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The r-process: observational request

- many r-rich Galactic halo stars  
show remarkable agreement  
with solar pattern 

- r-process must occur in the  
early Galaxy 

- astrophysical events must  
reproduce this common pattern  
(Z>40; A>90)

Sneden+ (2008) ARAA

→ suggests existence 
of “main” r-process sites 
producing a (solar-like) 
common pattern



Dynamical ejecta of supernova explosion?

- neutrino-driven proto-neutron star wind 
- supernova ejecta → iron group elements including 56Ni 

- EC-SNe are exception? (c.f., Wanajo+ 2011)  
But, not enough to produce heavy r-process elements

→ needs other components of SNe?

Wanajo+ ApJL, 2011, 2013 (EC-SNe, MPA group)



needs for neutron-rich ejecta (and failure of PNS wind)
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Figure 1: The relations of initial Ye, entropy and expansion timescale to satisfy the condition
for production of A = 195 r-process peak. The correlations are showed in the Ye and entropy
plane for each expansion time (left) and in the Ye, entropy and expansion time space (right)
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Figure 2: Same as above, but extended higher entropy and expansion timescale.
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based on Hoffman et al. (1997) 

condition for r-process 3rd peak

heavy element

entropy/baryon

Y
e

hight entropy  
 → high T 
 → low seed  
 → high n /seed

Wanajo 2013

- not very neutron-rich ( > 0.4 ) 
- not high entropy (< 200) 
- supported by several studies  

Fischer et al. 2010,  
Hüdepohl et al. 2010 etc.

→ needs other astronomical sites



NS-NS mergers

collaboration with 
S. Wanajo (NAOJ) 

Y. Sekiguchi, K. Kiuchi and M.Shibata (YITP, Kyoto U) 
K. Kyutoku (UW-Milwaukee)

Wanajo et al., ApJL 789, 2014 
Sekiguchi et al. (in prep.) 
Nishimura et al. (in prep.)



Astronomical sites/scenarios for r-process

massive stars

neutrino-driven wind

NS-NS/BH-NS 
merger

compact star 
binaries

PNS

NS BH

SN

- only lighter r-process elements  
(see e.g., Wanajo 2013) 

- non-standard SNe 
associated with magnetar formation jets  
(Nishimura+ 2006, Winteler+ 2012)



Big problem: too neutron-rich?
Goriely+ 2011 (e.g., Korobkin+ 2011, Rosswog+ 2013)

tidal ejection 
of “pure” n-rich matter 
with Ye << 0.1

strong r-process 
with fission recycling
severe problem: only A > 130 
with fission recycling(Ye = Yp = 1 - Yn)

mass number



Solution?: wind ejecta driven by neutrino
see also, talks by A. Perego and O. Just last week

dynamical ejecta 
(Ye < 0.1) 

+ 
neutrino-driven wind 

(Ye > 0.3)

Rosswog 2014+

•wind ejecta has enough mass? 
• two different components can explain “universality”? 
•modeling dynamical ejecta has physical uncertainties 

• general Relativistic (GR) hydrodynamics 
• nuclear equation of state (EOS) 
• neutrino transport



‘Robustness’ of r-process in  NS-NS merger ?
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! Korobkin et al. 2012 :   Newtonian SPH simulations 
! Bauswein et al. 2013:   Relativistic SPH simulations with multiple EOS 

but weak interactions are not implemented 
! This Study :  Full GR, rad-hydro.simulation with SFHo(Steiner )and Shen 

EoS !
! Shen EOS:    ‘Stiffer’ 

! Larger NS radius 
! Mass ejection is driven                                                                                                                   

mainly by Tidal force 
! SFHo (Steiner) EOS: ‘Softer’ 

! Smaller NS radius!
! Tidal effects are less                                                                                                              

important in mass ejection!
! Stronger bounce

slide by Y.Sekiguchi



new challenge: GR-hydro model 
slide by Y.Sekiguchi



NEW NS-NS simulation

t = 0 ms t = 4 ms t = 13ms
“Production of all the r-process nuclides 
 in the dynamical ejecta of neutron star mergers” 

(Wanajo, Sekiguchi, NN, Kiuchi, Kyutoku, Shibata, ApJL, 2014)

- fully general relativity 
- approximate neutrino transport 
- realistic EOS 
- Steiner’s EOS (2013, SFXo) 

- 1.3 M⊙ NSs

ejected matter 
on the orbital plane



dynamics Wanajo+ 2014
density temperature Ye entropy



Impact of EOS (vs Shen EOS 1998)
- Steiner’s EOS makes compact NS 
- compact NS  
→ less tidal disruption + strong collision



Neutrino burst and Ye

t = 0 ms
“Protonization” Burst Ye changes due to 

positron capture and 
neutrino absorption

Wanajo+ 2014

n + e+ → p + νe

neutrino absorption



ejecta of NS-NS model
- mild neutron-rich  

(Ye = 0.1 — 0.4) 
- low entropy



3D-geometry

temperature Ye



ejecta of NS-NS model
solar-like r-process pattern 
NO strong fission cycling

2nd peak
3rd peak

Theoretical reaction rates are based on mass model HFB-21 (Goriely) 
(fission properties are based on HFB-14, Goriely)



as a source for “kilonova”

main source (β-decay) 
～1days  
 (85Kr, 89Sr, 103Ru) 
～10 days 
 (123Sn, 125Sn)

※fission does not play  
significant role



NS-NS as a Galactic r-process source

- amount of ejecta 
- ～ 0.01 M⊙ 

- estimated rate 10-5 /year  
(agree with other estimation)  
(e.g., Dominik et al. 2012)

non-orbital plane

Goriely+ 2011 
!
!

Ye << 0.1



SFHo vs. Shen (high resolution): temperature

SFHo (smaller RNS)

 Lower T : less  e+   
 Mass ejection mainly     
 driven by tidal effects

 Higher T : more  e+  
 Shock heating  
 more positron capture   

Shen (larger RNS)

! SFHo: temperature is higher (as 1MeV) due to the shock heating, and produce 
copious positrons 

! Shen: temperature is much lower

1000km

 



 Higher T : more  e+  
 higher Ye > 0.25 region :        
 less neutron rich

 

 Lower T : less  e+  
 smaller Ye < 0.25 :        
 neutron rich

SFHo (smaller RNS) Shen (larger RNS)

! SFHo: In the shocked regions, Ye increases to be >> 0.2 by weak processes 
! Shen: Ye is low as < 0.2 (only strong r-process expected)

SFHo vs. Shen (high resolution): Ye



BH-NS merger?: extremely neutron-rich matter
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ejected matter by strong tidal disruption:  
 BH (4M⊙) — NS (1.25M⊙) 
 → maintaing initial Ye (neutron rich)

Nishimura et al. (2013); NPA VI Conf.

extremely 
neutron-rich



Summary

- NS mergers 
- dynamical ejecta can produce full range of  

r-process nuclei 
- sophisticated EOS, GR, neutrino are  

significant impacts on the nucleosynthesis 
- the r-process study is a new probe to examine  

nuclear EOS and binary stars (NS-NS) evolution 
- (can make a precise predict for “kilonova”) 

- open question 
- dependences on mass of NSs, EOS etc.  

(robustness of our present results) 
- BH-NS ? 
- needs to change galactic chemical evolution scenario?


