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p
s = 7TeV

Two-Hadron Correlations from CMS 

The (near-side) ridge. 
• Never seen in the experiments 
or simulations (PYTHIA etc) in p-p. 
• Never anticipated. Origin??? 
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Two-Hadron Correlations from CMS 
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• The ridge appears at high multiplicity events, at low/intermediate 
pT. 
• Visible in p-p when Ntrack >90 and p-Pb when Ntrack >35. 
• Using p-A data for RAA of  charmonium? In p-A, there is not only 
cold nuclear matter effects, but also ‘collectivity.’  
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•  How the flow of  QGP produces ridges. 

•  How pQCD does NOT produce ridges. 

•  How gluon saturation produces ridges 

6	
  



Azimuthal Correlations due to Collective 
Flow 

��
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Striking similarities between v3’s of  Pb-Pb and p-Pb.  

•  QGP in p-Pb? Or maybe just ‘collectivity’ (many-body effects) 
but not necessarily (thermalized) ‘liquid?’  
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(PRL 111 (2013) 172303) 9	
  

Hydrodynamics vs. Data 



•  How the flow of  QGP produces ridges. 

•  How pQCD does NOT produce ridges. 

•  How gluon saturation produces ridges 
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Regge Limit vs. Bjorken Limit 
hadron 

hadron 

Q2

Bjorken limit of  QCD  
•  Partons are ordered in kT whereas being 
local in rapidity η. Hence, the correlations 
in rapidity are short-ranged.  

•  pQCD jets from hard scattering at large 
Q2 and not so small x. 
•   Event generators (e.g. PYTHIA) 
successfully describe the pQCD jet peak 
and the away-side ridge (momentum 
conservation of  the back-to-back jets). 

C(⌘1, ⌘2) / e��|�⌘|

Regge limit of  QCD 
•  Partons are ordered in x (or η) by 
being local in Q2. Important when 
particles are produced with large 
rapidity gap         (at small-x). 
•  Multi-Regge Kinematics or BFKL 
give correlations between back-to-back 
jets that are separated in rapidity, but 
cannot produce the az imutha l 
collimation.            . 

hadron 

hadron 
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Regge Limit vs. Bjorken Limit 
hadron 

hadron 

Q2

Bjorken limit of  QCD  
•  Partons are ordered in kT whereas being 
local in rapidity η. Hence, the correlations 
in rapidity are short-ranged.  

•  pQCD jets from hard scattering at large 
Q2 and not so small x. 
•   Event generators (e.g. PYTHIA) 
successfully describe the pQCD jet peak 
and the away-side ridge (momentum 
conservation of  the back-to-back jets). 
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Regge limit of  QCD 
•  Partons are ordered in x (or η) by 
being local in Q2. Important when 
particles are produced with large 
rapidity gap         (at small-x). 
•  Multi-Regge Kinematics or BFKL 
give correlations between back-to-back 
jets that are separated in rapidity, but 
cannot produce the az imutha l 
collimation.              . 
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• Neither can explain the ridge. 
• Also neither has gluon saturation 
built-in. 
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•  How the flow of  QGP produces ridges. 

•  How pQCD does NOT produce ridges. 

•  How gluon saturation produces ridges 
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Only splitting (DGLAP, 
BFKL etc.) 

Splitting and merging balancing 
each other when                         
(rcBK, JIMWLK etc.)   

Larger        (i.e. small            )	
  
p
s x / Q

2

s

Interlude: Gluon Saturation 

Qsat � ⇤QCD
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Glasma (‘glassy plasma’): Classical, strong chromo-electric 
and –magnetic color flux tubes between the target and 
projectile.  

They are created by the target and projectile which are 
highly populated by gluons at small-x (‘color glass 
condensate’). 

glasma 
color glass 
condensate 
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•  Glasma diagrams (flux tubes) with gluon saturation reproduce the 
ridge and explains the systematics of  the p-p and p-Pb data well.  

p-p
p
s = 7TeV

Experiment vs. Glasma 

R

R

gray band: data 
red circles: 
glasma model 
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• A hydro person can argue: High multiplicity leads 
to equilibrated medium (fluid). 
• A glasma person can argue: High multiplicity due 
to higher gluon saturation scale, hence glasma 
diagrams becomes enhanced and as important as 
the jet graph. 

• You can argue both ways. To settle this issue, we 
need to look at the triple- and quadruple-
hadron correlations. 
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Triple-gluon Azimuthal Correlations 
from Glasma 
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Triple-gluon Azimuthal Correlations 
from Glasma 

(For triple-hadron correlations, these results should be 
convolved with fragmentation functions) 

p-Pb
p
s = 5.02 TeV
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Quadruple-gluon Azimuthal Correlations 
from Glasma 

(For quadruple-hadron correlations, these results should 
be convolved with fragmentation functions) 

p-p
p
s = 7 TeV
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(Anne M. Sickles (BNL) at Quark Matter 2014) 

Van der Waals 
forces for water. 

23	
  



•  I predict higher dimensional ridges in triple and quadruple 
hadron correlations. 

•  The near-side ridge is interesting: It tells us about 
‘collectivity’ due to 

1) Possible gluon saturation effects in the colliding 
hadrons/nuclei, 

2) Possible formation of  expanding Quark Gluon 
Plasma and collective flow. 

• Triple and quadruple-hadron correlations have not been 
extracted in high multiplicity p-p or p-Pb events yet. They 
can possibly distinguish between the two scenarios of  the 
ridge: Gluon saturation or hydrodynamics. 

Summary and Outlook 
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Backups	
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(PLB 719 (2013) 29) 

p-Pb ridge at LHC after subtraction of  
jet and resonance decay contributions 
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rcBK UGDs 

(proton)	
  

(proton)	
  

(Pb)	
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