Quarkonia in Heavy-Ion Collisions at the LHC: a CMS perspective

– Torsten Dahms – Excellence Cluster Universe - TU München

> INT-14-3 September 30th, 2014

Technische Universität München

Puzzles from SPS and RHIC

- Similar J/ψ suppression at the SPS and RHIC!
 - despite $10 \times$ higher $\sqrt{s_{NN}}$
- Suppression does not increase with local energy density
 - RAA(forward) < RAA(mid-rapidity)</p>
- Possible ingredients
 - cold nuclear matter effects
 - sequential melting
 - (re)generation
- What happens at the LHC?
 - higher energy + higher luminosity
 - more charm (more regeneration?)
 - more bottom \rightarrow a new probe: Υ

PHENIX, PRL 98 (2007) 232301 also PRC 84 (2011) 054912 SPS from Scomparin @ QM06

Heavy-Ion Collisions: Centrality

CMS

 Collision centrality (overlap of the nuclei) related to the energy deposit in forward calorimeters

ТΠ

- Then: relate to geometrical quantities with a Glauber MC model
 - N_{part} = number of participating nucleons

- ► N_{coll} = number of binary collisions
- Yield of hard probes is expected to scale with N_{coll} in absence of medium effect: R_{AA} = 1

$$R_{AA} = \frac{N_{\rm PbPb}}{N_{\rm coll} \cdot N_{pp}}$$

Defining "Suppression"

- pp (R_{AA}<1):
 - binary scaling holds for colourless probes (γ , W[±], Z)
 - easy to measure
 - does not distinguish between hot and cold nuclear matter (CNM) effects
- pA:
 - includes CNM effects
 - measure CNM effects by comparing pA to binary scaled pp (R_{pA})
 - but how to scale from pA to AA?
- Open heavy flavour (D and B mesons):
 - same production mechanism as quarkonia
 - shares the same initial state effects, including CNM
 - ► challenging to measure total cross section, i.e. at low p_T
 - ▶ how to compare vs. p_T?
- Later: interesting effects in all collision systems vs. event multiplicity
 - how to incorporate this into the reference?

The Large Hadron Collider

The Compact Muon Solenoid...

... according to German TV (RTL)

6

Overall length

Magnetic field

: 28.7 m

: 3.8 T

The Compact Muon Solenoid

SILICON TRACKER **CMS Detector** Pixels (100 x 150 µm²) ~1m² ~66M channels Microstrips (80-180µm) ~200m² ~9.6M channels Pixels **CRYSTAL ELECTROMAGNETIC** Tracker **CALORIMETER (ECAL)** ~76k scintillating PbWO, crystals **ECAL** HCAL Solenoid **PRESHOWER Steel Yoke** Silicon strips Muons ~16m² ~137k channels **STEEL RETURN YOKE** ~13000 tonnes **SUPERCONDUCTING** SOLENOID Niobium-titanium coil carrying ~18000 A FORWARD **CALORIMETER** Steel + quartz fibres ~2k channels HADRON CALORIMETER (HCAL) **Total weight** : 14000 tonnes MUON CHAMBERS Brass + plastic scintillator **Overall diameter** : 15.0 m ~7k channels

Barrel: 250 Drift Tube & 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip & 432 Resistive Plate Chambers

- Global muons reconstructed by combining inner tracker and muon stations
- Further muon ID based on track quality (χ^2 , # hits...)

٦Π

Quarkonia Acceptance

ALICE

LHCb

ALICE

LHCb

2

2

ТΠ

p_T (GeV/c)

30

25

20

15

10

20

10

-2

-1

p_T (GeV/c)

-2

-1

J/ψ

ATLAS + CMS

ALICE

0

У

ATLAS + CMS

ALICE

0

y

- LHCb: acceptance for $p_T > 0$
 - forward rapidity: longitudinal boost
- ALICE: acceptance for $p_T > 0$
 - mid-rapidity: no absorber and low magnetic field
 - Forward rapidity: longitudinal boost
- ATLAS and CMS: Muons need to overcome strong magnetic field and energy loss in the absorber
 - minimum total momentum
 p~3–5 GeV/c to reach the muon stations
 - Limits J/ψ acceptance (in PbPb):
 - mid-rapidity: $p_T > 6.5 \text{ GeV/c}$
 - forward rapidity: $p_T > 3 \text{ GeV/c}$
 - (values for CMS, but similar for ATLAS)
 - Y acceptance:
 - $p_T > 0$ GeV/c for all rapidity
- Complementary acceptances

Reminder: J/ψ in pp at $\sqrt{s} = 7$ TeV

- Prompt and non-prompt J/ ψ cross sections measured down to $p_T = 0$ in 1.6 < |y| < 2.4
- Less stringent muon ID than in PbPb thanks due to lower background rate

CMS BPH-10-002 Eur. Phys. J. C71 (2011) 1575 11

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

J/ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Non-prompt J/ψ become significant towards higher p_T: 20–30%
- Reconstruct µ⁺µ⁻ vertex
- Simultaneous fit of µ⁺µ[−] mass and pseudo-proper decay length

2010 data: JHEP 05 (2012) 063 2011 data: CMS PAS HIN-12-014

Prompt J/\psi at high p_T: RHIC - LHC

٦Ш

- CMS: Prompt J/ψ
 - ▶ p_T > 6.5 GeV/c & |y| < 2.4
 - in 0–5% centrality: suppressed by a factor 5
 - in 60–100% centrality: suppressed by a factor ~1.4
- STAR: inclusive J/ψ
 - ▶ p_T > 5 GeV/c & |y| < 1</p>
 - less suppression at RHIC than at the LHC

CMS PAS HIN-12-014

Prompt J/ψ R_{AA}: double differential

ТΠ

- Centrality dependence is independent of rapidity
 CMS PAS HIN-12-014
- At forward rapidity: access to lower p_T (3 < p_T < 6.5 GeV/c)
 - slightly less suppression in most central collision at low p_T than at high p_T

Prompt J/ψ R_{AA}: double differential

ТΠ

- Centrality dependence is independent of rapidity
 CMS PAS HIN-12-014
- At forward rapidity: access to lower p_T (3 < p_T < 6.5 GeV/c)
 - slightly less suppression in most central collision at low p_T than at high p_T

J/ψ vs. centrality: CMS - ALICE

- CMS: Prompt J/ψ
 - ▶ p_T > 6.5 GeV/c & |y| < 2.4
 - in 0–5% centrality: suppressed by a factor 5
 - in 60–100% centrality: suppressed by a factor ~1.4
- ALICE: inclusive J/ψ (p_T > 0)
 - less suppression at low p_T, both at mid- and forward rapidity
 - includes ~10% b-fraction

CMS PAS HIN-12-014 ALICE PLB 743 (2014) 314

Prompt J/ ψ : Theory meets Experiment

- Rapp: no need for recombination to describe data at high p_T ($p_T > 6.5$ GeV/c)
- Vitev: quarkonium suppression due to energy loss (similarly to open heavy-flavour) not enough to describe data

• STAR found v_2 consistent with 0

- STAR found v_2 consistent with 0
- ALICE found "hint of v2"
 - as expected for recombination

- STAR found v₂ consistent with 0
- ALICE found "hint of v2"
 - as expected for recombination
- CMS measured significant v₂
 - though only above 6.5 GeV/c
 - measurement also for 3<pt<6.5 GeV/c</p>
 - high-p_T v₂ → path-length dependent suppression
- Taking all results together
 - J/ψ has non-zero v₂

- STAR found v₂ consistent with 0
- ALICE found "hint of v2"
 - as expected for recombination
- CMS measured significant v₂
 - though only above 6.5 GeV/c
 - measurement also for 3<pt<6.5 GeV/c</p>
 - high-p_T v₂ → path-length dependent suppression
- Taking all results together
 - J/ψ has non-zero v₂
- Comparison to light hadrons and D

$\psi(2S)$ in pp & PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

Raw yield ratio of ψ(2S) / J/ψ: R_{ψ(2S)}

- Non-prompt charmonia removed via cut on pseudo-proper decay length
- For $p_T > 6.5$ GeV/c and |y| < 1.6: R_{ψ (2S)} in 0–20% PbPb ~2× smaller than in pp

$^{∞}$ $\stackrel{∞}{\blacksquare}$ ψ(2S) in pp & PbPb at √s_{NN} = 2.76 TeV

Raw yield ratio of ψ(2S) / J/ψ: R_{ψ(2S)}

- Non-prompt charmonia removed via cut on pseudo-proper decay length
- For $p_T > 6.5$ GeV/c and |y| < 1.6: R_{ψ (2S)} in 0–20% PbPb ~2× smaller than in pp

$^{∞}$ Ψ ψ(2S) in pp & PbPb at √s_{NN} = 2.76 TeV

Raw yield ratio of ψ(2S) / J/ψ: R_{ψ(2S)}

- Non-prompt charmonia removed via cut on pseudo-proper decay length
- For $p_T > 3$ GeV/c and 1.6 < |y| < 2.4: R_{ψ (2S)} in 0–20% PbPb ~2× larger than in pp

$\psi(2S)$ in pp & PbPb at $\sqrt{S_{NN}} = 2.76$ TeV

Raw yield ratio of ψ(2S) / J/ψ: R_{ψ(2S)}

- Non-prompt charmonia removed via cut on pseudo-proper decay length
- For $p_T > 3$ GeV/c and 1.6 < |y| < 2.4: R_{ψ (2S)} in 0–20% PbPb ~2× larger than in pp

ψ(2S) / J/ψ Double Ratio

 stronger suppression than at forward rapidity and lower pT

Double Ratio

p_T & y dependent effects

Double Ratio

Double Ratio

ψ(2S) Double Ratio: CMS vs. ALICE

CMS: HIN-12-007 ALICE: Scomparin, Arnaldi (QM 2012) CMS has a hint of less suppression of the ψ(2S) w.r.t. the J/ψ at lower p_T

• used pp at $\sqrt{s} = 2.76 \text{ TeV}$

- ALICE looked and did not see it...
 - used pp at $\sqrt{s} = 7$ TeV
- However, given the large uncertainties:
 - No discrepancy!

Muon Pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

Events/(GeV/c²)

Muon Pairs in PbPb at √s_{NN} = 2.76 TeV

Bottomonia

Y(nS) RAA: CMS

- $\Upsilon(1S)$ R_{AA} in 7 centrality bins
- Clear suppression of Y(2S)
- Y(1S) suppression consistent with excited state suppression (~50% feed down)
- Centrality integrated:

$$\begin{split} R_{AA}(\Upsilon(1\mathrm{S})) &= 0.56 \pm 0.08 \, (\mathrm{stat.}) \pm 0.07 \, (\mathrm{syst.}) \\ R_{AA}(\Upsilon(2\mathrm{S})) &= 0.12 \pm 0.04 \, (\mathrm{stat.}) \pm 0.02 \, (\mathrm{syst.}) \\ R_{AA}(\Upsilon(3\mathrm{S})) &< 0.1 \, (\mathrm{at} \, 95\% \, \mathrm{C.L.}) \end{split}$$

 Sequential suppression of the three states in order of their binding energy

Y(nS) RAA: CMS vs. STAR

- Y(1S) R_{AA} in 7 centrality bins
 - Clear suppression of Y(2S)
 - Y(1S) suppression consistent with excited state suppression (~50% feed down)
 - Centrality integrated:

 $\begin{aligned} R_{AA}(\Upsilon(1\mathrm{S})) &= 0.56 \pm 0.08 \, (\mathrm{stat.}) \pm 0.07 \, (\mathrm{syst.}) \\ R_{AA}(\Upsilon(2\mathrm{S})) &= 0.12 \pm 0.04 \, (\mathrm{stat.}) \pm 0.02 \, (\mathrm{syst.}) \\ R_{AA}(\Upsilon(3\mathrm{S})) &< 0.1 \, (\mathrm{at} \, 95\% \, \mathrm{C.L.}) \end{aligned}$

- Sequential suppression of the three states in order of their binding energy
- Stronger suppression than at RHIC

Y(nS) R_{AA}: CMS + ALICE

• ALICE Y(1S) RAA:

Y(1S) also suppressed at forward rapidity

CMS: JHEP 05 (2012) 063 (2010 data) ALICE: arXiv:1405.4493 (2011 data)

Bottomonia: Theory meets Experiment

Rapp et al. EPJ A48 (2012) 72

- Multicomponent model
 - Proxy for nuclear effects: 0 to 2 mb absorption cross section
 - Rate equation in the fireball with suppression and regeneration
- Reproduces Y(1S) and Y(2S)
 - Most of Y(2S) from recombination

Bottomonia: Theory meets Experiment

- Model of thermal suppression in anisotropic hydro
 - Good description of CMS and ALICE data separately
 - Fails to describe mid- and forward rapidity Υ(1S) data simultaneously

Muon Pairs in pPb at $\sqrt{s_{NN}} = 5.02$ TeV

Muon Pairs in pPb at $\sqrt{s_{NN}} = 5.02$ TeV

Y(nS)/Y(1S) Double Ratio in pPb

- PbPb: PRL 109 (2012)
 - ▶ slightly different rapidity (|y_{CM}|<2.4)</p>
 - 2011 pp dataset

Double ratios in pPb larger than in PbPb

- suggests additional final effects in PbPb
- but: model dependent extrapolation from pPb to PbPb:
- pPb vs pp:
 - double ratio less than unity (significance <3σ)

CMS HIN-13-003 JHEP 04 (2014) 103

Y(nS)/Y(1S) vs. "event activity"

Measure event activity at

- Forward rapidity (4< $|\eta_{lab}|$ <5.2)
 - $\sum E_T$ in Hadronic Forward Calorimeter
 - weak dependence
 - independent sets consistent with flat

Single Ratios corrected for acceptance and efficiency

CMS HIN-13-003 JHEP 04 (2014) 103 ₃

36

Y(nS)/Y(1S) vs. "event activity"

Measure event activity at

- Forward rapidity (4< $|\eta_{lab}|$ <5.2)
 - ▶ $\sum E_T$ in Hadronic Forward Calorimeter
 - weak dependence
 - independent sets consistent with flat
- Midrapidity (|η_{lab}|<2.4))
 - Ntracks: multiplicity in silicon tracker
 - significant decrease with multiplicity
- Two options to explain results at midrapidity:
 - Y affects multiplicity
 - ground states comes with 2 tracks more than excited state
 - multiplicity affects Y
 - activity around the Y breaks the state

CMS HIN-13-003 JHEP 04 (2014) 103

Single Ratios corrected for acceptance and efficiency

Summary

ТШ

- Charmonia at low p_T
 - unexpected results on the suppression of ψ(2S): less suppression than at high p_T & midrapidity
- Charmonia at high p_T
 - \blacktriangleright J/ ψ are more suppressed than at RHIC
 - + $\psi(2S)$ are more suppressed than J/ψ
 - as expected from sequential melting
- Bottomonia
 - Clear ordering of the suppression of the three Y states with their binding energy
 - as expected from sequential melting
- pPb data:
 - multiplicity dependence!
 - has to be considered when interpreting PbPb

Excited quarkonia states in pA

- In pA excited states suppressed relative to ground state
 - cold effects differ for excited and ground states
- Consequences for AA results?
 - needs modelling, naive squaring for Y would still leave room for extra hot effects
 - but then there is the multiplicity dependence...

Y(nS)/Y(1S) vs. "event activity"

Measure event activity at

- forward rapidity (4< $|\eta_{lab}|$ <5.2)
 - ► ∑E_T in Hadronic Forward Calorimeter
 - weak dependence
 - independent sets consistent with flat
- midrapidity ($|\eta_{lab}| < 2.4$)) ullet
 - N_{tracks}: multiplicity in silicon tracker
 - significant decrease with multiplicity
- PbPb data: lacksquare
 - no dependence with multiplicity
 - very little overlap with pPb multiplicity
 - more PbPb data Meed and the choice k if central pPb is some and the tone of tone o (arXiv:1312.6300) 41

- More Y in events with high event activity
- As a function of $\sum E_T$: all slopes consistent with 1
- As a function of N_{tracks}:

٦Л

Y(ns)/<Y(nS)

▶ pPb and PbPb: approximate N_{coll} scaling

CMS HIN-13-003 Submitted to JHEP (arXiv:1312.6300)

٦Ш Quarkonia as Thermometer of the QGP

- Excited quarkonium states decay into ground states
 ~50% contribution to the total production of the ground state: feed down
 fraction not well known → measure in pp//
- If excited states are suppressed
 - no feed down \rightarrow less production of the ground state
- Measure the rate of the ground state as function "energy density"
 - reduction of yield → melting of the excited state
 - \rightarrow T > binding energy

J/ψ suppression at the SPS

NA50, Eur. Phys. J. C39, 335 (2005) NA60, PRL 99, 132302 (2007)

 J/ψ in pp and light ion collisions can be explained by normal nuclear absorption

 $\sigma(J/\psi) \propto \exp(-\rho_N \sigma_{\rm abs} L)$

- σ_{abs} = 4.18 ± 0.35 mb
- $\rho_N = 0.17/\text{fm}^3$ (nuclear density)

- Central InIn and PbPb collision show "anomalous suppression" beyond nuclear absorption
- Looks like the expected golden probe?!

(Re)combination?

- Charm quarks are only produced in the initial collision
- Charm quarks could thermalize in the QGP
- During the hadronization charm quarks could then combine to form J/ψ

- SPS: 1 cc pair/event [°] RHIC: 10 cc pairs/event
- Charm cross section at RHIC larger than at the SPS
 - increased recombination at RHIC counterbalances the suppression
 - less recombination at forward rapidity due to lower charm quark density

What to expect at the LHC?

- SPS: 1 cc pair/event
- RHIC: 10 cc pairs/event
- LHC: 100 cc pairs/event (2 bb pairs/

If recombination of charm quarks occurs, expect even less suppression at the LHC

Muon Pair Acceptance

- Muons need to overcome the magnetic field and energy loss in the absorber
 - minimum total momentum p~3–5 GeV/c to reach the muon stations
- Limits J/ψ acceptance:
 - ▶ mid-rapidity: p_T > 6.5 GeV/c
 - ▶ forward rapidity: p_T > 3 GeV/c
- Y acceptance:
 - ▶ p_T > 0 GeV/c for all rapidity

CMS HIN-10-006 JHEP 05 (2012) 063

Open Bottom: Non-prompt J/ψ R_{AA}

- Non-prompt J/ψ from b-hadron decays: direct access to energy loss of b quarks
- Integrated over $p_T > 6.5$ GeV/c and |y| < 2.4

CMS PAS HIN-12-014

- In 0−10% centrality: suppressed by a factor 2.5
- In 50−100% centrality: suppressed by a factor ~1.4
- Integrated over centrality:

Non-prompt J/ψ R_{AA}: double differential

- At forward rapidity: access to lower p_T (3 < p_T < 6.5 GeV/c)
 - slightly less suppression in most central collision at low p_T than at high p_T

Open heavy-flavour

p_{_} (GeV/c)

ТΠ

- ALICE measures R_{AA} of various D mesons
- CMS measures non-prompt J/ψ from bhadron decays
- Expect ordering of suppression with quark mass
 - ▶ a.k.a. "dead-cone effect"
- There is order!
- Radiative energy loss alone is not enough to describe b-quark energy loss
- Models do not decay B, so are for B p_T
 - B $p_T > J/\psi p_T$ (at high p_T)

CMS: PAS HIN-12-014 ALICE: JHEP 09 (2012) 112 Vitev: J. Phys.G35 (2008) 104011 + priv. comm. Horowitz: arXiv:1108.5876 + priv. comm. Buzzatti, Gyulassy: arXiv: 1207.6020 + priv. comm. He, Fries, Rapp: PRC86(2012)014903 + priv. comm.

- Prompt J/ ψ R_{AA} based on pp reference at $\sqrt{s} = 2.76$ TeV ($\mathscr{L}_{pp} = 231$ nb⁻¹)
- Integrated over $p_T > 6.5$ GeV/c and |y| < 2.4

CMS PAS HIN-12-014

- egrated over centrality:
- ▶ no significant dependence on rapidity or p_T

Y(nS)/Y(1S) Double Ratio

Measured Y(2S)/Y(1S) double ratio vs. centrality

- no strong centrality dependence
- Upper limit on Y(3S)
 - centrality integrated: $\frac{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{PbPb}}}{N_{\Upsilon(3S)}/N_{\Upsilon(1S)}|_{\text{pp}}} < 0.17 (95\% \text{ C.L.})$

• Measured in pPb data at $\sqrt{s_{NN}} = 5 \text{ TeV}$

- Integrated luminosity: 18 nb⁻¹
 - half of the total recorded luminosity
- Events selected with a double-muon trigger
- A good primary vertex is required
- A soft-muon identification is applied
- Invariant-mass spectrum of opposite-sign muon pairs in the $\psi(2S)$ mass region is shown
- One example for quarkonium states measured by CMS
- And we just increased the pp sample at 2.76 TeV by a factor 20
 - Quarkonia RAA vs. p_T and y
 - Improve ψ(2S) double ratio

J/ψ candidate in pPb at $\sqrt{s_{NN}} = 5$ TeV

(c) CERN. All rights reserved

CMS DP-2013-001

http://cern.chilop

ТШ \mathbb{S} Y(1S) candidate in pPb at $\sqrt{s_{NN}} = 5$ TeV

CMS DP-2013-001

Z candidate in pPb at $\sqrt{s_{NN}} = 5$ TeV

CMS DP-2013-001

Muon Pair Reconstruction Efficiency

- Separate prompt & non-prompt J/
 ψ
- HI tracking algorithm uses vertex constraint
 - Smaller efficiency for non-prompt than for prompt J/ψ
 - Effect increases with pT
- Efficiencies from Monte Carlo
 - Simulate signal with "realistic" PYTHIA
 - Embed signal in min. bias event simulated with HYDJET (also in data)
 - Validated MC by comparing efficiencies measured with "Tag & Probe" in MC and data

CMS HIN-10-006 JHEP 05 (2012) 063

Tracking efficiency:

- Tag: high quality muon
- Probe: track in the muon station
- Passing Probe:
 - Probe that is also reconstructed as global muon (i.e. with a track in the Si-
- Reconstruct J/ψ peak in passing probe-tag pairs and in failing probe-
- Simultaneous fit to passing and failing probes allows us to measure the efficiency of the inner track reconstruction
- Agreement within stat. uncertainty
 - → 14% systematic uncertainty on data/MC agreement 58

- Measure $\Upsilon(2S+3S)$ production relative to $\Upsilon(1S)$ production
- Simultaneous fit to pp and PbPb data at 2.76 TeV PRL 107 (2011) 052302 $\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15} \pm 0.03$
- Probability to obtain measured value, or lower, if the real double ratio is

- CMS measured $\psi(2S)$ cross section in pp at $\sqrt{s} = 7$ TeV
- $\psi(2S)$ / J/ ψ cross-section ratio ${\sim}0.035$ for $p_T>6.5$ GeV/c
- Uncertainties on theory larger than experimental uncertainties

• PbPb: Signal/Background (at 3σ around the $\psi(2S)$) varies between 0.01 and 0.3 from central to peripheral collisions