INT Program INT-14-3

Heavy Flavor and Electromagnetic Probes in Heavy Ion Collisions

September 15 - October 10, 2014

Open heavy flavour probes at RHIC and LHC

Outline of the Talk

- \bullet Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- ◆ HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- **►**D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Outline of the Talk

\bullet Introduction: HF probes of the medium

- \bullet Calibrating HF probes: pp results (see back-up)
- ◆ HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- \triangleright D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

What's special about heavy quarks: probes through the full system history

- Large mass (m_c~1.5 GeV, m_b~5 GeV) \rightarrow produced in large virtuality *Q*2 processes at the initial stage of the collision with short formation time $\Delta t < 1/2m \sim 0.1$ fm << $\tau_{\text{OGP}} \sim 5{\text -}10$ fm
- ◆ Characteristic flavour, conserved in strong interactions ▶ Production in the QGP is subdominant Energy loss Ø Interactions with QGP don't change flavour identity
- ◆ Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium \rightarrow transported through the full system evolution
- **Effective probes of:**
	- Ø**The mechanisms of quark-medium interaction: energy loss (and gain)**
	- Ø**The strength of the collective expansion of the system**

The parton palette and the properties of QCD energy loss

q: colour triplet **u,d,s:** m~0, $C_R = 4/3$

g: $m=0$, $C_R=3$ g: colour octet

c: $m \sim 1.5$ GeV, $C_R = 4/3$ **b:** m~5 GeV, $C_R = 4/3$ **Q: colour triplet**

Parton Energy Loss by

- medium-induced gluon radiation
- collisions with medium gluons

$$
\Delta E(\varepsilon_{medium}; C_R, m, L)
$$

C_R: colour charge dep. *m*: mass dependence

 ΔE_g > $\Delta E_{c=q}$ > ΔE_b

5

'QCD medium'

್ಯಾಂಡ್

See e.g.:

Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493.

INT-Workshop, Seattle, 30.09.14 Andrea Dainese

From energy loss to R_{AA}

$$
\Delta E_g > \Delta E_{c=q} > \Delta E_b
$$
\n
$$
R_{AA}(p_T) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_T}{dN_{pp} / dp_T}
$$

- \bullet What is the expected R_{AA} pattern?
	- \triangleright No trivial relation between ΔE and R_{AA}
	- \triangleright Need to account for different steepness of partonic p_T spectrum and different fragmentation functions

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- (below 30 GeV/c)
- For essentially *all* mechanisms / models
- \triangleright Small effect from partonic p_T steepness and fragmentation (at LHC)

From energy loss to R_{AA}

- 1. Comparing D and B: $R_{AA}^D < R_{AA}^B$
- 2. Comparing π and D:
- $R_{AA}^{\pi} \leq R_{AA}^D$ (below 30 GeV/c)

(below 30 GeV/c)

- Pions at LHC originate predominantly from gluons, below 10-15 GeV/c
- Since R_{AA} rises with p_T , the softer p_T spectrum and fragmentation of gluons tend to reduce the impact on R_{AA} of their larger energy loss (colour charge)
- \triangleright Predictions range from a moderate difference to almost no difference

Norkshop, Seattle, 30.09.14 Andrea Dainese

Initial-state effects ?

- The observed nuclear modification can have a contribution from initial-state effects, not related to the hot QCD medium
- High parton density in high-energy nuclei leads to reduction/ saturation/shadowing of the *PDFs* at small *x* (and small *Q2*)

INT-Workshop, Seattle, 30.09.14 Andrea Dainese 9

Heavy flavour v_2 : a two-fold observable, INFN

- Low p_T : do heavy quarks take part in the "collectivity"?
	- \triangleright Due to their large mass, c and b quarks should "feel" less the collective expansion
		- In-plane Reactioni \rightarrow need frequent interactions with large coupling to build v₂
		- \rightarrow v_2^b < v_2^c
- High p_T : probe path length dependence of HQ energy loss

J. Aichelin et al. in arXiv:1201.4192 J. Uphoff et al. in arXiv:1205.4945

Summary of available measurements: AA

Originally compiled by Z. Conesa dV

INFN

Summary of available measurements: p(d)A

INFN

Outline of the Talk

- \blacklozenge Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- \leftrightarrow HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- \triangleright D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

HF-decay electrons at RHIC (200 GeV) INFN

Inclusive measurement (c+b) using non-photonic electrons

- ◆ Same suppression as for light-flavour hadrons above 5 GeV/*c*
- Smaller suppression at 2-3 GeV/c, but cannot conclude on mass effects

-Workshop, Seattle, 30.09.14 Andrea Dainese

HF-decay e and μ in d-Au at RHIC ٩Á $\mathbb{E} \pi^0 \mathsf{R}_{\mathsf{dA}}$ HF μ , -2.0 < η < -1.4 ∎ e‡_F R_{dA} d+Au @ $\sqrt{s_{\rm NN}}$ =200 GeV (Au-direction) R_{AB} R 2.5 0-20% centrality \mathbb{R} π^0 \mathbf{R}_{AA} HF μ , 1.4 $<$ n $<$ 2.0 ${\bf e}_{\bf u{\bm e}}^*{\bf R}_{\bf AA}$ (d-direction) $1.5⁺$ 0.5 0.5 PH⋇ENIX preliminary P HENIX, PRL109 82012) 242301 P_T [GeV/c] \overline{N} $\overline{N$

- Low- p_T electrons (mid-y) and muons (backward y) largely enhanced
	- \bullet More than expected from anti-shadowing?
	- \bullet Significant role of (mass-dependent?) k_T broadening?
- \rightarrow Au-Au high-p_T suppression is a final state effect

6

- \bullet Low- p_{T} electrons (mid-y) and muons (backward y) largely enhanced
	- \bullet More than expected from anti-shadowing?
	- ♦ Significant role of (mass-dependent?) k_T broadening?
- \rightarrow Au-Au high-p_T suppression is a final state effect
- \rightarrow Simple(istic?) "propagation" of initial state effects (with R_{dA}^2) gives consistent "final-state-only R_{AA} " for π and e also at low p_T

HF-decay electrons at RHIC (62 GeV)

- Lower energy RHIC runs give the unique opportunity to study the onset of the suppression
- \bullet R_{AA} at 62 GeV obtained with reference data from ISR
- Large uncertainties show the need for a high-stat RHIC pp run at 62 GeV

 \blacklozenge Electrons and muons from D+B $\rightarrow e,\mu$ decays

 \triangleright Dominated by beauty at such high p_{T}

$$
\triangleright \text{Note: } p_T^{\text{hadron}} \sim 2 p_T^{\text{lepton}}
$$

I-Workshop, Seattle, 30.09.14 Andrea Dainese

A.Festanti (QM2014)

18

HF -decay e and μ in p-Pb at LHC

- \blacklozenge HF-decay muon R_{pA} (p_T>2 GeV/c):
	- \triangleright Consistent with unity in p-going direction (small x in the Pb)
	- \triangleright Somewhat enhanced in Pb-going direction (large x in the Pb)
- \blacklozenge HF-decay electron R_{pA} consistent with unity
- pQCD+Shadowing (EPS09) can describe the data
- \rightarrow Pb-Pb high-p_T suppression is a final state effect

R.Russo, S.Li (QM2014), Eskola et al., JHEP 0904 (2009) 065

Outline of the Talk

- \blacklozenge Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- \leftrightarrow HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- **►**D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

Charm: D mesons at RHIC

\bullet STAR: D^o R_{AA} in Au-Au and U-U at RHIC

Ø Without secondary vertex reco (~800M Au-Au events)

 \triangleright Suppressed by a factor \sim 3 at high p_T in central Au-Au

 \triangleright Large enhancement at 1.5 GeV/c: radial flow + coalescence? STAR, arXiv:1404.6185, Z. Ye (QM2014)

Charm: D mesons at LHC

- \bullet First D R_{AA} measurement in heavy-ion collisions with data from LHC 2010 run (0-20% centr.) ALICE, JHEP 09 (2012) 112
- Extended with LHC 2011 run, from 1 to 30 GeV/c
- \triangle Factor ~5 suppression at ~10 GeV/c in 0-7.5% centr.

Z.Conesa (QM2012)

D mesons in p-Pb at LHC

D meson R_{pA} consistent with unity (and with 0.5 at 1 GeV/c...) \triangleright pQCD+Shadowing (EPS09) or k_T broadening and CNM E loss, and Colour Glass Condensate can describe the data

 \rightarrow Pb-Pb high-p_T suppression is a final state effect

Total charm cross section at LHC ?

- PHENIX and STAR have measured the total charm cross section (using electrons and D mesons down to $p_T=0$)
- Example: D mesons at low p_T
	- **► Below 1 GeV/c the vertexing method becomes inefficient, the brute-force** combinatorics becomes better *if very large stat is available*

- A matter of statistics:
	- \triangleright STAR used a sample of 800M Au-Au collisions
	- Ø ALICE Run-1 sample is of about 50M Pb-Pb collisions
	- \triangleright Run-2 might allow a first measurement; precision with Runs-3 and 4

 R_{AA} of D and pions consistent within current uncertainties Hint for $D > \pi$ in 2-5 GeV/c?

 \triangleright Below 2 GeV/c: no direct comparison, π not expected to scale with N_{coll}

Is it consistent with the colour charge dependence?

D mesons vs. pions at LHC

26

Outline of the Talk

- \blacklozenge Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- ◆ HF production in nucleus-nucleus (and proton-nucleus)
	- ▶ Semi-leptonic decays
	- \triangleright D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

- \triangleright Larger suppression at higher p_{τ} in min. bias
- \triangleright Centrality dep. in next slide
- CMS-PAS-HIN-12-014

INT-Workshop, Seattle, 30.09.14 Andrea Dainese 28

 \triangleright Indication of R_{AA} \leq 1 for electron $p_T > 3$ GeV/c

A. Festanti (QM2014)

CMS measured b-jets with p_T >80 GeV/c in Pb-Pb and p-Pb Same R_{AA} for b-jets as for q/g-jets, as expected at this p_T

- CMS measured b-jets with p_T >80 GeV/c in Pb-Pb and p-Pb
- Same R_{AA} for b-jets as for q/g-jets, as expected at this p_T
- R_{pA} consistent with unity: no strong initial-state effects

CMS-HIN-12-003, CMS-HIN-14-007

Looking for mass dependence: R_{AA} of D and B at the LHC

u **D mesons (ALICE)** and **J/**ψ **from B decays (CMS)**

 $\frac{1}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$ Similar <p_T> for B and D:

- $B < p_T$ > ~ 11 GeV (FONLL **+EvGen)**
- $D < p_T > ~10$ GeV

Outline of the Talk

- \blacklozenge Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- ◆ HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- \triangleright D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- ◆ Outlook: detector upgrades at RHIC and LHC

Heavy Flavour v₂ at RHIC and LHC

Electrons from HF show a $v₂$ of up to 0.15 at RHIC (PHENIX, STAR)

D meson v_2 in 30-50%: ~0.2 in 2-6 GeV/c

 \triangleright Comparable with charged particle v_2

- What is the origin of this v_2 ? c quark flow? coalescence?
- Much more to learn with future data

Models without HQ interactions with expanding medium underestimate v_2 (WHDG, POWLANG), but are among the best for R_{AA}

Max v₂~0.15-0.20 is best described by models that include **collisional energy loss** of heavy quarks in expanding medium (BAMPS, UrQMD, TAMU, MC@sHQ); they also include a component of **recombination**

Suggests that these mechanisms play a role in HQ-medium interactions

◆ Correlation between HF-decay electrons and hadrons in (high-mult) – (low-mult) p-Pb collisions: a "double ridge" similar to what observed for hadron-hadron

 \blacktriangleright Resembles the structure that in AA is interpreted in terms of collective flow

INT-Workshop, Seattle, 30.09.14 Andrea Dainese 36
- \blacklozenge For hadrons, a flow-like mass ordering is observed
- Alternative interpretations include initial-state effects (Color Glass Condensate) and "vacuum QCD" effects (color reconnection of strings)
- Heavy flavour can provide important additional information

-1 0 1 2 3 4

ALI−PREL−62034 D.Caffarri, HP2013

 $\Delta\phi$ (rad)

Outline of the Talk

- \blacklozenge Introduction: HF probes of the medium
- \bullet Calibrating HF probes: pp results (see back-up)
- \blacklozenge HF production in nucleus-nucleus (and proton-nucleus)
	- \triangleright Semi-leptonic decays
	- \triangleright D mesons
	- \triangleright B and b-jets
- \blacklozenge HF azimuthal anisotropy
- Outlook: detector upgrades at RHIC and LHC

Detector upgrades at RHIC and LHC INFN

Heavy flavour: a central topic for upgrades of all HI **experiments!**

- Ø **c/b decay leptons**
- Low- p_T D, D_s , B
- Ø **HF baryons**

Ø **…**

Planned for 2018-19: ALICE new ITS and MFT

PHENIX: **INFN** Vertex Tracker (VTX)

Projections 5x109 evts

M. Rosati, QM2012

8

transverse momentum, GeV/c

40

Projections 0.5x109 evts

J. Bielcik, Moriond2013

41

ALICE, CERN-LHCC-2013-024

ALICE Upgrade: Heavy flavour flow INFN

Present data on charm v₂

Upgrade: Charm and beauty v_2 **down** to $p_T \sim 0$ using prompt and B-decay D^o

ALICE, CERN-LHCC-2013-024

Input values from BAMPS model: C. Greiner et al. arXiv:1205.4945

INT-Workshop, Seattle, 30.09.14 Andrea Dainese

Instead of a summary … … questions for discussion

Properties of energy loss

- \bullet Colour charge dependence of radiative E loss: how to observe to determine it in a model-independent way?
- First hint of mass dependence of energy loss? Can precise measurements given information on the radiated gluon properties (angular distribution, formation time…)?
- How to Relative weight of radiative and collisional energy loss?

Collectivity and hadronization

- Are HQs flowing (radial, elliptic)? If, yes, what do we learn?
- What are the signals of HQ coalescence? Which measurements to make a final statement?

Medium properties

- Which properties can be accessed (uniquely) with HQs?
- Which theoretical approaches are most sensitive? Is theory ready?

Thank You !

EXTRA SLIDES

INT-Workshop, Seattle, 30.09.14 Andrea Dainese 47

 C_R = Casimir coupling factor: 4/3 for q, 3 for g

 \rightarrow Colour charge dependence of radiative energy loss

$$
\Delta E_g > \Delta E_{c=q}
$$

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

INT-Workshop, Seattle, 30.09.14 Andrea Dainese

<u>T-Workshop, Seattle, 30.09, 14</u>

Mass dependence in collisional energy loss *Example: Langevin formalism*

◆ Langevin equation gives momentum (p) evolution vs. time (*t*):

^u Both Γ (drag) and *D* (diffusion) ~ 1/mQ Loss term à energy loss Gain term à flow (radial, elliptic) For illustration only Thermal relaxation rate A ~ Γ: He, Rapp, Fries, PRC86 (2012) 014903 Δ*Ec* > Δ*Eb*

INT-Workshop, Seattle, 30.09.14 Andrea Dainese 50

Heavy flavour production in pp

Example pQCD calculation: Fixed Order Next-to-Leading Log

$$
\frac{d\sigma}{dp_T} = A(m)\alpha_s^2 + B(m)\alpha_s^3 + G(m, p_T) \left[\alpha_s^2 \sum_{i=2}^{\infty} a_i [\alpha_s \log(\mu/m)]^i + \alpha_s^3 \sum_{i=1}^{\infty} b_i [\alpha_s \log(\mu/m)]^i \right]
$$

FONLL: Cacciari, Frixione, Mangano, Nason and Ridolfi, JHEP0407 (2004) 033

[coincides with NLO for low p_T (total cross section); more accurate at high p_T]

Describes consistently energy dependence of total cross sections

Charm (beauty) $x10$ (100) from 0.2 to 2.76 TeV

 μ_T

pp: pQCD calculations vs data *Charm p*_T-differential cross section

STAR, PRD 86 (2012) 72013 (200 GeV) Z. Ye (QM2013)

ALICE, JHEP01 (2012) 128

- Charm production described within uncertainties
- Consistently at upper limit of theoretical band from 0.2 to 7 TeV
	- ^Ø also at 0.5, 1.96 and 2.76 TeV (not shown)
	- deviation below 1 GeV?

N F N

pp: pQCD calculations vs data *Beauty p*⁻differential cross section

1.96 TeV 7 TeV

Beauty production described very well by central value of calculation

N F N

• FONLL: " $b > c$ " for $p_T > 4$ (5) GeV/c at RHIC (LHC)

 \bullet Clear and consistent centrality dependence for \triangleright R_{AA} of muons at forward rapidity (ALICE) \triangleright R_{CP} of muons at central rapidity (ATLAS)

ALICE Upgrade Physics Motivation

Three main physics topies that are unique of the upgraded ALICE detector:

1. Heavy-flavour transport parameters in the QGP

- \triangleright Heavy-quark diffusion coefficient (\rightarrow QGP equation of state, viscosity of the QGP fluid), via precise HQ $v₂$
- \triangleright Heavy-quark thermalization and hadronization in the QGP, via v_2 and baryons
- **Mass dependence of parton energy loss in QGP medium**

2. Low-mass dielectrons: thermal photons and vector mesons from the QGP

- \triangleright Photons from the QGP ($\gamma \rightarrow e^+e^-$) \rightarrow map temperature during system evolution
- \triangleright Modification of ρ spectral function (ρ \rightarrow e⁺e-) \rightarrow chiral symmetry restoration

3. Charmonia (J/ ψ **and** ψ' **) down to zero** p_{τ}

- \triangleright Only the comparison of the two states can shed light on the suppression/ regeneration mechanism
- \triangleright Study QGP-density dependence with measurements at central and forward rapidity

ALICE Upgrade LOI, CERN-LHCC-2012-012

ALICE Upgrade strategy (2018)

Requirements:

- 1. High tracking precision at low p_T
- 2. High-rate capability to exploit envisaged Pb luminosity increase of LHC

ALICE Upgrade: HF suppression and flow

- Pin down mass dependence of energy loss
- Investigate transport of heavy quarks in the QGP
	- \triangleright Sensitive to medium viscosity and equation of state

Prompt D⁰ and Non-prompt J/ ψ **R_{AA} Prompt and non-prompt D⁰** v_2

C. Greiner et al. arXiv:1205.4945

ALICE, CERN-LHCC-2013-024

 R_{AA} and v_2 of D and

B in a wide p_T range

Heavy flavour in-medium hadronization?^{INFN}

Baryon/meson enhancement and strange-enh. \rightarrow most direct indication of light-quark hadronization in a partonic system Measure this in the HF sector! Does it hold for charm? Charm baryons (Λ_c) and charm-strange mesons (D.)

ALICE Upgrade: HF physics reach

ALICE, CERN-LHCC-2013-024

INFN

pp reference at 2.76 TeV via √s-scaling, (ALICE D mesons and electrons)

- \triangle Scale the 7 TeV cross sections by the 2.76/7 factor from FONLL, with full theoretical uncertainty
	- \triangleright relative scaling uncertainty: 30% \rightarrow 5% in the *p*_t range 2 → 16 GeV/*c*
- \blacktriangleright Validated by comparing to measured cross section at 2.76 TeV (fewer $\bm{{\mathsf{p}}}_\text{t}$ bins)

Averbeck et al., arXiv:1107.3243

INFN LHC: comparison with models (R_{AA})

Several models based on E-loss and heavy-quark transport describe qualitatively the measured light, charm, and beauty R_{AA}

- D R_{AA} similar at RHIC and LHC at 5-6 GeV/c
- Looks quite different at 1-2 GeV/c:
	- \triangleright Could it be shadowing + recombination + radial flow? (stronger effect at RHIC because of steeper dN/dp_T)
	- \triangleright Two transport models (TAMU and Duke) with these ingredients predict maximum R_{AA} ~1.3-1.5 at RHIC and ~0.7-0.8 at LHC

T-Workshop, Seattle, 30.09.14 Andrea Dainese

High-multiplicity pp and p-Pb collisions INFN

- \blacktriangleright LHC energy and luminosity allow for study of pp and p-Pb collisions with very high particle multiplicity
	- \triangleright e.g. pp or p-Pb events with same multiplicity as non-central nucleusnucleus at RHIC energy
- \bullet Look for similar effects as seen in nucleus-nucleus!
- E.g. characteristic patterns in two-particle correlations **PbPb**

Two-particle correlations: near-side ridge NFN

• Near-side ridge (long-range correlation in η at $\Delta\phi=0$) observed in high-multiplicity pp and p-Pb (CMS)

Pronounced structure at large $\Delta\eta$ around $\Delta\phi \sim 0$!

Two-particle correlations: near-side ridge NFN

• Near-side ridge (long-range correlation in η at $\Delta\phi=0$) observed in high-multiplicity pp and p-Pb (CMS)

CMS, PLB 724 (2013) 213

Two-particle correlations: double-ridge!

- \blacklozenge Idea: subtract the "pp-like" structure of low-multiplicity p-Pb from the structure of high-multiplicity p-Pb
- Double ridge discovered by ALICE, followed by ATLAS
- \triangle Resembles the structure that in Pb-Pb is attributed to collective flow

VVorkshop, Seattle, 30.09<u>.14 Andrea Dainese 6</u>

Quantifying the modulation: v_2

- \bullet v₂ vs. p_T and multiplicity with various methods
- Similar pattern in p-Pb and Pb-Pb
- $v₂$ rises to 2 GeV, then ~flattens out to 5

NFN

CMS, PLB 724 (2013) 213

Pb-Pb

 \blacklozenge Mass ordering, interpreted in terms of collective radial and elliptic flow

Pb-Pb p-Pb, high-multiplicity

ALI-DER-52227

Mass ordering, interpreted in terms of collective radial and elliptic flow

- Clear indication for mass ordering in p-Pb
- Resembles Pb-Pb and supports "flow" picture

Possible interpretations

- \blacklozenge High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- \blacklozenge Models including hydrodynamical expansion can describe the observations (e.g. EPOS)

Possible interpretations

- \blacklozenge High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- ◆ Hydrodynamical expansion
- \blacklozenge Alternative explanation (1): Initial-state effect, CGC (Colour Glass Condensate) many-gluon processes can yield correlations

Dusling, Venugopalan, PRD 87, 094034 (2013)
Possible interpretations

- \blacklozenge High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- \blacklozenge Hydrodynamical expansion
- \blacklozenge Alternative explanation (1): Initial-state effect
- \blacklozenge Alternative explanation (2): MPI (multi-parton interactions) and "colour reconnection" (as implemented in PYTHIA8) can induce flow-like effects

see e.g. Ortiz et al, PRL111, 042001 (2013)

Possible interpretations

- \blacklozenge High-multiplicity p-Pb presents several aspects that in Pb-Pb are explained by collective flow of an expanding medium
- \leftrightarrow Hydrodynamical expansion
- \blacklozenge Alternative explanation (1): Initial-state effect
- \blacklozenge Alternative explanation (2): MPI and "colour reconnection"

These results are clearly intriguing, several interpretations are being put forward, and new measurements from the experiments will provide stringent tests for theory