Understanding J/ψ Production 40 years after its discovery

Jian-Wei Qiu Brookhaven National Laboratory

Based on works done with Z.-B. Kang, Y.-Q. Ma, G. Nayak, G. Sterman, H. Zhang, ...

INT Program (INT-14-3) – Focused workshop on *"Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions"* Institute for Nuclear Theory, University of Washington, Seattle, WA 9/15-10/10, 2014

November revolution (1974)

□ One of the simplest QCD bound states:

Localized color charges (heavy mass), non-relativistic relative motion

Charmonium: $v^2 \approx 0.3$ **Bottomonium:** $v^2 \approx 0.1$

Well-separated momentum scales – effective theory:

Cross sections and observed mass scales:

 $\frac{d\sigma_{AB\to H(P)X}}{dydP_T^2} \qquad \sqrt{S}, \qquad P_T, \qquad M_H,$

PQCD is "expected" to work for the production of heavy quarks Difficulty: Emergence of a quarkonium from a heavy quark pair?

A long history for the production

Color singlet model: 1975 –

Only the pair with right quantum numbers Effectively No free parameter!

□ Color evaporation model: 1977 –

Einhorn, Ellis (1975), Chang (1980), Berger and Jone (1981), ...

Fritsch (1977), Halzen (1977), ...

All pairs with mass less than open flavor heavy meson threshold One parameter per quarkonium state

□ NRQCD model: 1986 –

Caswell, Lapage (1986) Bodwin, Braaten, Lepage (1995) QWG review: 2004, 2010

All pairs with various probabilities – NRQCD matrix elements Infinite parameters – organized in powers of v and α_s

□ QCD factorization approach: 2005 –

Nayak, Qiu, Sterman (2005), ... Kang, Qiu, Sterman (2010), ...

 $P_T >> M_H: M_H/P_T$ power expansion + α_s – expansion Unknown, but universal, fragmentation functions – evolution

□ Soft-Collinear Effective Theory + NRQCD: 2012 –

Fleming, Leibovich, Mehen, ...

Color singlet model (CSM)

Campbell, Maltoni, Tramontano (2007), Artoisenet, Lansburg, Maltoni (2007), Artoisenet, et al. (2008)

□ Issues:

- ♦ How reliable is the perturbative expansion?
- ♦ S-wave: large corrections from high orders
- P-wave: Infrared divergent CSM is not complete

Color evaporation model (CEM)

One parameter per quarkonium:

Question:

- \diamond Better p_T distribution the shape?
- \diamond Need intrinsic k_T its distribution?

NRQCD – most successful so far

□ NRQCD factorization:

$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \langle \mathcal{O}^{H}(n)$$

Phenomenology:

♦ 4 leading channels in v

See Kniehl's talk

\diamond Full NLO in α_s

\Box Fine details – shape – high at large p_T ?

PRL 106, 022003 (2011)

NRQCD – global analysis

194 data points from 10 experiments, fix singlet $<O[^{3}S_{1}^{[1]}]> = 1.32 \text{ GeV}^{3}$

 $<O[^{1}S_{0}^{[8]}] > = (4.97 \pm 0.44) \cdot 10^{-2} \text{ GeV}^{3}$ $<O[^{3}S_{1}^{[8]}] > = (2.24 \pm 0.59) \cdot 10^{-3} \text{ GeV}^{3}$ $<O[^{3}P_{0}^{[8]}] > = (-1.61 \pm 0.20) \cdot 10^{-2} \text{ GeV}^{5}$

 $\chi^2/d.o.f. = 857/194 = 4.42$

Butenschoen and Kniehl, arXiv: 1105.0820

Anomalies and surprises

□ Theory – the state of arts – NLO:

♦ Very difficult to calculate, no analytical expression

hard to obtain a clear physical picture on how various states of heavy quark pair are actually produced?

♦ For some channels, NLO corrections are orders larger than LO

questions whether higher order contributions are negligible, while it is extremely difficult, if not impossible, to go beyond the NLO

Comparison with data:

- ♦ Quarkonium polarization "ultimate" test of NRQCD!
 - Clear mismatch between theory predictions and data
- ♦ Universality of NRQCD matrix elements predictive power!
 - Clear tension between different data sets, e+e-, ep, pp, ...

NLO theory fits – Butenschoen et al.

NLO theory fits – Gong et al.

NLO theory fits – Chao et al.

Why high orders in NRQCD are so large?

Kang, Qiu and Sterman, 2011

High-order correction receive power enhancement

Expect no further power enhancement beyond NNLO

 $\Rightarrow [\alpha_s \ln(p_T^2/m_Q^2)]^n$ ruins the perturbation series at sufficiently large p_T

Leading order in α_s -expansion =\= leading power in 1/p_T-expansion! At high p_T , fragmentation contribution dominant

QCD factorization approach

□ Factorization formalism:

Nayak, Qiu, and Sterman, 2005 Kang, Qiu and Sterman, 2010, ...

Evolution of fragmentation functions

□ Independence of the factorization scale:

 $\frac{d}{d\ln(\mu)}\sigma_{A+B\to HX}(P_T) = 0$

 \diamond at Leading power in 1/P_T:

DGALP evolution

Kang, Ma, Qiu and Sterman, 2013

$$\frac{d}{d\ln\mu^2} D_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes D_{H/j}(z, m_Q, \mu)$$

hext-to-leading power in 1/P - New non-linear evolution!

$$\frac{d}{d\ln\mu^2} D_{H/f}(z, m_Q, \mu) = \sum_j \frac{\alpha_s}{2\pi} \gamma_{f \to j}(z) \otimes D_{H/j}(z, m_Q, \mu) + \frac{1}{\mu^2} \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s^2}{(2\pi)^2} \Gamma_{f \to [Q\bar{Q}(\kappa)]}(z, \zeta, \zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q, \mu)$$

$$\frac{d}{d\ln\mu^2}\mathcal{D}_{H/[Q\bar{Q}(c)]}(z,\zeta,\zeta',m_Q,\mu) = \sum_{[Q\bar{Q}(\kappa)]} \frac{\alpha_s}{2\pi} K_{[Q\bar{Q}(c)]\to[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta') \otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z,\zeta,\zeta',m_Q,\mu)$$

Evolution kernels are perturbative:

 \diamond Set mass: $m_Q \rightarrow 0$ with a caution

Evolution kernels

 \Box Kernel for QQ \rightarrow QQ at (α_s):

Example: " $[Q\bar{Q}(v8)] \rightarrow [Q\bar{Q}(v1)]$ "

$$K_{v8\to v1}^{(1)}(z, u, v; u'v') = \frac{\alpha_s}{2\pi} \left[\frac{1}{2N_c}\right] \frac{z}{2(1-z)} \left(\frac{u}{u'} + \frac{\bar{u}}{\bar{u}'}\right) \left(\frac{v}{v'} + \frac{\bar{v}}{\bar{v}'}\right)$$

All channels are calculated $\times \left[\delta(u-zu') - \delta(\bar{u}-z\bar{u}')\right] \left[\delta(v-zv') - \delta(\bar{v}-z\bar{v}')\right]$

Short-distance hard parts

Kang, Ma, Qiu and Sterman, 2014

Separation of different powers:

$$E_p \frac{d\hat{\sigma}_{q+\bar{q}\to[Q\bar{Q}(n)](p)}^{(3)}}{d^3p} \equiv \left[\frac{4\pi\alpha_s^3}{\hat{s}}\right] \frac{1}{\bar{u}u\bar{v}v} H_{q\bar{q}\to[Q\bar{Q}(n)]}(\hat{s},\hat{t},\hat{u}) \,\delta(\hat{s}+\hat{t}+\hat{u})$$

$$H_{q\bar{q}\to[Q\bar{Q}(a8)]}(\hat{s},\hat{t},\hat{u}) = 2\left[\frac{N_c^2 - 1}{8N_c}\right] \left[1 + \zeta_1\zeta_2 - \frac{4}{N_c^2}\right] \left[\frac{\hat{t}^2 + \hat{u}^2}{\hat{s}^3}\right]$$

All channels are calculated

Predictive power and status

□ Calculation of short-distance hard parts in pQCD:

Power series in α_s , without large logarithms LO is now available for all partonic channels Kang, Ma, Qiu and Sterman, 2014

□ Calculation of evolution kernels in pQCD:

Power series in α_s , without large logarithms LO is now available for both mixing kernels and pair evolution kernels of all spin states of heavy quark pairs Kang et al. 2013 Fleming et al. 2013

Input FFs at μ_0 – non-perturbative, but, universal

D Physics of the input scale: $\mu_0 \sim 2m_Q - a$ parameter:

Evolution stops when

Different quarkonium states require different input distributions!

 $\log\left[\frac{\mu_0^2}{(4m_0^2)}\right] \sim \left[\frac{4m_Q^2}{\mu_0^2}\right]$

Non-perturbative input distributions

□ Sensitive to the properties of quarkonium produced: Should, in principle, be extracted from experimental data Large heavy quark mass and clear scale separation: $\mu_0 \sim m_Q \gg m_O v$ Apply NRQCD to the FFs – *a conjecture!* Nayak, Qiu and Sterman, 2005 ♦ Single parton FFs – valid to two-loops: $D_{g \to J/\psi}(z,\mu_0,m_Q) \to \sum \hat{d}_{g \to [Q\bar{Q}(c)]}(z,\mu_0,m_Q) \langle \mathcal{O}_{[Q\bar{Q}(c)]}(0) \rangle|_{\mathrm{NRQCD}}$ Braaten, Yuan, 1994 $[Q\bar{Q}(c)]$ Ma, 1995, ... Braaten, Chen, 1997 Complete LO+NLO for S, P states & NNLO for singlet S state Braaten, Lee, 2000, Ma, Qiu, Zhang, 2013 ♦ Heavy quark pair FFs – valid to one-loop: $\mathcal{D}_{[Q\bar{Q}(\kappa)]\to J/\psi}(z,\zeta,\zeta',\mu_0,m_Q)\to \sum \hat{d}_{[Q\bar{Q}(\kappa)]\to [Q\bar{Q}(c)]}(z,\zeta,\zeta',\mu_0,m_Q)\langle \mathcal{O}_{[Q\bar{Q}(c)]}(0)\rangle_{\mathrm{NRQCD}}$ $[Q\bar{Q}(c)]$ Kang, Ma, Qiu and Sterman, 2014 Full LO+NLO for S, P states is now available Ma, Qiu, Zhang, 2013 No all-order proof of such factorization yet!

Reduce "many" unknown FFs to a few universal NRQCD matrix elements!

Leading power fragmentation – Bodwin et al.

Next-to-leading power fragmentation – Ma et al.

Ma, Qiu, Zhang, 2013

□ Heavy quark pair FFs:

Next-to-leading power fragmentation – Ma et al.

$$d\sigma_{A+B\to H+X}(p_T) = \sum_f d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q)$$
$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z)$$
$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q)$$

□ Channel-by-channel comparison:

Next-to-leading power fragmentation – Ma et al.

$$d\sigma_{A+B\to H+X}(p_T) = \sum_f d\hat{\sigma}_{A+B\to f+X}(p_f = p/z) \otimes D_{H/f}(z, m_Q)$$
$$+ \sum_{[Q\bar{Q}(\kappa)]} d\hat{\sigma}_{A+B\to [Q\bar{Q}(\kappa)]+X}(p(1\pm\zeta)/2z, p(1\pm\zeta')/2z)$$
$$\otimes \mathcal{D}_{H/[Q\bar{Q}(\kappa)]}(z, \zeta, \zeta', m_Q)$$

□ LP vs. NLP (both LO):

QCD factorization vs NRQCD factorization

□ QCD factorization – not always true:

- \diamond Expand physical cross section in powers of $1/p_T$
- $\diamond\,$ Expand the coefficient of each term in powers of $\,\alpha_{\,\rm s}$
- \diamond Factorization is valid for all powers of α_s of the 1st two terms in 1/p_T

□ NRQCD factorization – conjectured:

- \diamond Expand physical cross section in powers of relative velocity of HQ
- \diamond Expand the coefficient of each term in powers of $\, lpha_{\, {
 m s}} \,$
- $\diamond\,$ Verified to NNLO in $\,\alpha_{\,\rm s}$ for the leading power term in the *v*-expansion

Connection:

If NRQCD factorization for fragmentation functions is valid,

$$E_P \frac{d\sigma_{A+B\to H+X}}{d^3 P}(P, m_Q) \equiv E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}}(P, m_Q = 0) + E_P \frac{d\sigma_{A+B\to H+X}^{\text{NRQCD}}(P, m_Q \neq 0) - E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}-\text{Asym}}}{d^3 P}(P, m_Q \neq 0) - E_P \frac{d\sigma_{A+B\to H+X}^{\text{QCD}-\text{Asym}}(P, m_Q = 0)}{d^3 P}$$

Mass effect + connection to lower p_T region

Heavy quarkonium polarization

Polarization = input fragmentation functions:

- $\diamond\,$ Partonic hard parts and evolution kernels are perturbative
- \diamond Insensitive to the properties of produced heavy quarkonia

Projection operators – polarization tensors:

$$\begin{split} \mathcal{P}^{\mu\nu}(p) &\equiv \sum_{\lambda=0,\pm 1} \epsilon_{\lambda}^{*\mu}(p) \epsilon_{\lambda}^{\nu}(p) = -g^{\mu\nu} + \frac{p^{\mu}p^{\nu}}{p^{2}} & \text{Unpolarized quarkonium} \\ \mathcal{P}^{\mu\nu}_{T}(p) &\equiv \frac{1}{2} \sum_{\lambda=\pm 1} \epsilon_{\lambda}^{*\mu}(p) \epsilon_{\lambda}^{\nu}(p) = \frac{1}{2} \left[-g^{\mu\nu} + \frac{p^{\mu}n^{\nu} + p^{\nu}n^{\mu}}{p \cdot n} \right] \\ \end{split}$$

$$\mathcal{P}_L^{\mu\nu}(p) \equiv \mathcal{P}^{\mu\nu}(p) - 2\mathcal{P}_T^{\mu\nu}(p) = \frac{1}{p^2} \left[p^\mu - \frac{p^2}{2p \cdot n} n^\mu \right] \left[p^\nu - \frac{p^2}{2p \cdot n} n^\nu \right]$$

Longitudinally polarized quarkonium

for produced the quarknium moving in +z direction with

$$p^{\mu} = (p^{+}, p^{-}, p_{\perp}) = p^{+}(1, 0, \mathbf{0}_{\perp}) \qquad p^{2} = n^{2} = 0$$
$$n^{\mu} = (n^{+}, n^{-}, n_{\perp}) = (0, 1, \mathbf{0}_{\perp}) \qquad p \cdot n = p^{+}$$

Ma et al. 2014

Polarized fragmentation functions

Color singlet as an example:

Kang, Ma, Qiu and Sterman, 2014 Zhang, Ph.D. Thesis, 2014

are calculated

\diamond A axial vector pair to a singlet NRQCD pair:

$$\mathcal{D}_{[Q\bar{Q}(a8)]\to J/\psi}^{L,CR}(z,u,v;m_Q,\mu) = \frac{1}{2N_c^2} \frac{\langle \mathcal{O}_{1(^{3}\mathrm{S}_{1})}^{H} \rangle}{3m_Q} \Delta_{+}(u,v) \times \frac{\alpha_s}{2\pi} z(1-z) \left[\ln\left(r(z)+1\right) - \left(1-\frac{1}{1+r(z)}\right) \right]$$
$$\mathcal{D}_{[Q\bar{Q}(a8)]\to J/\psi}^{T,CR}(z,u,v;m_Q,\mu) = \frac{1}{2N_c^2} \frac{\langle \mathcal{O}_{1(^{3}\mathrm{S}_{1})}^{H} \rangle}{3m_Q} \Delta_{+}(u,v) \times \frac{\alpha_s}{2\pi} z(1-z) \left[1-\frac{1}{1+r(z)} \right]$$

\diamond A vector pair to a singlet NRQCD pair:

$$\mathcal{D}_{[Q\bar{Q}(v8)]\to J/\psi}^{L,CR}(z,u,v;m_Q,\mu) = \frac{1}{2N_c^2} \frac{\langle \mathcal{O}_{1(^{3}S_{1})}^{H} \rangle}{3m_Q} \Delta_{-}(u,v) \times \frac{\alpha_s}{2\pi} \frac{z}{1-z} \left[\ln\left(r(z)+1\right) - \left(1 - \frac{1}{1+r(z)}\right) \right]$$
$$\mathcal{D}_{[Q\bar{Q}(v8)]\to J/\psi}^{T,CR}(z,u,v;m_Q,\mu) = \frac{1}{2N_c^2} \frac{\langle \mathcal{O}_{1(^{3}S_{1})}^{H} \rangle}{3m_Q} \Delta_{-}(u,v) \times \frac{\alpha_s}{2\pi} z(1-z) \left[1 - \frac{1}{1+r(z)} \right]$$

where $\Delta_{+}(u,v) = \frac{1}{4} \left[\delta\left(u - \frac{z}{2}\right) + \delta\left(\bar{u} - \frac{z}{2}\right) \right] \left[\delta\left(v - \frac{z}{2}\right) + \delta\left(\bar{v} - \frac{z}{2}\right) \right]$ $r(z) \equiv \frac{z^2 \mu^2}{4m^2(1-z)^2}$ $\Delta_{-}(u,v) = \frac{1}{4} \left[\delta\left(u - \frac{z}{2}\right) - \delta\left(\bar{u} - \frac{z}{2}\right) \right] \left[\delta\left(v - \frac{z}{2}\right) - \delta\left(\bar{v} - \frac{z}{2}\right) \right]$

Production and polarization

QCD Factorization = better controlled HO corrections!

Summary

It has been almost 40 years since the discovery of J/ Ψ

 \Box When $p_T >> m_o$ at collider energies, earlier models calculations for the production of heavy quarkonia are not perturbatively stable

LO in α_s -expansion may not be the LP term in $1/p_T$ -expansion

QCD factorization works for both LP and NLP (α_s for each power)

 \diamond LP dominates: ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ channels

A full global analysis, based on QCD factorization formalism including NLP and evolution, is needed!

Thank you!

Backup slides

PQCD Factorization

Nayak, Qiu, and Sterman, 2005

□ Leading power – single hadron production

 \Box Next-to-leading power – $Q\overline{Q}$ channel:

Qiu, Sterman, 1991 Kang, Qiu, and Sterman, 2010

NLO theory fits – Y production

Gong et al. PRL, 2013

Production of heavy quark pairs

Kang, Ma, Qiu and Sterman, 2013

□ Perturbative pinch singularity:

$$P^{\mu} = (P^+, 4m^2/2P^+, 0_{\perp})$$
$$q^{\mu} = (q^+, q^-, q_{\perp})$$
$$q \neq q'$$
$$D_{ij}(P, q) \propto \langle \mathbf{J}/\psi | \psi_i^{\dagger}(0) \chi_j(y) | 0 \rangle$$

 $\operatorname{Im}(q^{-})$

 $> \operatorname{Re}(q^{-})$

 $-\frac{q_{\perp}^2}{P^+} + i\epsilon$

♦ Scattering amplitude:

$$\mathcal{M} \propto \int \frac{d^4 q}{(2\pi)^4} \operatorname{Tr}\left[\hat{H}(P,q,Q) \,\frac{\gamma \cdot (P/2-q) + m}{(P/2-q)^2 - m^2 + i\epsilon} \,\hat{D}(P,q) \,\frac{\gamma \cdot (P/2+q) + m}{(P/2+q)^2 - m^2 + i\epsilon}\right]$$

♦ Potential poles:

$$q^{-} = [q_{\perp}^{2} - 2m^{2}(q^{+}/P^{+})]/(P^{+} + 2q^{+}) - i\epsilon\theta(P^{+} + 2q^{+}) \rightarrow q_{\perp}^{2}/P^{+} - i\epsilon$$
$$q^{-} = -[q_{\perp}^{2} + 2m^{2}(q^{+}/P^{+})]/(P^{+} - 2q^{+}) + i\epsilon\theta(P^{+} - 2q^{+}) \rightarrow -q_{\perp}^{2}/P^{+} + i\epsilon$$

♦ Condition for pinched poles:

$$P^+ \gg q^+ (2m^2/q_{\perp}^2) \ge 2m$$
 At High P₁

Why such power correction are important?

□ Leading power in hadronic collisions:

$$d\sigma_{AB\to H} = \sum_{a,b,c} \phi_{a/A} \otimes \phi_{b/B} \otimes d\hat{\sigma}_{ab\to cX} \otimes D_{c\to H}$$

Kang, Ma, Qiu and Sterman, 2013

□ 1st power corrections in hadronic collisions:

$$\underbrace{\overset{a}{\overset{a}{\overset{}}}}_{B} \underbrace{\overset{a}{\overset{}}}_{b} \underbrace{\overset{a}{\overset{}}}_{\partial \overline{\varrho}} \overset{H}{\overset{}} \sim \mathcal{O}\left(\frac{(2m_Q)^2}{P_T^2}\right) \otimes D^{(2)}_{[Q\bar{Q}] \to H}$$

Key: competition between $P_T^2 \gg (2m_Q)^2$ and $D_{[Q\bar{Q}] \rightarrow H}^{(2)} \gg D_{c \rightarrow H}$

Evolution kernels

Evolution equation:

 $\frac{\partial}{\partial \ln \mu^2} \mathcal{D}_{Q\bar{Q}[\kappa] \to J/\psi}(z_h, \zeta_1, \zeta_2, \mu^2)$

Kang, Ma, Qiu and Sterman, 2013

$$\kappa, \kappa' = v, a, t$$

$$= \frac{\alpha_s}{2\pi} \int_{z_h}^1 \frac{dz}{z} \int_{-1}^1 d\zeta_1' \int_{-1}^1 d\zeta_2' P_{\kappa \to \kappa'}(\zeta_1, \zeta_2, \zeta_1', \zeta_2', z) \mathcal{D}_{Q\bar{Q}[\kappa'] \to J/\psi}(z_h/z, \zeta_1', \zeta_2', \mu^2)$$

Evolution kernels:

$$\frac{\partial}{\partial \ln \mu^2} \begin{pmatrix} \mathcal{D}_{Q\bar{Q}[v8]} \\ \mathcal{D}_{Q\bar{Q}[v1]} \\ \mathcal{D}_{Q\bar{Q}[a8]} \\ \mathcal{D}_{Q\bar{Q}[a1]} \\ \mathcal{D}_{Q\bar{Q}[t1]} \end{pmatrix} = \frac{\alpha_s}{2\pi} \begin{pmatrix} \mathcal{K}_1 \ \mathcal{T}_1 \ \mathcal{K}_2 \ \mathcal{T}_2 \ \mathcal{O} \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{O} \ \mathcal{O} \ \mathcal{O} \ \mathcal{O} \\ \mathcal{K}_2 \ \mathcal{T}_2 \ \mathcal{K}_1 \ \mathcal{T}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{R}_2 \ \mathcal{O} \ \mathcal{R}_1 \ \mathcal{S}_1 \ \mathcal{O} \ \mathcal{O} \\ \mathcal{O}_{Q\bar{Q}[v1]} \\ \mathcal{O}_{Q\bar{Q}[v1]} \\ \mathcal{O}_{Q\bar{Q}[v1]} \\ \mathcal{O}_{Q\bar{Q}[v2]} \\ \mathcal{O}_{Q\bar$$

Example: $\mathcal{K}_1 = P_{v8 \rightarrow v8} = P_{a8 \rightarrow a8}$

NOTE: Our results are consistent with those by Fleming et al. [arXiv: 1301.3822], but, a difference in logarithms

Heavy quarkonium polarization

 \Box Measure angular distribution of $\mu^+\mu^-$ in J/ ψ decay

 \Box Normalized distribution – integrate over φ :

$$I(\cos\theta^*) = \frac{3}{2(\alpha+3)} \left(1 + \alpha \cos^2 \theta^*\right)$$

 $\alpha = \begin{cases} +1 & \text{fully transverse} & \text{Also referred as} \\ 0 & \text{unpolarized} & \lambda_{\theta} \\ -1 & \text{fully longitudinal} & \text{by LHC experiments} \end{cases}$

Theory predictions on J/ψ polarization

NRQCD: Dominated by color octet – NLO is not a huge effect
 CSM: Huge NLO – change of polarization?

Relativistic corrections

