –

Only the pair with right quantum numbers Effectively No free parameter!

□ Color evaporation model: 1977 –

Einhorn, Ellis (1975), Chang (1980), Berger and Jone (1981), ...

Fritsch (1977), Halzen (1977), ...

All pairs with mass less than open flavor heavy meson threshold One parameter per quarkonium state

□ NRQCD model: 1986 –

Caswell, Lapage (1986) Bodwin, Braaten, Lepage (1995) QWG review: 2004, 2010

All pairs with various probabilities – NRQCD matrix elements Infinite parameters – organized in powers of v and α_s

□ QCD factorization approach: 2005 –

Nayak, Qiu, Sterman (2005), ... Kang, Qiu, Sterman (2010), ...

 $P_T >> M_H$: M_H/P_T power expansion + α_s – expansion Unknown, but universal, fragmentation functions – evolution

□ Soft-Collinear Effective Theory + NRQCD: 2012 –

See my talk last week

Fleming, Leibovich, Mehen, ...

Transition from the pair to a quarkonium

□ Large phase space available for gluon radiation:

$$Q^2 - 4M_C^2 \Rightarrow 4M_D^2 - 4M_C^2 \approx 6 \text{ GeV}^2$$

Larger heavy quark velocity in production than decay:

$$v_{\text{decay}} \sim \sqrt{\frac{4M_{J/\psi}^2 - 4m_c^2}{4m_c^2}} \sim 0.48$$
$$v_{\text{prod}} \sim \frac{|q_c|}{m_c} \sim \sqrt{\frac{4m_D^2 - 4m_c^2}{4m_c^2}} \sim 0.88 > v_{\text{decay}}$$

Direct impact the approximation of production models

Color evaporation model (CEM)

One transition constant for each heavy quarkonium state
 Heavy quark mass Is only another "adjustable" parameter

Non-Relativistic QCD (NRQCD) model

□ Transition distribution

- \diamond Narrowly peaked distribution at $q^2 \ll m_c^2$
- $\diamond~$ Velocity expansion is a good approximation $~~v\sim |q|/m_c$
- $\diamond~$ Perturbatively defined color singlet and octet states $m_c \gg \Lambda_{
 m QCD}$

 $\Gamma \circ m =$

$$\mathbf{q^{2}} \qquad \mathbf{q^{2}} \qquad \mathbf{q^{2}}$$

□ Velocity expansion might have large corrections:

v_{prod}~0.88 for m_c=1.4GeV

Role of semihard gluon radiation

- □ Over 6 GeV² phase space for gluon radiation
- □ Pair with large q^2 has a vanishing chance to become J/ ψ in NRQCD Model
- Radiation pays a penalty in coupling But, gains a lot on wave function

 $a_{s}(Q^{2}) \ln(Q^{2}/4M_{c}^{2}) F(4M_{c}^{2})$

Threshold behavior for the transition distribution!

Heavy quarkonium in p(d)-A collisions

- \Rightarrow NO QGP (m_Q >> T)! \rightarrow Cold nuclear effect for the "production"
- \diamond Necessary calibration for AA collisions
- ♦ Hard probe (m_Q >> 1/fm) → quark-gluon structure of nucleus!

Nucleus is not a simple superposition of nucleons!

Production in pA collisions

Production in pA collisions

See Arleo's talk on Friday Incoherent multiple scattering on a "gluon":

- \diamond Leads to a shift in y and p_T
 - Suppression in forward y
 - Broadening in p_T

Without including shadowing, this leads to the same production rate if integrating over y and $\ensuremath{p_T}$

□ Multiple scattering resolves the quark and antiquark:

Production in pA collisions

- \diamond Nuclear effect in PDFs
- \Rightarrow Medium dependence from J/ ψ -nucleon absorption

Glauber model:

$$\sigma_{AB} \approx AB\sigma_{NN} e^{-\rho_0 \sigma_{abs}^{J/\psi} L_{AB}}$$

Expect a straight line on a semi-log plot

 \Box Need a much too larger $\sigma_{\rm abs}$

 L_{AB}

Suppression in total production rate

□ Anomalous suppression:

Not a straight line on the semi-log plots – additional suppression!

Suppression in total production rate

□ Multiple scattering in A:

□ Final-state:

Increases the relative momentum of the pair $\overline{Q}^2 > Q^2$

$$q^2 \Rightarrow q^2 + \varepsilon L_{AB}$$

Suppression of J/ ψ

 $\varepsilon \sim \hat{q} \sim \langle \Delta q_T^2 \rangle$

❑ Threshold effect leads to different effective σ_{abs}

Curved line for R_{pA}

lacksquare Different suppression for ψ '

Suppression in total production rate

Single parameter: $\varepsilon \propto \hat{q}$

- ♦ Exact shape of transition distributions?
- ♦ Transverse momentum broadening

Quarkonium pT distribution

 \Box Quarkonium production is dominated in low p_T region

- □ Both quarkonium and Drell-Yan low p_T distributions at collider energies are determined by the gluon shower of incoming partons (initial-state effect)
 Qiu, Zhang, PRL, 2001
- □ Because of heavy quark mass, final-state interactions suppress the formation of J/ψ , but should not be an important factor for low p_T spectrum

Quarkonium pT distribution

□ PT spectrum is not completely perturbative: Guo, Qiu, Zhang, PRD 2002

Quarkonium pT distribution

□ Y-spectrum is almost perturbative:

Berger, Qiu, Wang, PRD 2005

all order resummation of soft gluon shower

A-dependence of the pT distribution

□ Multiple scattering in medium:

- Each scattering is too soft to calculate perturbatively
- Resummation + multiple scattering (small-x limit)

\Box Moment of P_T -distribution:

- ♦ more inclusive calculable
- ♦ based on observed particles only
- ♦ less sensitive to hadronization

Broadening:

- ♦ Sensitive to the medium properties
- ♦ Perturbatively calculable

$$\langle (q_T^2)^n \rangle = \frac{\int dq_T^2 (q_T^2)^n \, d\sigma/dq_T^2}{\int dq_T^2 \, d\sigma/dq_T^2}$$

 $\Delta \langle q_T^2 \rangle = \langle q_T^2 \rangle_{AB} - \langle q_T^2 \rangle_{NN}$

A-dependence of the P_T distribution

□ Ratio of x-sections:

Guo, Qiu, Zhang, PRL, PRD 2002

Broadening of heavy quarkonia

Only depend on observed quarkonia

Johnson, et al, 2007

Final-state multiple scattering

Kang, Qiu, PRD77(2008)

Heavy quarkonium is unlikely to be formed when the heavy quark pair was produced

- ♦ If the formation length: $r_F ≤ R_N \sim 1 \text{fm}$ no A-enhancement from final-state interaction
- ♦ If the formation length: $r_F \ge R_A$ additional A^{1/3}-type enhancement from the final-state interaction

□ Final-state effect depends on how quarkonium is formed NRQCD model, color evaporation model, ...

Color evaporation model

Double scattering – A^{1/3} dependence:

$$\Delta \langle q_T^2 \rangle_{\mathrm{HQ}}^{\mathrm{CEM}} \approx \int dq_T^2 q_T^2 \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \to Q\bar{Q}}^D}{dQ^2 dq_T^2} \Big/ \int_{4m_Q^2}^{4M_Q^2} dQ^2 \frac{d\sigma_{hA \to Q\bar{Q}}}{dQ^2}$$

□ Multiparton correlation:

$$T_{g/A}^{(F)}(x) = T_{g/A}^{(I)}(x) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \int \frac{dy_1^- dy_2^-}{2\pi} \theta(y^- - y_1^-) \theta(-y_2^-) \\ \times \frac{1}{xp^+} \langle p_A | F_{\alpha}^+(y_2^-) F^{\sigma+}(0) F^+_{\sigma}(y^-) F^{+\alpha}(y_1^-) | p_A \rangle_{F} \\ = \lambda^2 A^{4/3} \phi_{g/A}(x)$$

□ Broadening – twice of initial-state effect:

$$\begin{split} \Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm CEM} &= \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \frac{(C_F + C_A) \sigma_{q\bar{q}} + 2C_A \sigma_{gg}}{\sigma_{q\bar{q}} + \sigma_{gg}} \\ &\approx 2C_A \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) & \text{if gluon-gluon dominates,} \\ &\text{and if } \mathbf{r}_{\rm F} > \mathsf{R}_{\rm A} \end{split}$$

NRQCD model

Cross section:

$$\sigma_{hA\to H}^{\text{NRQCD}} = A \sum_{a,b} \int dx' \phi_{a/h}(x') \int dx \phi_{b/A}(x) \left[\sum_{n} H_{ab\to Q\bar{Q}[n]} \langle \mathcal{O}^{H}(n) \rangle \right]$$

Broadening:

$$\Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm NRQCD} = \left(\frac{8\pi^2 \alpha_s}{N_c^2 - 1} \lambda^2 A^{1/3} \right) \frac{(C_F + C_A)\sigma_{q\bar{q}}^{(0)} + 2C_A \sigma_{gg}^{(0)} + \sigma_{q\bar{q}}^{(1)}}{\sigma_{q\bar{q}}^{(0)} + \sigma_{gg}^{(0)}}$$

Hard parts:

$$\hat{\sigma}_{q\bar{q}}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{16}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H({}^3S_1^{(8)}) \rangle \qquad \text{Only color octet} \\ \hat{\sigma}_{q\bar{q}}^{(1)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{80}{27} \delta(\hat{s} - M^2) \langle \mathcal{O}^H({}^3P_0^{(8)}) \rangle \qquad \text{Channel contributes} \\ \hat{\sigma}_{gg}^{(0)} = \frac{\pi^3 \alpha_s^2}{M^3} \frac{5}{12} \delta(\hat{s} - M^2) \Big[\langle \mathcal{O}^H({}^1S_0^{(8)}) \rangle + \frac{7}{m_Q^2} \langle \mathcal{O}^H({}^3P_0^{(8)}) \rangle \Big]$$

□ Leading features:

$$\Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm NRQCD} \approx \Delta \langle q_T^2 \rangle_{\rm HQ}^{\rm CEM} \approx (2C_A/C_F) \Delta \langle q_T^2 \rangle_{\rm DY}$$

Broadening of heavy quarkonia in p(d)+A

□ Final-state effect is important:

Kang, Qiu, PRD77(2008)

Mass – independence, not very sensitive to the feeddown

Broadening of heavy quarkonia in A+A

P(d)+A collision at forward rapidity

□ Puzzling rapidity dependence:

LHCb has similar forward rapidity result

 \Rightarrow x_F – scaling (not x₂-scaling) in low energy data

 Less suppression from LHC data (early CGC calculation does not work)

Multiple scattering in DIS

□ Consequence of OPE for inclusive DIS:

 $\sigma_{phys}^{h} = \hat{\sigma}_{2}^{i} \otimes [1 + C^{(1,2)}\alpha_{s} + C^{(2,2)}\alpha_{s}^{2} + ...] \otimes T_{2}^{i/h}(x)$

+
$$\frac{\hat{\sigma}_4^i}{O^2} \otimes [1 + C^{(1,4)}\alpha_s + C^{(2,4)}\alpha_s^2 + ...] \otimes T_4^{i/h}(x)$$

+ $\frac{\sigma_6}{Q^4} \otimes [1 + C^{(1,6)}\alpha_s + C^{(2,6)}\alpha_s^2 + ...] \otimes T_6^{i/h}(x)$ + ... Power corrections

□ **Predictive power**:

- * Coefficient functions are IR safe
- Distributions/correlations/matrix elements are universal

Distributions are defined to remove all collinear divergences of the partonic scattering

Size of power corrections

□ Coherent multiple scattering

- □ Medium parton density:
- □ For a hard probe:
- Nuclear size enhancement:
- □ Small x enhancement:

 $d\sigma \approx d\sigma^{(S)} + d\sigma^{(D)} + \dots$

Naïve power counting:

 $\frac{d\sigma^{(D)}}{d\sigma^{(S)}} : \alpha_{\rm s} \frac{1/Q^2}{R^2} \langle F^{+\alpha} F^+_{\alpha} \rangle A^{1/3}$

 $\left\langle F^{+\alpha} F_{\alpha}^{+} \right\rangle$ $\frac{\alpha_{s}}{Q^{2} R^{2}} = 1$ $A^{1/3} \leq 6$ $-\frac{\partial}{\partial x} \varphi(x)$

Tree-level power corrections to DIS

□ At small x, the hard probe covers several nucleons, coherent multiple scattering could be equally important at low Q

To take care of the coherence, we need to sum over all cuts for a given forward scattering amplitude

Summing over all cuts is also necessary for IR cancellation

Multi-parton correlation functions

Parton momentum convolution:

All coordinate space integrals are localized if x is large

\Box Leading-pole approximation for dx_i integrals :

- \diamond **dx**_i integrals are fixed by the poles (no pinched poles)
- \Rightarrow *x*_{*i*}**=0** removes the exponentials

Leading-pole leads to highest powers in medium length, a much smaller number of diagrams to worry about

Multiple coherent scattering to DIS

Resummed contribution to structure functions

☐ Transverse structure function:

Qiu and Vitev, PRL (2004)

□ Similar result for longitudinal structure function

Rapidity dependence in p+A

Resummed multiple scattering:

In the forward region,

$$\frac{d}{dx} \left[f_{a/p}(x_F + x) \right]_{x = x_2(x_F, Q)} \gg \frac{d}{dx} \left[f_{b/A}(x) \right]_{x = x_2(x_F, Q)}$$

$$x_1 = x_F + x_2$$
 $x_2 = \frac{1}{2} \left[\sqrt{x_F^2 + 4Q^2/s} - x_F \right]$

Heavy quarkonium p_T distribution in pA

QCD factorization for A^{1/3} enhanced contribution:

Condition for multiple scattering not to interfere with hadronization

Heavy quarkonium production in pA collisions:

♦ Kang et al.: NRQCD, CEM, P_T ~ Q_s >> M, ...
 1309.7337 – small-x evolution + CGC multiple scattering

 \diamond Qiu et al.: NRQCD, CEM, P_T ~ Q_s << M

1310.2230

– Coherent multiple scatteing + Sudakov resummation

Polarized p+A collisions

Excellent probe for distinguishing various contributions to SSA

Excellent probe for studying small-x Physics

SSA increases as x_F (or y) increases

Polarized proton and A_N

Definition:

Kang, Yuan, ...

$$A_N \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = \frac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$$

Difference of x-sections!

\Box A_N proportional to the k_T slop of TMD:

Now spin-dependent cross section becomes

$$\frac{d\sigma}{dyd^2p_{\perp}} = \frac{K}{(2\pi)^2} \int d^2b \int_{x_F}^1 \frac{dz}{z^2} \int d^2k_{\perp} x \epsilon^{\alpha\beta} s_{\perp}^{\alpha} k_{\perp}^{\beta} f_{1T}^{\perp,q}(x,k_{\perp}^2) F(x_A(q_{\perp}=p_{\perp}/z-k_{\perp})D_{h/q}(z))$$

- Linear kt associated with Sivers function, need another kt to have kt-integral non-vanishing, which can only come from the gluon distribution
- Spin asymmetry is sensitive to the slope of the dipole gluon distribution in ktspace

A unique opportunity

□ Polarized p+A:

Kang & Yuan, 1106.1375 Kovchegov & Sievert, 1201.5890 Kang & Xiao, 1212.4809

✓ Take advantage of large single spin asymmetry A_N in forward region

✓ A_N is an azimuthal effect, spin-dependent function is k_⊥-odd function

✓Thus A_N will pick up the slope of the gluon distribution in momentum space, which is controlled by saturation scale

$$A_N \propto \frac{dF(x_g, q_\perp)}{dq_\perp} \sim Q_s$$

$$\frac{A_N^{pA \to h}}{A_N^{pp \to h}} \bigg|_{p_T^2 \lesssim Q_s^2} \approx \frac{Q_{s,p}^2}{Q_{s,A}^2} \qquad \frac{A_N^{pA \to h}}{A_N^{pp \to h}} \bigg|_{p_T^2 \gg Q_s^2} = 1$$

Saturation scale depenence

Sources of contribution to A_N

• The source of single spin correlation for $A^{\uparrow} + B \rightarrow h(p_{\perp}) + X$

$$\Delta \sigma = T_{a,F}(x,x) \otimes \phi_{b/B}(x') \otimes H_{ab \to c}(p_{\perp}, \vec{s}_T) \otimes D_{c \to h}(z) \tag{I}$$

+
$$\delta q_{a/A}(x) \otimes T_{b,F}^{(\sigma)}(x',x') \otimes H'_{ab \to c}(p_{\perp},\vec{s}_T) \otimes D_{c \to h}(z)$$
 (II)

+
$$\delta q_{a/A}(x) \otimes \phi_{b/B}(x') \otimes H''_{ab \to c}(p_{\perp}, \vec{s}_T) \otimes D^{(3)}_{c \to h}(z, z)$$
 (III)

(IV)

Term	meaning	collinear	small-x	Remarks
(I)	Sivers $T_{q,F}(x,x)$	Qiu-Sterman 91, 98 hep-ph/9806356	Boer-Dumitru- Hayashigaki, 2006 Kang-Xiao, 1212.4809	process dependence of Sivers function
(II)	Boer-Mulders	Kanazawa-Koike, 2000 hep-ph/000727		small in the
	$T_{q,F}^{(\sigma)}(x',x')$			formalism
(III)	Collins $D_{c ightarrow h}^{(3)}(z,z)$	Kang-Yuan-Zhou, 2010 1002.0399	Kang-Yuan, 2011 1106.1375	Collins function is universal
(IV)	Kane-Pumplin-Repko $m_q \delta q(x)$	Kane-Pumplin-Repko, 1978	(different from KPR) Kovchegov-Sievert 1201.5890	small?? (because of quark mass?)

+ $m_q \delta q_{a/A}(x) \otimes \phi_{b/B}(x') \otimes H_{ab \to c}^{\prime\prime\prime\prime}(p_\perp, \vec{s}_T) \otimes D_{c \to h}(z)$

Separation of various sources

□ polarized p+p:

-0.08

05

Jet, photon, vs single hadron - Sivers vs Collins

D polarized p+A:
Magnitude + peak location
Interesting test:

$$\frac{A_N^{pA \to h}}{A_N^{pp \to h}}|_{P_{h\perp} \ll Q_s^2} \approx \frac{Q_{sp}^2}{Q_{sA}^2} + \frac{P_{h\perp}^2}{Q_{sp}^2} = \frac{A_N^{pA \to h}}{A_N^{pp \to h}}|_{P_{h\perp} \gg Q_s^2} \approx 1$$

$$\frac{A_N^{pA \to h}}{A_N^{pp \to h}}|_{P_{h\perp} \gg Q_s^2} \to 0$$
Kovchegov et al.

$$\frac{e^2}{Q_{sp}^2} + \frac{e^2}{Q_{sp}^2} = \frac{e^2}{Q_{sp}^2} + \frac{e^2}{Q_{sp}^2} = \frac$$

3.5

 q_{\perp} (GeV)

3

2.5

2

15

-0.08

0

05

1

15

2

2.5

3

3.5

q (GeV)

Kong at al

A_N of heavy quarkonium

F. Yuan

Naïve analysis from the leading order diagrams

Color-singlet model: only initial state interaction, non-zero SSA
Color-octet model: initial and final state interactions cancel out, no SSA

Low pT:
$$A_N(P_{h\perp}) \propto \frac{P_{h\perp}\Delta}{Q_s^2} e^{-\frac{\delta^2 P_{h\perp}^2}{(Q_s^2)^2}}$$
 High pT: $A_N(P_{h\perp}) \approx \frac{2P_{h\perp}(\Delta^2 + \delta^2)}{P_{h\perp}^2 + 6\Delta^2}$

Summary

Heavy quarkonium production has been a powerful tool to test and challenge our understanding of strong interaction and QCD

□ Both initial-state and final-state multiple scattering are relevant for nuclear dependence of Quarkonium production – could redistribute the p_T- & y-dependence

□ Final-state multiple scattering could be an effective source of J/ ψ suppression because of the shape threshold behavior

Polarized p+A at RHIC is a new and exciting opportunity

More discussion and work on QCD factorization is needed for p+A collision. A weaker factorization is likely true to pA's A-dependence, but, not for AA collisions

Thank you!

Backup slides

Melting a quarkonium in QGP

\Box Start with a J/ ψ

- This works with other charmonium states as well
- \diamond The J/ $\psi\,$ is easiest to observe
- □ Put it in a sea of color charges
- The color lines attach themselves to other quarks
 - This forms a pair of charmed mesons
- These charmed mesons "wander off" from each other
- When the system cools, the charmed particles are too far apart to recombine
 - Essentially, the J/ $\psi\,$ has melted

Multiple scattering in cold nuclear matter

OK for pA, but, far off for AA – J/ ψ melting in QGP (MS 1986)?

How collinear factorization generates SSA?

Collinear factorization beyond leading power:

❑ Single transverse spin asymmetry:

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc.

 $\Delta \sigma(s_T) \propto T^{(3)}(x,x) \otimes \hat{\sigma}_T \otimes D(z) + \delta q(x) \otimes \hat{\sigma}_D \otimes D^{(3)}(z,z) + \dots$

Qiu, Sterman, 1991, ...

Kang, Yuan, Zhou, 2010

Kanazawa, Koike, 2000

Integrated information on parton's transverse motion!