Transport coefficients, potentials and spectral functions from the lattice

Chris Allton (Swansea University)

Transport coefficients, potentials and spectral functions from the lattice

Gert Aarts, CRA, Alessandro Amato, Wynne Evans, Pietro Giudice, Simon Hands, Aoife Kelly, Seyong Kim, Maria-Paola Lombardo, Dhagash Mehta, Bugra Oktay, Sinead Ryan, Jon-Ivar Skullerud, Don Sinclair, Tim Harris

FASTSUM Collaboration

Particle Data Book

$\sim 1,500 \mathrm{~pages}$

zero pages on Quark-Gluon Plasma...

1st Generation

2 flavours smaller volume: (2fm)³ coarser lattices: $a_s = 0.167$ fm quark mass: $M_{\pi}/M_{\rho} = \sim 0.55$

N_s	N_{τ}	T(MeV)	T/T_c
12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

1st Generation

2 flavours smaller volume: (2fm)³ coarser lattices: $a_s = 0.167$ fm quark mass: $M_{\pi}/M_{\rho} = \sim 0.55$

N_s	N_{τ}	T(MeV)	T/T_c
12	16	460	2.09
12	18	409	1.86
12	20	368	1.68
12	24	306	1.40
12	28	263	1.20
12	32	230	1.05
12	80	90	0.42

2nd Generation

2+1 flavours larger volume: $(3 \text{fm})^3 - (4 \text{fm})^3$ finer lattices: $a_s = 0.123 \text{fm}$ quark mass: $M_\pi/M_\rho = \sim 0.45$

N_s	N_{τ}	T(MeV)	T/T_c
24, 32	16	350	1.90
24	20	280	1.52
24, 32	24	235	1.27
24, 32	28	200	1.09
24, 32	32	175	0.95
24	36	155	0.84
24	40	140	0.76
32	48	115	0.63
16	128	45	0.24

Outline

- **Polyakov Loop and** T_c
- Light Mesons: Pseudoscalar vs Scalar
- Susceptibilities
- Electrical Conductivity, σ
- Charmonium Potential, V(r)

Polyakov Loop, L, related to free energy, F, via:

$$L(T) = e^{-F(T)/T}$$

But *F* defined up to addivitive constant $\Delta F = f(\beta, \kappa)$. Imposing renormalisation condition:

 $L_R(T_R) \equiv$ some number

gives us

 $L_R(T) = e^{-F_R(T)/T} = e^{-(F_0(T) + \Delta F)/T} = L_0(T)e^{-\Delta F/T} = L_0(T)Z_L^{N_\tau}$

and Z_L defined from renormalisation condition.

Wuppertal-Budapest, PLB713(2012)342 [1204.4089]

Polyakov Loop

Polyakov Loop

Polyakov Loop

Light mesons & Chiral Symmetry

 \rightarrow (partial) restoration of chiral symmetry at high T

Susceptibilities' Definitions

$$n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i} \qquad \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}$$

Susceptibilities' Definitions

$$n_i = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_i} \qquad \qquad \chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_i \partial \mu_j}$$

$$Q = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_Q} = \sum_{i=1}^3 q_i n_i \qquad \qquad \chi_Q = \frac{\partial Q}{\partial \mu_Q} = \sum_{i=1}^3 (q_i)^2 \chi_{ii} + \sum_{i \neq j}^3 q_i q_j \chi_{ij}$$

$$B = \frac{T}{V} \frac{\partial \ln Z}{\partial \mu_B} = \sum_{i=1}^3 n_i$$

$$\chi_B = \frac{\partial B}{\partial \mu_B} = \sum_{i=1}^3 \chi_{ii} + \sum_{i \neq j}^3 \chi_{ij}$$

$$\chi_I = \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_I^2}$$

with $\mu_I = \mu_d - \mu_u$

Susceptibility Terms

Useful to introduce:

$$T_{1}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] \rangle \quad T_{2}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial^{2} M}{\partial \mu_{i}^{2}} \right] \rangle$$
$$T_{3}^{ij} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{j}} \right] \rangle \quad T_{4}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] \rangle$$

Susceptibility Terms

Useful to introduce:

$$T_{1}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] \rangle \quad T_{2}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial^{2} M}{\partial \mu_{i}^{2}} \right] \rangle$$
$$T_{3}^{ij} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{j}} \right] \rangle \quad T_{4}^{i} = \langle \frac{T}{V} Tr \left[M^{-1} \frac{\partial M}{\partial \mu_{i}} M^{-1} \frac{\partial M}{\partial \mu_{i}} \right] \rangle$$

Quark Number Susceptibility

Quark Number Susceptibility

 χ_{ll} versus χ_{ss} showing "flavour hierarchy"

Electrical conductivity on the lattice

EM current:
$$j_{\mu}^{\text{em}} = \frac{2e}{3} j_{\mu}^{\text{u}} - \frac{e}{3} j_{\mu}^{\text{d}} - \frac{e}{3} j_{\mu}^{\text{s}}$$

EM Correlator:
$$G_{\mu\nu}^{\text{em}}(\tau) = \int d^3x \langle j_{\mu}^{\text{em}}(\tau, \mathbf{x}) j_{\nu}^{\text{em}}(0, \mathbf{0})^{\dagger} \rangle$$

Spectral decomposition:

$$G_{\mu\nu}^{\,\rm em}(\tau) = \int_0^\infty \frac{d\omega}{2\pi} \, K(\tau,\omega) \, \rho_{\mu\nu}^{\rm em}(\omega) \quad \text{with} \ K(\tau,\omega) = \frac{\cosh[\omega(\tau-1/2T)]}{\sinh[\omega/2T]}$$

Conductivity:
$$\frac{\sigma}{T} = \frac{1}{6T} \lim_{\omega \to 0} \frac{\rho^{\text{em}}(\omega)}{\omega}$$

Relationship to Diffusivity: $D\chi_Q = \sigma$

Conserved (lattice) vector current used for j_{μ}^{em}

$$V_{\mu}^{\mathsf{C}}(x) = \left[\bar{\psi}(x+\hat{\mu})(1+\gamma_{\mu}) U_{\mu}^{\dagger}(x) \psi(x) - \bar{\psi}(x)(1-\gamma_{\mu}) U_{\mu}(x) \psi(x+\hat{\mu})\right]$$

Conserved (lattice) vector current used for $j_{\mu}^{
m em}$

$$V_{\mu}^{\mathsf{C}}(x) = \left[\bar{\psi}(x+\hat{\mu})(1+\gamma_{\mu}) U_{\mu}^{\dagger}(x) \psi(x) - \bar{\psi}(x)(1-\gamma_{\mu}) U_{\mu}(x) \psi(x+\hat{\mu})\right]$$

Finite Volume Check

 $N_s = 24$ versus $N_s = 32$

Maximum Entropy Method

Recall
$$G^{\text{em}}(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho^{\text{em}}(\omega_j)$$

Input data: τ_i , $i = \{1, ..., O(10)\}$ Output data : ω_j , $j = \{1, ..., O(10^3)\}$

Maximum Entropy Method

Recall
$$G^{\text{em}}(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho^{\text{em}}(\omega_j)$$

Input data: $\tau_i, i = \{1, ..., O(10)\}$ Output data : $\omega_j, j = \{1, ..., O(10^3)\}$

 \longrightarrow ill-posed

Recall
$$G^{\text{em}}(\tau_i) = \sum_j K(\tau_i, \omega_j) \rho^{\text{em}}(\omega_j)$$

Input data: $\tau_i, i = \{1, ..., O(10)\}$ Output data : $\omega_j, j = \{1, ..., O(10^3)\}$

 \longrightarrow ill-posed

$$\begin{split} P[\rho|DH] &= \frac{P[D|\rho H]P[\rho|H]}{P[D|H]} \propto \exp(-\chi^2 + \alpha S) \\ H &= \text{prior knowledge, } D = \text{data} \end{split}$$

Shannon-Jaynes entropy:
$$S = \int_0^\infty \frac{d\omega}{2\pi} \left[\rho(\omega) - m(\omega) - \rho(\omega) \ln \frac{\rho(\omega)}{m(\omega)} \right]$$

Default model: $m(\omega) = m_0(\mathbf{b} + \omega)\omega$

Asakawa, Hatsuda, Nakahara, Prog.Part.Nucl.Phys. 46 (2001) 459

Spectral function results

Recall
$$\sigma \sim \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$

Conductivity Result σ/T

Conductivity Result σ/T

MEM Systematics I

MEM Systematics I

Stability tests discarding the last time slices: Are we seeing a number-of-datapoints (N_{τ}) systematic or a true thermal effect? τ 10 14 12 1e-02 $G(\tau)$ 1e-03 T/T_c 1.52 $\Delta \tau = 6$ $\Delta \tau = 8$ $\Delta \tau = 10$ 1.26 0.3 **1.08** 0.95 0.2 **0.84** 0.1 **P** σ/T 0 32 28 28 24 32 24 20 28 36 N_{τ} N_τ $N_{ au}$

N-N potential

Hatsuda, PoS CD09 (2009) 068 use the Schrödinger equation to "reverse engineer" the potential, V(r), given the Nambu-Bethe-Salpeter wavefunction, $\psi(r)$:

input input

$$\begin{pmatrix} \frac{p^2}{2M} + V(r) \\ \downarrow \end{pmatrix} \begin{pmatrix} \downarrow & \downarrow & \downarrow \\ \psi(r) = E & \psi(r) \\ \downarrow \end{pmatrix}$$

output

 $\psi(r)$ is determined from a lattice simulation from correlators of *non-local* (point-split) operators, $J(x; \vec{r}) = q(x) \Gamma U(x, x + \vec{r}) \overline{q}(x + \vec{r})$

$$\begin{array}{lll} C(\vec{r},t) & = & \displaystyle \sum_{\vec{x}} < J(0;\vec{r}) \; J(x;\vec{r}) > \\ & \longrightarrow & |\psi(r)|^2 \; e^{-Et} \end{array}$$

Charm treated relativistically

Charmonium Operators: $J_{\Gamma}(x;\mathbf{r}) = q(x) \Gamma U(x,x+\mathbf{r}) \overline{q}(x+\mathbf{r})$

Correlation F'ns:
$$C_{\Gamma}(\mathbf{r},\tau) = \sum_{\mathbf{x}} \langle J_{\Gamma}(\mathbf{x},\tau;\mathbf{r}) \ J_{\Gamma}^{\dagger}(0;\mathbf{0}) \rangle$$

 $= \sum_{j} \frac{\psi_{j}(\mathbf{r})\psi_{j}^{*}(\mathbf{0})}{2E_{j}} \left(e^{-E_{j}\tau} + e^{-E_{j}(N_{\tau}-\tau)}\right)$
Schrödinger Eq'n $\left[-\frac{1}{2\mu}\frac{\partial^{2}}{\partial r^{2}} + V_{\Gamma}(r)\right]\psi_{j}(r) = E_{j}\psi_{j}(r)$
Apply this to C_{Γ} : $\frac{\partial C_{\Gamma}(r,\tau)}{\partial \tau} = \sum_{j} \left(\frac{1}{2\mu}\frac{\partial^{2}}{\partial r^{2}} - V_{\Gamma}(r)\right)\frac{\psi_{j}^{*}(0)\psi_{j}(r)}{2E_{j}}e^{-E_{j}\tau}$
 $= \left(\frac{1}{2\mu}\frac{\partial^{2}}{\partial r^{2}} - V_{\Gamma}(r)\right)C_{\Gamma}(r,\tau)$

This gives an algebraic equation for $V_{\Gamma}(r, "\tau")$

"Extended" Correlation Functions

Local-extended charmonium correlators for $N_{\tau} = 40$

" τ -dependent" Potential T = 0

" τ -dependent" Potential $0.76T_c$

" τ -dependent" Potential $0.84T_c$

" τ -dependent" Potential $0.95T_c$

" τ -dependent" Potential $1.09T_c$

" τ -dependent" Potential $1.27T_c$

Spin-Independent (i.e. Central) Potential

Spin-Dependent Potential

Electrical Conductivity

- First time the temperature dependency has been uncovered on lattice
- Results compatible with previous determinations

Inter-quark potential in charmonium at finite temperature

First time this was done with:

- relativisitc quarks rather than static quarks
- finite temperature rather than T = 0

EXTRA SLIDES

	1st Generation	2nd Generation
		(HSC parameters)
Flavours	2	2+1
Volume(s)	(2fm) ³	(3fm) ³ & (4fm) ³
a_s [fm]	0.167	0.123
a_t [fm]	0.028	0.035
anisotropy	6	3.5
$M_{\pi}/M_{ ho}$	~ 0.55	~ 0.45
Action	Gauge: Symanzik Improved	Gauge: Symanzik Improved
	Fermion: fine-Wilson,	Fermion: Clover,
	coarse-Hamber-Wu stout-link	Tadpole Improved