Quarkonium suppression in p-A & A-A collisions from parton energy loss in cold QCD matter

François Arleo

LLR Palaiseau & LAPTh Annecy

INT Seattle – October 2014

Outline

- Motivations
 - J/ψ suppression data in p A collisions
- Revisiting energy loss
 - New scaling properties from medium-induced coherent radiation

Phenomenology

- Model for J/ψ and Υ suppression in p A collisions
- Comparison with data from SPS to LHC
- Extrapolation to heavy-ion collisions

References

- FA, S. Peigné, 1204.4609, 1212.0434, 1407.5054
- w/ R. Kolevatov, 1402.1671
- w/ R. Kolevatov, M. Rustamova, 1304.0901

Data on J/ψ suppression in p A collisions

• Strong J/ψ suppression reported at large $x_{\rm F}$ and y

• Weaker suppression in the Drell-Yan process

Data on J/ψ suppression in p A collisions

E866 $\sqrt{s} = 38.7 \text{ GeV}$

PHENIX $\sqrt{s} = 200 \text{ GeV}$

• Strong J/ψ suppression reported at large $x_{\rm F}$ and y

• Weaker suppression in the Drell-Yan process

Many explanations suggested ... yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton

Many explanations suggested ... yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton

All these effects may lead to some J/ψ suppression but cannot alone explain current p A data Many explanations suggested ... yet none of them fully satisfactory

- Nuclear absorption
 - requires unrealistically large cross section
- nPDF effects and saturation
 - constrained by Drell-Yan
- Intrinsic charm
 - assuming a large amount of charm in the proton

All these effects may lead to some J/ψ suppression

but cannot alone explain current p A data

This talk: revisiting energy loss processes in a simple approach

Simple model assuming (mean) energy loss scaling like parton energy [Gavin Milana 1992]

$\Delta E \propto E \ L \ M^{-2}$

for both Drell-Yan and J/ψ (though larger due to final-state energy loss)

François Arleo (LLR & LAPTh)

Parton energy loss in pA & AA collisions

Simple model assuming (mean) energy loss scaling like parton energy
[Gavin Milana 1992]

$\Delta E \propto E \ L \ M^{-2}$

for both Drell-Yan and J/ψ (though larger due to final-state energy loss)

Caveats

- Ad hoc assumption regarding E, L, and M dependence of parton energy loss, no link with induced gluon radiation
- Failure to describe ↑ suppression
- $\Delta E \propto E$ claimed to be incorrect in the high energy limit due to uncertainty principle so-called Brodsky-Hoyer bound

Considering an asymptotic charge in a QED model

- No contribution from large formation times $t_f \gg L$
- Induced gluon radiation needs to resolve the medium

$$k_f \sim rac{\omega}{k_\perp^2} \lesssim L \qquad \omega \lesssim k_\perp^2 \ L \sim \hat{q} \ L^2$$

- Bound independent of the parton energy
- Energy loss cannot be arbitrarily large in a finite medium
- Apparently rules out energy loss models as a possible explanation

However

- Not true in QED when the charge is deflected
- Not necessarily true in QCD due to color rotation

[Brodsky Hoyer 93]

Revisiting energy loss scaling properties

Coherent radiation (interference) in the initial/final state crucial for $t_f \gg L$

- IS and FS radiation cancels out in the induced spectrum
- Interference terms do not cancel in the induced spectrum !
- Induced gluon spectrum dominated by large formation times

$$\Delta E = \int d\omega \, \omega \, \frac{dI}{d\omega} \bigg|_{\rm ind} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2}}{M_{\perp}} E$$

Incoherent energy loss (small formation time $t_f \sim L$)

 $\Delta E \propto \alpha_s \ \hat{q} \ L^2$

- No color flow in the initial or final state
- Large angle particle production
- Hadron production in nuclear DIS or Drell-Yan in p A collisions

Coherent energy loss (large formation time $t_f \gg L$)

$$\Delta E \propto lpha_s \; rac{\sqrt{\hat{q}\;L}}{M_{\perp}} \; E$$

- Needs color in both initial & final state
- Important at all energies, especially at large rapidity
- Hadron production in p A collisions

Goal

- Explore phenomenological consequences of coherent energy loss
- Approach as simple as possible with the least number of assumptions
- Observable: J/ψ and Υ suppression in p A collisions
- Compare to all available p A data
 - rapidity and transverse momentum dependence
 - predictions for the p Pb run at the LHC
- Provide baseline predictions in heavy-ion collisions

Physical picture and assumptions

- Color neutralization happens on long time scales: $t_{
 m octet} \gg t_{
 m hard}$
- Medium rescatterings do not resolve the octet $c\bar{c}$ pair
- Hadronization happens outside of the nucleus: $t_\psi\gtrsim L$
- cc pair produced by gluon fusion

Model for quarkonium suppression

Energy shift

$$\frac{1}{A}\frac{d\sigma_{\rm pA}^{\psi}}{dE}\left(E,\sqrt{s}\right) = \int_{0}^{\varepsilon_{\rm max}} d\varepsilon \,\mathcal{P}(\varepsilon,E) \,\frac{d\sigma_{\rm pp}^{\psi}}{dE}\left(E+\varepsilon,\sqrt{s}\right)$$

Ingredients

• pp cross section fitted from experimental data

$$E \frac{d\sigma_{\rm pp}^{\psi}}{dE} = \frac{d\sigma_{pp}^{\psi}}{dy} \propto \left(1 - \frac{2M_{\perp}}{\sqrt{s}}\cosh y\right)^{n(\sqrt{s})}$$

- Length *L* given by Glauber model for minimum bias and centrality dependence
- $\mathcal{P}(\epsilon)$: probability distribution (quenching weight)

Quenching weight

• Usually one assumes independent emission \rightarrow Poisson approximation

$$\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dl(\omega_{i})}{d\omega}
ight] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}
ight)$$

• However, radiating ω_i takes time $t_f(\omega_i) \sim \omega_i / \Delta q_\perp^2 \gg L$

For $\omega_i \sim \omega_j \Rightarrow$ emissions *i* and *j* are not independent

Quenching weight

• Usually one assumes independent emission \rightarrow Poisson approximation

$$\mathcal{P}(\epsilon) \propto \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_{i} \frac{dl(\omega_{i})}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_{i}\right)$$

• However, radiating ω_i takes time $t_f(\omega_i) \sim \omega_i/\Delta q_\perp^2 \gg L$

• For $\omega_i \sim \omega_j \Rightarrow$ emissions *i* and *j* are not independent • For self-consistency, constrain $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

$$P(\epsilon) \simeq rac{dI(\epsilon)}{d\omega} \exp\left\{-\int_{\epsilon}^{\infty} d\omega rac{dI}{d\omega}
ight\} \qquad \omega rac{dI}{d\omega}\Big|_{
m ind} \simeq rac{N_c lpha_s}{\pi} \ln\left(1 + rac{E^2 \hat{q}L}{\omega^2 M_{\perp}^2}
ight)$$

• $\mathcal{P}(\epsilon)$ scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$

\hat{q} related to gluon distribution in a proton

[BDMPS 1997]

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \rho \, x G(x, \hat{q}L)$$

For simplicity we assume

$$\hat{q}(x) = \hat{q}_0 \left(rac{10^{-2}}{x}
ight)^{0.3}$$
 (\hat{q} frozen at $x \gtrsim 10^{-2}$)

• $\hat{q}_{_0} \equiv \hat{q}(x = 10^{-2})$ only free parameter of the model

• $\hat{q}(x)$ related to the saturation scale: $Q_s^2(x,L)=\hat{q}(x)L$ [Mueller 1999]

Procedure

• Fit \hat{q}_0 from J/ψ E866 data in p W collisions

② Predict J/ψ and Υ suppression for all nuclei and c.m. energies

 $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$

• Corresponds to $Q_s^2(x = 10^{-2}) = 0.11 - 0.14 \text{ GeV}^2$ consistent with fits to DIS data [Albacete et al AAMQS 2011]

Procedure

• Fit \hat{q}_0 from J/ψ E866 data in p W collisions

2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

• Fe/Be ratio well described, supporting the *L* dependence of the model

SPS predictions

- Agreement even at small x_F
- Natural explanation from the different suppression in p A vs π A

/ 33

HERA-B predictions

- Also good agreement in the nuclear fragmentation region ($x_{\rm F} < 0$)
- Enhancement predicted at very negative $x_{\rm F}$

Uncertainties

Two sources of uncertainties are identified

- Transport coefficient \hat{q}_0 (default 0.075 GeV^2/fm) to be varied from 0.07 to 0.09 GeV^2/fm
- Parameter ("slope") of the pp cross section to be varied within its uncertainty extracted from the fit of pp data

Uncertainties

Two sources of uncertainties are identified

- Transport coefficient \hat{q}_0 (default 0.075 GeV^2/fm) to be varied from 0.07 to 0.09 GeV^2/fm
- Parameter ("slope") of the pp cross section to be varied within its uncertainty extracted from the fit of pp data

Uncertainty band determined from the independent variation of \hat{q}_0 and n (4 error sets)

$$(\Delta R^{+})^{2} = \sum_{k=\hat{q}_{0},n} \left[\max \left\{ R(S_{k}^{+}) - R(S^{0}), R(S_{k}^{-}) - R(S^{0}), 0 \right\} \right]^{2}$$

$$(\Delta R^{-})^{2} = \sum_{k=\hat{q}_{0},n} \left[\max \left\{ R(S^{0}) - R(S_{k}^{+}), R(S^{0}) - R(S_{k}^{-}), 0 \right\} \right]^{2}$$

Uncertainties

Two sources of uncertainties are identified

- Transport coefficient \hat{q}_0 (default 0.075 GeV^2/fm) to be varied from 0.07 to 0.09 GeV^2/fm
- Parameter ("slope") of the pp cross section to be varied within its uncertainty extracted from the fit of pp data
- Largest uncertainty comes from the variation of \$\hat{q}_0\$ around mid-rapidity
- At very large rapidity (e.g. y ≥ 4 at LHC), uncertainty coming from n becomes comparable or larger than that coming from q̂₀

- Good agreement for R_{pA} vs rapidity
- Rather small uncertainty coming from the variation of the pp cross section and the transport coefficient

Most general case

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \ \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp} \right)$$

pp cross section fitted from experimental data

$$rac{d\sigma^\psi_{
m pp}}{dy\,d^2ec p_\perp} \propto \left(rac{p_0^2}{p_0^2+p_\perp^2}
ight)^m imes \left(1-rac{2M_\perp}{\sqrt{s}}\cosh y
ight)^n$$

- Overall depletion due to parton energy loss
- Possible Cronin peak due to momentum broadening

$$R^{\psi}_{\mathsf{p}\mathsf{A}}(y, p_{\perp}) \simeq R^{\mathrm{loss}}_{\mathsf{p}\mathsf{A}}(y, p_{\perp}) \cdot R^{\mathrm{broad}}_{\mathsf{p}\mathsf{A}}(p_{\perp})$$

p_{\perp} dependence at E866

- Good description of E866 data (except at large p_{\perp} and large $x_{\rm F}$)
- Broadening effects only not sufficient to reproduce the data

p_{\perp} dependence at RHIC

• Good description of p_{\perp} and centrality dependence at y = -1.7

François Arleo (LLR & LAPTh)

INT Seattle – Oct 2014

0 / 33

p_{\perp} dependence at RHIC

• Good description of p_{\perp} and centrality dependence at y = 1.7

François Arleo (LLR & LAPTh)

INT Seattle – Oct 2014

20 / 33

• Moderate effects ($\sim 20\%$) around mid-rapidity, smaller at y < 0

- Large effects above $y \gtrsim 2-3$
- \bullet Slightly smaller suppression expected in the Υ channel

Very good agreement despite large uncertainty on normalization
Data at y ≥ 4 would be helpful

Comparing to other model predictions

[ALICE 1308.6726]

- Forward J/ψ suppression underestimated using EPS09 NLO
- \bullet Forward J/ψ suppression overestimated in the CGC calculation

François Arleo (LLR & LAPTh)

Parton energy loss in pA & AA collisions

INT Seattle – Oct 2014

22 / 33

Transverse momentum dependence

ALICE 1308.6726

• $R_{\rm FB}(p_{\perp})$: good agreement, better agreement with energy loss supplemented by nPDF effects

François Arleo (LLR & LAPTh) Parton energy loss in pA & AA collisions

INT Seattle - Oct 2014

The model successfully reproduces all p A (π A) data vs y and p_\perp

 \rightarrow can be used to predict J/ψ suppression in heavy-ion collisions

Naturally

- Many other effects possibly at work: Debye screening, recombination, energy loss in hot medium...
- Goal: to set a baseline for the effects of energy loss in cold QCD matter

Model for A B collisions

- Both incoming (projectile & target) partons lose energy in the (target) & projectile) nucleus, respectively
- Two distinct regions of phase space for gluon emission \rightarrow no interference effects in the radiation induced by nucleus A and B

François Arleo (LLR & LAPTh)

Parton energy loss in pA & AA collisions

Model for A B collisions

- Both incoming (projectile & target) partons lose energy in the (target & projectile) nucleus, respectively
- $\bullet\,$ Two distinct regions of phase space for gluon emission $\to\,$ no interference effects in the radiation induced by nucleus A and B

$$\frac{1}{A B} \frac{d\sigma_{AB}^{\psi}}{dy} (y, \sqrt{s}) = \int d \, \delta y_B \, \mathcal{P}_B(\varepsilon_B, y) \int d\delta y_A \, \mathcal{P}_A(\varepsilon_A, -y) \\ \frac{d\sigma_{\rm pp}^{\psi}}{dy} \left(y + \delta y_B - \delta y_A, \sqrt{s} \right)$$

with δy_B defined as $E(y + \delta y_B) \equiv E(y) + \epsilon_B$

Model for A B collisions

- Both incoming (projectile & target) partons lose energy in the (target & projectile) nucleus, respectively
- $\bullet\,$ Two distinct regions of phase space for gluon emission $\to\,$ no interference effects in the radiation induced by nucleus A and B

$$\frac{1}{A B} \frac{d\sigma_{AB}^{\psi}}{dy} (y, \sqrt{s}) = \int d \, \delta y_B \, \mathcal{P}_B(\varepsilon_B, y) \int d\delta y_A \, \mathcal{P}_A(\varepsilon_A, -y) \\ \frac{d\sigma_{\rm pp}^{\psi}}{dy} \left(y + \delta y_B - \delta y_A, \sqrt{s} \right)$$

A good approximation (at not too large y)

$$R_{\scriptscriptstyle AB}(+y) \simeq R_{\scriptscriptstyle AP}(+y) \times R_{\scriptscriptstyle PB}(+y) = R_{\scriptscriptstyle PA}(-y) \times R_{\scriptscriptstyle PB}(+y)$$

Rapidity dependence in A A collisions

- Rather pronounced suppression, especially for J/ψ
- R_{AA} slightly decreasing at not too large y
- Fast increase at edge of phase space due to energy gain fluctuations

Rapidity dependence in A A collisions at RHIC

Disagreement in both Cu Cu and Au Au collisions

Disagreement more pronounced in Au Au collisions

Centrality dependence in A A collisions at RHIC

Disagreement only in most central Cu Cu collisions

Centrality dependence in A A collisions at RHIC

Disagreement only in most central Cu Cu collisions

 Strong disagreement in most central Au Au collisions, fair agreement within uncertainties in peripheral collisions

Rapidity dependence in Pb Pb collisions at LHC

Very good agreement with ALICE data, except in the largest y bins
No hot medium effects ? Or medium effects compensate ?

Centrality dependence in Pb Pb collisions at LHC

• Excellent agreement with ALICE J/ψ data

François Arleo (LLR & LAPTh)

Parton energy loss in pA & AA collisions

INT Seattle – Oct 2014

29 / 33

Centrality dependence in Pb Pb collisions at LHC

- \bullet Excellent agreement with ALICE J/ψ data
- Disagreement with CMS ↑ data

Centrality dependence in Pb Pb collisions at LHC

- $\bullet\,$ Excellent agreement with ALICE J/ψ data
- Disagreement with CMS ↑ data
- Indication of hot suppression medium effects for Υ
- ullet . . . implying (?) hot enhancement medium effects for J/ ψ

François Arleo (LLR & LAPTh)

Parton energy loss in pA & AA collisions

INT Seattle – Oct 2014

29 / 33

nPDF effects

- nPDF effects may affect quarkonium suppression in p A & A A collisions and could be added (incoherently) to present energy loss effects
- However sill large uncertainty on small x gluon shadowing (within a single set or comparing existing sets)

For simplicity we provided "energy loss only" calculations

nPDF effects

Ratio of gluon densities (using EPS09 NLO, x_1, x_2 given by $2 \rightarrow 1$ kin.)

• At RHIC, energy loss is the leading effect

- At LHC
 - Energy loss leading effect as compared to DSSZ
 - Same order of magnitude as EPS09 around mid-rapidity but leading effect at large rapidity

- Energy loss $\Delta E \propto E$ due to coherent radiation
 - Parametric dependence of $dI/d\omega$ predicted and used for phenomenology
- Phenomenology of quarkonium suppression in p A collisions
 - Good agreement with all existing data vs. y and p_{\perp} , from SPS to LHC
 - Natural explanation for the large ${\it x}_{\rm F}~J/\psi$ suppression
 - Predictions in good agreement with LHC pPb data
- Phenomenology of quarkonium suppression in A A collisions
 - Model extrapolated from p A to AA collisions
 - Disagreement observed for J/ψ at RHIC, especially in most central collisions and heavier systems
 - Excellent (accidental?) agreement observed for J/ ψ at LHC, disagreement observed for Υ

Medium-induced gluon spectrum

Gluon spectrum $dI/d\omega \sim$ Bethe-Heitler spectrum of massive (color) charge

$$\begin{split} \omega \frac{dI}{d\omega} \bigg|_{\text{ind}} &= \frac{N_c \alpha_s}{\pi} \left\{ \ln \left(1 + \frac{E^2 \Delta q_{\perp}^2}{\omega^2 M_{\perp}^2} \right) - \ln \left(1 + \frac{E^2 \Lambda_{\text{QCD}}^2}{\omega^2 M_{\perp}^2} \right) \right\} \\ \Delta E &= \int d\omega \, \omega \, \frac{dI}{d\omega} \bigg|_{\text{ind}} = N_c \alpha_s \frac{\sqrt{\Delta q_{\perp}^2} - \Lambda_{\text{QCD}}}{M_{\perp}} \, E \end{split}$$

- $\Delta E \propto E$ neither initial nor final state effect nor 'parton' energy loss: arises from coherent radiation
- Physical origin: broad t_f interval : $L, t_{hard} \ll t_f \ll t_{octet}$ for medium-induced radiation

Fit to pp data

Parton energy loss in pA & AA collisions

Fit to pp data

INT Seattle - Oct 2014