

Manuel Calderón de la Barca Sánchez

INT Workshop on Heavy Flavor and Electromagnetic Probes in Heavy-Ion Collisions University of Washington 19/Sep/2014

Outline

& Heavy Quarkonium

ж Y production

- + pp, p(d)A collisions
 - RHIC & LHC
 - Comparison to models
 - Questions from trends in data
- + AA collisions
 - Ditto...

Two beautiful and massive objects that roam freely a colorful field.

Heavy Quarkonium: why?

- States are massive, produced early
 # pQCD can estimate production
- Sensitive to temperature and deconfined color fields: input from Lattice QCD
 - Bebye screening, Landau damping
 - + Re and Im V(r, T)
 - Different states have different sizes/ binding energy
 - + Sequential suppression
- 8 Cold-nuclear matter
 - **x** Initial state effects: e.g. nPDF
 - * Final state: energy loss, absorption
- 8 Regeneration
 - # Uncorrelated heavy-quarks can pair up
- 8 Bottomonium: a cleaner probe than charmonium...
 - **3** states are accessible experimentally
 - # expect small CNM effects
 - # expect small regeneration effects

Measuring Υ

- 8 STAR: electron channel
- *& CMS, PHENIX, ALICE:* dimuon channel

- *8* Experimental Results:
 - STAR: PLB 735 (2014) 127
 - PHENIX: PRC 87, 044909 (2013)
 - CMS:
 - PRL 109 222301 (2012)
 - JHEP 04 103 (2014)
 - ALICE:
 - arXiv:1405.4493

Y in pp collisions at RHIC

Results on cross sections

- STAR: PLB 735 (2014) 127
- PHENIX: PRC 87, 044909 (2013)
- ж STAR data:
 - 20 pb⁻¹, all from pp run 2009.
 - + Improvement over 2006:
 - Less inner material
- *8* Calculations:
 - + CEM: R. Vogt
 - + CSM: Lansberg & Brodsky
- Solution of the second seco

Υ in d-Au at RHIC

- STAR dAu cross section
 Note: Scaled by 10³.
- S Midrapidity point is lower than expectations from CEM.
 - Calculation includes shadowing
 - Does not include estimate of nuclear absorption
- % pp data is also lower than prediction,
 - Compare R_{dAu}, where many theoretical and experimental uncertainties cancel.

ΥR_{dAu} at RHIC, near y=0

- % Invariant mass distribution in dAu
 at |y|<0.5</pre>
 - Scaled pp reference fit shown for comparison
- 8 RdAu vs. y
 - **#** Model comparison:
 - + Shadowing, EPS09
 - R. Vogt
 - + Energy loss
 - Energy loss + shadowing
 - Arleo & Peigné
 - # y~0 is right in the middle of the antishadowing region
 - **#** Expect $R_{dAu} > 1$ (small effect)
 - **#** Observe $R_{dAu} < 1$
 - **#** Absorption seems to be important

Manuel Calderó

Model from A. Rakotozafindrabe, et al.

- 8 Must include additional absorption (red lines)
 - **Why does absorption still give** R_{dAu} **>**1? : Heard that absorption in this calculation needed updating/ revisiting.

arXiv:1207.3193

Yields vs. Mass Number in E772

- *Suppression is the same for 1S and 2S+3S (within errors).*
 - **#** Drell-Yan is not suppressed, follows *A* scaling.
 - **#** Suppression is not as large as for J/ψ (α =0.92±0.008)

Comparison: STAR & E772

- \mathscr{S} For a similar comparison, separate $\Upsilon(1S)$ stat
 - Increases the statistical uncertainty compared to sum Υ(1S+2S+3S)
 - **use** |y| < 1, check A dependence.
 - **#** Also compare y or x_F dependence.
- STAR result: consistent with A trend from E772.
- δ Large suppression seen near xF~0 by E772, α~0.9.
 - **Same as STAR** |y| < 0.5 points.
- Shadowing, or shadowing+E. Loss cannot explain suppression at y=0.
- 8 Effect goes away in the forward y bins.
- 8 A higher-statistics d+Au run would help.
 - Note: dAu 2008 run was first attempt at measuring bottomonium in cold nuclear matter, can revisit with higher statistics

Note: p_T dependence in E772

- 8 Not trivial either.
 - **#** Suppression largest at ~1 GeV
 - # Gives way to large enhancement above 3 GeV
- Solution STAR: Statistics
 Solution Statistics

R_{pPb}: what to look for at LHC

- 8 Expectations From Ramona's calculations for LHC
- ${\mathscr S}$ Left: fixed PDF, varying σ_{abs} : absorption has little effect
- ${\mathscr S}$ Right: fixed $\sigma_{abs'}$ vary the PDF : effect on pPb nPDF is large
- *&* At LHC, kinematics of initial gluons different than at RHIC
 - **x** Lower-x gluons: stronger shadowing.
 - + Expect suppression at midrapidity at LHC from shadowing alone.
 - + Larger uncertainty from gluon PDF than from absorption at LHC

Y in pPb at LHC with CMS

- CMS Upsilon dataset for
 pPb
 - **#** 31 nb⁻¹ @ $√s_{NN}$ =5.02 TeV
 - + From two datasets:
 - Pb+p, ~18 nb⁻¹
 - p+Pb, ~12 nb⁻¹
 - Energy of p beam: 4 TeV
 - Pb beam: 4 x Z/A = 1.58 eV
- 8 Observables:
 - Bouble ratio, single ratio
 - # "Self-normalized" yields
 - % Study as a function of event activity
 - Look at activity close to or far from Y meson.
 - \odot Close: N_{tracks}
 - Far: E_T

S

8

Y Double ratio, pPb and pp

- % Note: double ratio = 1 does not imply absence of final-state effects
- * They could modify excited and ground state equally

Lin & Ko, PLB 503 (2001) 104 Note: depends on radius. Hence, larger absorption for 2S and 3S

Manuel Calderón de la Barca Sánchez

Single ratios vs. event activity $\widehat{O}^{0.5} F^{0.5} F^{0.5}$

8 $N_{track}^{|\eta|<2.4}$, Near activity:

- **%** Single ratios decrease significantly with increasing activity
- ***** Interplay between produced and surrounding event, both in pp and pPb
 - + Additional multiplicity produced with the ground state?
 - + Final-state interactions breaking up the excited states?

Manuel Calderón de la Barca Sánchez

Single ratios vs. activity from pp to PbPb

Span large range in event activity variables, pp, pPb, PbPb

- Solution of the second seco
 - * Need additional data to investigate the dependence in the three systems.

Self-normalized yield, motivation

- **H** Allows us to look at scaling of cross section with activity
- **H** In PbPb, activity connected to N_{coll} via Glauber model
- **#** A simple binary-nucleon-nucleon collision ansatz:
 - + In a given event, the yield of scales with binary collisions
 - + In the same event, the activity of the event also scales with binary collisions
 - + Leads to linear scaling of yields with activity, assuming no other effects
- * Similar connection for pPb is also common paradigm: still deal with nucleon-nucleon collisons
- **#** For pp, does this hold?

Self-normalized yields: Far

 \mathscr{S} E_T, Far activity

Note: x-axis is also self-normalized.

- Close to linear scaling is observed for all systems, all states.
 + Suppression in PbPb for high E_T: central events.
- % pPb, pp follow very closely line with slope 1 (dashed line)
 - + Fit gives slope consistent with 1 within errors.
 - + All systems, all Y states.

Self-normalized yields: Near

- Significant differences among systems and among states!
 Υ(1S) production scaling: stronger than linear in pp.
 pp: indications that slope is smaller for 2S and for 3S.
- 8 All states, even in pp, regardless of whether activity is far or near, show increase relative yield in higher activity events.
 - ***** Number of parton-parton collision scaling? Multi-parton interactions in pp?

LHCb Y results for pPb

8 arXiv:1405.5152

Signal seen in LHCb

Signal yield	Forward (pPb)	Backward (Pbp)
Y(1S)	189±16	72±14
Y(2S)	41±9	17±10
Y(3S)	13±7	4±8

LHCb Υ results for R_{pPb}

- *8* Used interpolated pp reference
- 8 Slight enhancement at negative rapidity, indication of antishadowing
- Slight suppression at forward rapidity
- *8* Different theoretical models are consistent with data, within uncertainties
 - + EPS09 NLO: IJMP E22 (2013) 1330007
 - + E. loss : JHEP 03 (2013) 122

ALICE Υ results for R_{pPb}

- *&* ALICE sees no enhancement at backward rapidity, slight suppression.
 # EPS09 NLO expects antishadowing. ELoss + EPS09 also expects enhancement.
- *8* Forward rapidity data:
 - **EPS09** NLO expects only modest suppression
 - **#** Including E. Loss lowers R_{pPb} , data near lower end of prediction
- 8 Note: ALICE data in both cases lower than LHCb data.

dAu, pPb Summary

- 8 Cold Nuclear Matter effects are important
- STAR dAu results show suppression
 at y=0
 - **#** Not expected from shadowing
 - **#** Absorption seems to be needed
 - **#** Similar effect seen in E772
- 8 CMS pPb results:
 - Evidence for final state effects in pPb: suppress excited states relative to ground state
- *8* CMS event activity study:
 - single ratios affected by nearby
 activity
 - + final-state breakup of excited state?
 - % self-normalized yields increase vs. activity
 - + multi-parton interactions in pp?

Cold nuclear matter

Bottomonium in Hot Matter

% "Morning glory" pool: a hot spring with a balmy temperature of 70 C.

- Invariant mass distributions in 3 centrality bins
- *8* Possible to separate ground state.
- ${\mathscr S}$ Comparison to $N_{coll}\text{-scaled}$ pp reference:
 - **#** Clear suppression of excited states.
 - **#** Suppression of ground state in most central bin.

8 Right panel: all data in STAR acceptance |y| < 1

dAu, and two most peripheral bins: consistent with no suppression

- **Suppression most central Au+Au: Consistent with expectations for hot & cold nuclear matter, however...**
- \mathcal{S} Left panel: bin closest to midrapidity, $|\,y\,|\,{<}0.5$
 - **#** dAu suppression is of the same magnitude as central AuAu: Important to understand dAu system
- *8* Calculations:
 - **%** Strickland & Bazow: Includes estimate of heavy quarkonium potential, Re and Im. Models evolution through anisotropic hydro. (Nucl. Phys. A 879 (2012) 25)
 - Emerick, Zhao & Rapp: attempt to include both Hot & Cold nuclear effects

Y in Emerick, Zhao, Rapp model

- 8 Weak vs. Strong Binding
 - **#** Binding energy changes (or not) with T.
 - **x** Narrower spectral functions for "Strong" case
 - Ratios of correlators compared to Lattice: favor "Strong" binding case
- 8 Kinetic Theory Model
 - **Rate Equation:** dissociation + regeneration
 - **#** Fireball model: T evolution.
 - + T ~ 300 MeV @ RHIC
 - + T ~ 600 MeV @ LHC

Y in Emerick, Zhao, Rapp model

- *Comparison to data:*
 - Mostly consistent with data
 - Little regeneration:
 Final result ~
 Primordial suppression
 - Large uncertainty in nuclear absorption.
 Need dAu, pPb.
 - Based on our preliminary result R_{dAu}=0.78
 - + $\sigma_{abs} \sim 1 3.1 \text{ mb}$

Suppression due to **cold** nuclear matter: can bring R_{AA} down to ~0.6 (most central, lower edge of green band). Additional suppression needed to bring R_{AA} down to ~0.4 : **hot** nuclear effects

Y Ground state R_{AA} in STAR

- 8 Consistent with no suppression in dAu and peripheral AuAu
- 8 Suppression in most central collisions
 - $\Re R_{AA}(1S) = 0.66 \pm 0.13(Au + Au \text{ stat.}) \pm 0.10(p + p \text{ stat.})^{+0.02} -_{0.05}(Au + Au \text{ syst.}) \pm 0.08(p + p \text{ syst.}).$
 - **Models from Strickland et al.**, and Liu et al. consistent with central suppression
 - + However, neither model includes any CNM effects.

Hypothesis testing, |y|<1

- 8 Measurements: vertical line
 - ₩ R_{dAu}
 - ж R_{AA}, 0-10% most central
 - + pink band: syst. unc.
- 8 Hypothesis test:
 - Run pseudoexperiments for various scenarios
 - ***** Stat. unc.: width of distributions
 - ✤ No suppression: RAA=1
 - A^{α} scaling for dAu (CNM effect)
 - $A^{2\alpha}$ for AuAu
 - + QGP effects only
 - Based on Strickland et al.
 - + QGP effects + A^{α} scaling
- *A*^α scaling: consistent with dAu data
- *QGP+A^α* scaling: consistent with AuAu data
- Other scenarios are disfavored.
 3/7/13

Manuel Calderón de la Barca Sánchez

Hypothesis testing, |y|<0.5

8 Hypothesis tests:

- No suppression: RAA=1
- A^α scaling for dAu (CNM effect)
 - $A^{2\alpha}$ for AuAu
- + QGP effects only
 - Based on Strickland et al.
- + QGP effects + A^{α} scaling
- Clear that |y|<0.5 shows large suppression in dAu.
 - **#** Comparable to central AuAu
 - No particular scenario is favored.
 - Additional statistics in dAu would be beneficial.

Y in CMS PbPb

& Clear suppression of all states in PbPb.

CMS ΥR_{AA} vs. N_{part}

- *S* Centrality integrated: **※** Y(1S): 0.56 ± 0.08 ± 0.07 **※** Y(2S): 0.12 ± 0.04 ± 0.02 **※** Y(3S): < 0.10 @ 95% CL
- Solution of sequential suppression.
- 8 Comparison to STAR R_{AA} Y(1S), |y| < 1:

 - More suppression at LHC compared to RHIC
- Solution of excited states only.
 Solution of excited states only.

CMS PbPb and models

- Solution & Models from Strickland et al. and Emerick et al. consistent with data.
 - ***** Suppression level is similar in both models
 - **#** EZR model: Regeneration component is small for Υ .

LHC results...

- 8 CMS showed sequential suppression
 - Models are consistent with this picture
- *&* LHCb shows results consistent with shadowing, can also have some E. loss, but both ok within uncertainties
- 8 The beauty peaks were painting a compelling picture.

8 ... but then things got murky...

ALICE Y Results

- *δ* ALICE Measures Υ in PbPb
 - **#** Forward rapidity region
 - + 2.5 < y < 4
 - + Note: CMS, |y|<2.4
- Fit to 1S to extract yield in PbPb
- ° Uses LHCb pp for reference

- Comparison between CMS and ALICE
 Y R_{AA}: more suppression at forward rapidities!
 - + Energy density, T should be smaller at forward y. What gives?

Comparison to dynamical model

- Solution & Model from Strickland et al.

 - Changing model parameters does not change this feature.
 - + Change in T profile
 - Gaussian profile
 - Boost invariant profile
 - Widens/narrows dip, but dip remains
 - + Change in shear viscosity (and therefore initial T)
 - Increases/Decreases R_{AA} scale, but dip remains
 - Most (all?) models on the market have this behavior.
 - + Note: this model does not have regeneration...

Comparison to transport/regeneration

- S Model from Emerick et al.
 - Includes a regeneration component, albeit small
 - Includes absorption component
 - ¥ Yet, model cannot account for stronger suppression at forward rapidity

In the works, p_T and y

- CMS results on R_{AA} vs. p_T and y with first PbPb run, limited statistics
 # JHEP 1205 (2012) 063
 - ***** No indication of smaller R_{AA} at higher y.
- In progress, p_T and y dependence with higher statistics and finer bins.

 [#] 150 μb⁻¹, compared to 7.3 μb⁻¹

Summary plots vs. binding energy

& Overall pattern of sequential suppression is observed. **#** But there are important details that do not fit.

Conclusions

- $_{\circ}^{\circ}$ Y: an observable that is throwing surprises!
- & dAu, pPb data are now showing intriguing features
 ** Possible large suppression at y=0 at RHIC
 - **#** Final state modifications of excited state compared to ground state
 - Double ratio < 1 in pPb
- % pp data vs. event activity:
 - ***** single ratios decrease when activity is near Υ :
 - + breakup of excited states? higher multiplicity when ground state is produced?
 - **#** Increase of self-normalized yield: multi-parton interactions?
- *&* AuAu data: The first results from STAR and CMS looked very consistent with sequential suppression picture. **#** But forward rapidity data challenges our closely held beliefs!

Solution of Beautiful Peaks, and that we find a crisp, clear vista of the QCD landscape

3/7/13

Manuel Calderón de la Barca Sánchez