INT Program INT-14-3

Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions

September 15 - October 10, 2014

Open heavy flavour probes at RHIC and LHC

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Outline of the Talk

Introduction: HF probes of the medium

- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

What's special about heavy quarks: probes through the full system history

- Large mass (m_c~1.5 GeV, m_b~5 GeV) → produced in large virtuality Q² processes at the initial stage of the collision with short formation time $\Delta t < 1/2m \sim 0.1$ fm << τ_{QGP} ~ 5-10 fm
- Characteristic flavour, conserved in strong interactions
 Production in the QGP is subdominant
 Interactions with QGP don't change flavour identity
- ♦ Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium → transported through the full system evolution
- Effective probes of:
 - The mechanisms of quark-medium interaction: energy loss (and gain)
 - The strength of the collective expansion of the system

The parton palette and the properties of QCD energy loss

q: colour triplet u,d,s: m~0, C_R=4/3

g: colour octet g: m=0, C_R=3

Q: colour triplet c: m~1.5 GeV, C_R=4/3 b: m~5 GeV, C_R=4/3 Parton Energy Loss by

- medium-induced gluon radiation
- collisions with medium gluons

$$\Delta E(\varepsilon_{medium}; C_R, m, L)$$

 C_R : colour charge dep. *m*: mass dependence

 $\Delta E_{o} > \Delta E_{c \approx a} > \Delta E_{b}$

'QCD medium'

6666

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

INT-Workshop, Seattle, 30.09.14

From energy loss to R_{AA}

$$\Delta E_g > \Delta E_{c\approx q} > \Delta E_b$$

$$R_{AA}(p_T) = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}$$

- What is the expected R_{AA} pattern?
 - > No trivial relation between ΔE and R_{AA}
 - Need to account for different steepness of partonic p_T spectrum and different fragmentation functions

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- (below 30 GeV/c)
- For essentially all mechanisms / models
- Small effect from partonic p_T steepness and fragmentation (at LHC)

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- 2. Comparing π and D:

(below 30 GeV/c)

(below 30 GeV/c)

Pions at LHC originate predominantly from gluons, below 10-15 GeV/c

 $R_{AA}^{\pi} \leq R_{AA}^{D}$

- Since R_{AA} rises with p_T, the softer p_T spectrum and fragmentation of gluons tend to reduce the impact on R_{AA} of their larger energy loss (colour charge)
- Predictions range from a moderate difference to almost no difference

Initial-state effects ?

- The observed nuclear modification can have a contribution from initial-state effects, not related to the hot QCD medium
- High parton density in high-energy nuclei leads to reduction/ saturation/shadowing of the PDFs at small x (and small Q²)

Heavy flavour v_2 : a two-fold observable, I^{NFN}

- Low p_{T} : do heavy quarks take part in the "collectivity"?
 - > Due to their large mass, c and b quarks should "feel" less the collective expansion
 - Reaction \rightarrow need frequent interactions with large coupling to build v₂
 - \rightarrow V₂^b < V₂^c
- High p_{T} : probe path length dependence of HQ energy loss

J. Aichelin et al. in arXiv:1201.4192

Summary of available measurements: AA

Originally compiled by Z. Conesa dV

INFN

Summary of available measurements: p(d)A

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	~		 ✓ 			
HF muons	~		v			
D ⁰ , D ⁺ , D ^{*+}		~	 ✓ 			
D_{s}^{+}			~			
B→J/ψ						~
B jets					~	
Belectrons			 ✓ 			
В					~	

INFN

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

HF-decay electrons at RHIC (200 GeV)

Inclusive measurement (c+b) using non-photonic electrons

- Same suppression as for light-flavour hadrons above 5 GeV/c
- Smaller suppression at 2-3 GeV/c, but cannot conclude on mass effects

INT-Workshop, Seattle, <u>30.09.14</u>

HF-decay e and μ in d-Au at RHIC HAR H π⁰ R_{dA} HF µ, -2.0 < η < -1.4 ∎ e_{tr}R_{dA} d+Au @ \s_{NN}=200 Ge\ (Au-direction) 2.50-20% centrality π⁰ R_{ΔΔ} HF μ⁻, 1.4 < η < 2.0 e≞₌R,, RAA. (d-direction) 1.5 0.5 0.5 **PH***ENIX

PHENIX, PRL109 82012) 242301 P_T [GeV/c]

N.Apadula (WWND2013) P_T (GeV/c)

preliminary

- Low-p_T electrons (mid-y) and muons (backward y) largely enhanced
 - More than expected from anti-shadowing?
 - Significant role of (mass-dependent?) k_T broadening?
- \rightarrow Au-Au high-p_T suppression is a final state effect

- Low-p_T electrons (mid-y) and muons (backward y) largely enhanced
 - More than expected from anti-shadowing?
 - Significant role of (mass-dependent?) k_T broadening?
- → Au-Au high-p_T suppression is a final state effect
- Simple(istic?) "propagation" of initial state effects (with R_{dA}²) gives consistent "final-state-only R_{AA}" for π and e also at low p_T

INT-Workshop, Seattle, 30.09.14

HF-decay electrons at RHIC (62 GeV)

- Lower energy RHIC runs give the unique opportunity to study the onset of the suppression
- R_{AA} at 62 GeV obtained with reference data from ISR
- Large uncertainties show the need for a high-stat RHIC pp run at 62 GeV

◆ Electrons and muons from D+B \rightarrow e,µ decays

> Dominated by beauty at such high p_{T}

> Note:
$$p_T^{hadron} \sim 2 p_T^{lepton}$$

NT-Workshop, Seattle, 30.09.14

Andrea Dainese

A.Festanti (QM2014)

HF-decay e and μ in p-Pb at LHC

- ♦ HF-decay muon R_{pA} (p_T>2 GeV/c):
 - Consistent with unity in p-going direction (small x in the Pb)
 - Somewhat enhanced in Pb-going direction (large x in the Pb)
- HF-decay electron R_{pA} consistent with unity
- pQCD+Shadowing (EPS09) can describe the data
- \rightarrow Pb-Pb high-p_T suppression is a final state effect

R.Russo, S.Li (QM2014), Eskola et al., JHEP 0904 (2009) 065

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Charm: D mesons at RHIC

Without secondary vertex reco (~800M Au-Au events)

Suppressed by a factor ~3 at high p_T in central Au-Au

Large enhancement at 1.5 GeV/c: radial flow + coalescence? STAR, arXiv:1404.6185, Z. Ye (QM2014)

Charm: D mesons at LHC

- First D R_{AA} measurement in heavy-ion collisions with data from LHC 2010 run (0-20% centr.)
 ALICE, JHEP 09 (2012) 112
- Extended with LHC 2011 run, from 1 to 30 GeV/c
- ◆ Factor ~5 suppression at ~10 GeV/c in 0-7.5% centr.

Z.Conesa (QM2012)

D mesons in p-Pb at LHC

 D meson R_{pA} consistent with unity (and with 0.5 at 1 GeV/c...)
 pQCD+Shadowing (EPS09) or k_T broadening and CNM E loss, and Colour Glass Condensate can describe the data

 \rightarrow Pb-Pb high-p_T suppression is a final state effect

Total charm cross section at LHC ?

- PHENIX and STAR have measured the total charm cross section (using electrons and D mesons down to p_T=0)
- Example: D mesons at low p_T
 - Below 1 GeV/c the vertexing method becomes inefficient, the brute-force combinatorics becomes better if very large stat is available

- A matter of statistics:
 - STAR used a sample of 800M Au-Au collisions
 - ALICE Run-1 sample is of about 50M Pb-Pb collisions
 - Run-2 might allow a first measurement; precision with Runs-3 and 4

R_{AA} of D and pions consistent within current uncertainties
 Hint for D > π in 2-5 GeV/c?

> Below 2 GeV/c: no direct comparison, π not expected to scale with N_{coll}

Is it consistent with the colour charge dependence?

D mesons vs. pions at LHC

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

- Larger suppression at higher p_T in min. bias
- Centrality dep. in next slide
- CMS-PAS-HIN-12-014

Andrea Dainese

electron p_T>3 GeV/c

> Indication of $R_{AA} < 1$ for

A. Festanti (QM2014)

28

◆ CMS measured b-jets with p_T>80 GeV/c in Pb-Pb and p-Pb
 ◆ Same R_{AA} for b-jets as for q/g-jets, as expected at this p_T

• CMS measured b-jets with $p_T > 80$ GeV/c in Pb-Pb and p-Pb

- Same R_{AA} for b-jets as for q/g-jets, as expected at this p_T
- R_{pA} consistent with unity: no strong initial-state effects

CMS-HIN-12-003, CMS-HIN-14-007

Similar $< p_T >$ for B and D:

- B <p_T> ~ 11 GeV (FONLL +EvGen)
- D <p₇> ~ 10 GeV

_4 ₽

1.2

Looking for mass dependence:

 R_{AA} of D and B at the LHC

D mesons (ALICE) and J/ψ from B decays (CMS)

ALICE Preliminary D mesons 8<p_<16 GeV/c, |y|<0.5

Correlated systematic uncertainties

Uncorrelated systematic uncertainties

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Heavy Flavour v_2 at RHIC and LHC

PHENIX, PRC84 (2011) 044905

Electrons from HF show a v₂ of up to 0.15 at RHIC (PHENIX, STAR)

- D meson v₂ in 30-50%: ~0.2 in 2-6 GeV/c
 - Comparable with charged particle v₂
- What is the origin of this v₂? c quark flow? coalescence?
- Much more to learn with future data

- Models without HQ interactions with expanding medium underestimate v₂ (WHDG, POWLANG), but are among the best for R_{AA}
- Max v₂~0.15-0.20 is best described by models that include collisional energy loss of heavy quarks in expanding medium (BAMPS, UrQMD, TAMU, MC@sHQ); they also include a component of recombination
- Suggests that these mechanisms play a role in HQ-medium interactions

 Correlation between HF-decay electrons and hadrons in (high-mult) – (low-mult) p-Pb collisions: a "double ridge" similar to what observed for hadron-hadron

 Resembles the structure that in AA is interpreted in terms of collective flow

INT-Workshop, Seattle, 30.09.14
- For hadrons, a flow-like mass ordering is observed
- Alternative interpretations include initial-state effects (Color Glass Condensate) and "vacuum QCD" effects (color reconnection of strings)
- Heavy flavour can provide important additional information

Outline of the Talk

- Introduction: HF probes of the medium
- Calibrating HF probes: pp results (see back-up)
- HF production in nucleus-nucleus (and proton-nucleus)
 - Semi-leptonic decays
 - D mesons
 - ➤ B and b-jets
- HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Detector upgrades at RHIC and LHC

Heavy flavour: a central topic for upgrades of all HI experiments! Already online: PHENIX VTX, STAF

- c/b decay leptons
- Low-p_T D, D_s, B
- HF baryons

Planned for 2018-19: ALICE new ITS and MFT

PHENIX: Vertex Tracker (VTX)

Projections 5x10⁹ evts

M. Rosati, QM2012

8

transverse momentum, GeV/c

Projections 0.5x10⁹ evts

J. Bielcik, Moriond2013

ALICE Upgrade: Heavy flavour R_{AA}

INT-Workshop, Seattle, 30.09.14

ALICE Upgrade: Heavy flavour flow

Present data on charm v₂

Upgrade: Charm and beauty v_2 down to $p_T \sim 0$ using prompt and B-decay D⁰

ALICE, CERN-LHCC-2013-024

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

INT-Workshop, Seattle, 30.09.14

Andrea Dainese

Instead of a summary questions for discussion

Properties of energy loss

- Colour charge dependence of radiative E loss: how to observe to determine it in a model-independent way?
- First hint of mass dependence of energy loss? Can precise measurements given information on the radiated gluon properties (angular distribution, formation time...)?
- How to Relative weight of radiative and collisional energy loss?

Collectivity and hadronization

- Are HQs flowing (radial, elliptic)? If, yes, what do we learn?
- What are the signals of HQ coalescence? Which measurements to make a final statement?

Medium properties

- Which properties can be accessed (uniquely) with HQs?
- Which theoretical approaches are most sensitive? Is theory ready?

Thank You !

EXTRA SLIDES

INT-Workshop, Seattle, 30.09.14

Andrea Dainese

 C_R = Casimir coupling factor: 4/3 for q, 3 for g

 \rightarrow Colour charge dependence of radiative energy loss

$$\Delta E_g > \Delta E_{c \approx q}$$

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

INT-Workshop, Seattle, 30.09.14

NT-Workshop, Seattle, <u>30.09.14</u>

Mass dependence in collisional energy loss *Example: Langevin formalism*

Langevin equation gives momentum (p) evolution vs. time (t):

$$d\mathbf{p} = -\Gamma(p) \mathbf{p} dt + \sqrt{2D(\mathbf{p} + d\mathbf{p}) dt} \rho$$

$$Loss term \rightarrow energy loss \quad Gain term \rightarrow flow (radial, elliptic)$$

$$\bullet Both \ \Gamma (drag) and \ D (diffusion) \sim 1/m_Q$$
Thermal relaxation rate A ~ Γ :
$$\begin{array}{c} 0.28 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.20 \\ 0.24 \\ 0.28 \\ 0.32 \\ 0.32 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0.32 \\ 0.36 \\ 0$$

INT-Workshop, Seattle, 30.09.14

Andrea Dainese

Heavy flavour production in pp • Example pQCD calculation: Fixed Order Next-to-Leading Log $\frac{d\sigma}{dp_T} = A(m) \alpha_s^2 + B(m) \alpha_s^3 + G(m, p_T) \left[\alpha_s^2 \sum_{i=2}^{\infty} a_i [\alpha_s \log(\mu/m)]^i + \alpha_s^3 \sum_{i=1}^{\infty} b_i [\alpha_s \log(\mu/m)]^i \right]$ FONLL: Cacciari, Frixione, Mangano, Nason and Ridolfi, JHEP0407 (2004) 033

[coincides with NLO for low p_T (total cross section); more accurate at high p_T]

Describes consistently energy dependence of total cross sections

Charm (beauty) x10 (100) from 0.2 to 2.76 TeV

pp: pQCD calculations vs data Charm p_T -differential cross section

200 GeV

STAR, PRD 86 (2012) 72013 (200 GeV) Z. Ye (QM2013)

ALICE, JHEP01 (2012) 128

- Charm production described within uncertainties
- Consistently at upper limit of theoretical band from 0.2 to 7 TeV
 - also at 0.5, 1.96 and 2.76 TeV (not shown)
 - deviation below 1 GeV?

N F N

pp: pQCD calculations vs data Beauty p_T -differential cross section

1.96 TeV

7 TeV

 Beauty production described very well by central value of calculation

• FONLL: "b > c" for $p_T > 4$ (5) GeV/c at RHIC (LHC)

Clear and consistent centrality dependence for
 R_{AA} of muons at forward rapidity (ALICE)
 R_{CP} of muons at central rapidity (ATLAS)
 No sign of p_T dependence from 4 to 12 GeV/c

ALICE Upgrade Physics Motivation

Three main physics topics that are unique of the upgraded ALICE detector:

Heavy-flavour transport parameters in the QGP

- ➢ Heavy-quark diffusion coefficient (→ QGP equation of state, viscosity of the QGP fluid), via precise HQ v₂
- Heavy-quark thermalization and hadronization in the QGP, via v₂ and baryons
- Mass dependence of parton energy loss in QGP medium

2. Low-mass dielectrons: thermal photons and vector mesons from the QGP

- > Photons from the QGP ($\gamma \rightarrow e^+e^-$) \rightarrow map temperature during system evolution
- > Modification of ρ spectral function ($\rho \rightarrow e^+e^-$) \rightarrow chiral symmetry restoration

3. Charmonia (J/ ψ and ψ ') down to zero p_T

- Only the comparison of the two states can shed light on the suppression/ regeneration mechanism
- Study QGP-density dependence with measurements at central and forward rapidity

ALICE Upgrade LOI, CERN-LHCC-2012-012

ALICE Upgrade strategy (2018)

Requirements:

- 1. High tracking precision at low p_{T}
- 2. High-rate capability to exploit envisaged Pb luminosity increase of LHC

ALICE Upgrade: HF suppression and flow

- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP
 - Sensitive to medium viscosity and equation of state

Prompt D⁰ and Non-prompt J/ ψ R_{AA}

Prompt and **non-prompt** D⁰ v₂

 R_{AA} and v_2 of D and

B in a wide p_{T} range

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

ALICE, CERN-LHCC-2013-024

Heavy flavour in-medium hadronization?

Baryon/meson enhancement and strange-enh. → most direct indication of light-quark hadronization in a partonic system
 Measure this in the HF sector! Does it hold for charm?
 Charm baryons (Λ_c) and charm-strange mesons (D_s)

Andrea Dainese

ALICE Upgrade: HF physics reach

Observable	$p_{\mathrm{T}}^{\mathrm{min}}~(\mathrm{GeV}/c)$	statistical uncertainty
	Heavy Flavour	(at 2 GeV/ c)
D meson $R_{\rm AA}$	0	0.3%
$D_s meson R_{AA}$	< 2	3%
D meson from B decays R_{AA}	2	2%
${ m J}/\psi$ from B $R_{ m AA}$	1	5%
B ⁺ yield	3	10% (> 3 GeV/c)
$\Lambda_{ m c} \; R_{ m AA}$	2	15%
Charm baryon-to-meson ratio	2	15%
$\Lambda_{ m b}$ yield	7	20% (7-10 GeV/c)
D meson elliptic flow $(v_2 = 0.2)$	0	3%
D_s meson elliptic flow ($v_2 = 0.2$)	< 2	8%
D from B elliptic flow $(v_2 = 0.1)$	2	20~%
J/ψ from B elliptic flow ($v_2 = 0$.	1) 1	30~%
$\Lambda_{ m c}$ elliptic flow ($v_2 = 0.15$)	3	20% (3-6 GeV/c)

ALICE, CERN-LHCC-2013-024

INFN

pp reference at 2.76 TeV via \sqrt{s} -scaling (ALICE D mesons and electrons)

- Scale the 7 TeV cross sections by the 2.76/7 factor from FONLL, with full theoretical uncertainty
 - relative scaling uncertainty: 30% → 5% in the p_t range 2 → 16 GeV/c
- Validated by comparing to measured cross section at 2.76 TeV (fewer p_t bins)

Averbeck et al., arXiv:1107.3243

LHC: comparison with models (R_{AA})

 Several models based on E-loss and heavy-quark transport describe qualitatively the measured light, charm, and beauty R_{AA}

- D R_{AA} similar at RHIC and LHC at 5-6 GeV/c
- Looks quite different at 1-2 GeV/c:
 - Could it be shadowing + recombination + radial flow? (stronger effect at RHIC because of steeper dN/dp_T)
 - Two transport models (TAMU and Duke) with these ingredients predict maximum R_{AA} ~1.3-1.5 at RHIC and ~0.7-0.8 at LHC

INT-Workshop, Seattle, 30.09.14

Andrea Dainese

High-multiplicity pp and p-Pb collisions

- LHC energy and luminosity allow for study of pp and p-Pb collisions with very high particle multiplicity
 - e.g. pp or p-Pb events with same multiplicity as non-central nucleusnucleus at RHIC energy
- Look for similar effects as seen in nucleus-nucleus!
- E.g. characteristic patterns in two-particle correlations
 PbPb

Two-particle correlations: near-side ridge

 Near-side ridge (long-range correlation in η at Δφ=0) observed in high-multiplicity pp and p-Pb (CMS)

Pronounced structure at large $\Delta \eta$ around $\Delta \phi \sim 0$!

CMS, JHEP 1009 (2010) 091

Two-particle correlations: near-side ridge

 Near-side ridge (long-range correlation in η at Δφ=0) observed in high-multiplicity pp and p-Pb (CMS)

CMS, PLB 724 (2013) 213

Two-particle correlations: double-ridge!

- Idea: subtract the "pp-like" structure of low-multiplicity p-Pb from the structure of high-multiplicity p-Pb
- Double ridge discovered by ALICE, followed by ATLAS
- Resembles the structure that in Pb-Pb is attributed to collective flow

INT-Workshop, Seattle, 30.09.14

Quantifying the modulation: v_2

• v_2 vs. p_T and multiplicity with various methods

- Similar pattern in p-Pb and Pb-Pb
- v_2 rises to 2 GeV, then ~flattens out to 5

CMS, PLB 724 (2013) 213

N F N

Pb-Pb

 Mass ordering, interpreted in terms of collective radial and elliptic flow

ALI-DER-52227

 Mass ordering, interpreted in terms of collective radial and elliptic flow Clear indication for mass ordering in p-Pb

 Resembles Pb-Pb and supports "flow" picture

Possible interpretations

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Models including hydrodynamical expansion can describe the observations (e.g. EPOS)

Possible interpretations

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect, CGC (Colour Glass Condensate) many-gluon processes can yield correlations

Dusling, Venugopalan, PRD 87, 094034 (2013)
Possible interpretations

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect
- Alternative explanation (2): MPI (multi-parton interactions) and "colour reconnection" (as implemented in PYTHIA8) can induce flow-like effects

see e.g. Ortiz et al, PRL111, 042001 (2013)

Possible interpretations

- High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- Hydrodynamical expansion
- Alternative explanation (1): Initial-state effect
- Alternative explanation (2): MPI and "colour reconnection"

These results are clearly intriguing, several interpretations are being put forward, and new measurements from the experiments will provide stringent tests for theory