The impact of nuclear physics inputs on the freeze-out phase of the *r*-process

University of Notre Dame / Joint Institute for Nuclear Astrophysics

Friday August 8th 2014

INT Workshop

The Importance of the Freeze-out Phase

- Freeze-out is the last phase of the r-process when nuclides decay back to stability.
- Individual rates and beta-delayed neutron emission probabilities (P_n values) are critical because most nuclei are out of equilibrium with their neighbors.
- During freeze-out the interplay between these reaction channels help to shape the final abundance distributions we observe in nature (this includes the rare earth peak for instance).
- Thus, in order to accurately predict *r*-process outcomes it is imperative to understand how these nuclear properties evolve with neutron excess.
- To strengthen our understanding we need to improve our models based off new measurements.

The *r*-Process

"rapid" neutron capture (as compared to beta decay)

Far from stable isotopes \rightarrow nuclides participating are short lived

 \rightarrow little to no experimental data

e.g. Uranium Z=92, N=146 \rightarrow need lots of neutrons

Neutron Capture / Photo-dissociation $(Z, N) + n \leftrightarrow (Z, N + 1) + \gamma$

Beta Decay $(Z, N) \rightarrow (Z + 1, N - 1) + e^- + \overline{\nu}_e$

N (neutron number)

Freeze-out Nuclear Physics Inputs

Ingredient	Uncertainty	Abundance Impact
Masses / Q-values	Large towards dripline	Local & global
β-decay rates	Intermediate?	Local & global
Neutron capture rates	Large	Local & global
Alpha decay rates	Intermediate?	Local
β-delayed n-emission prob.	Intermediate?	Global
Fission barrier heights	Large	Local
Fission rates	Large	Local
Fission yields	Large	Global

Stages Of The *r*-Process

Nuclear Statistical Equilibrium (NSE) Alpha recombination $(n,\gamma) \leftrightarrow (\gamma,n)$ equilibrium & Quasi-equilibrium (QSE) Freeze-out

Figure from A. Arcones (2011)

r-Process Data

Solar r-process residuals (meteoritic data) Halo stars (observational data)

Isotopic abundances

Elemental abundances

r-Process Calculations Need

nuclear physics inputs (Sn, β-rates, n-cap rates, ...)

Environment conditions

(temperature, density, ...)

Nuclear Data The Nuclear Chart

Nuclear Data What Do We Know?

Nuclear Data What We Don't Know

Nuclear Data Possible r-Process Path

Nuclear Data Possible r-Process Path

Legend

- Closed shells
- We know something
- Unknown
- Possible r-Process Path

Number of Neutrons (N)

A few more points...

- We only have masses or ½-lives for dark green region
- We lack information about
- Neutron capture
- Beta-delayed neutron emission
- Fission

Open Questions

- Shell evolution
- Deformation
- Location of neutron dripline

Sensitivity Studies Tell Us What Is Important

- How do abundances change with change in nuclear inputs?
- Baseline simulation fix conditions & nuclear physics models
- Modified simulation single nuclear physics input is changed
- Measure change by comparing differences in final composition:

$$F = 100 \sum_{A} |X_{baseline}(A) - X(A)|$$

where

$$X(A) = AY(A)$$
 Mass fraction (X) \leftrightarrow abundance (Y)

$$\sum_{A} X(A) = 1$$
 Mass conservation

Neutron Capture Rates

Mumpower et al PRC (2012) Surman, Mumpower et al CGS-14 (2013) Surman, Mumpower et al AIP Stardust (2014)

Individual rates determine:

How material moves to stability

Where remaining free neutrons are captured

The details of the final abundances

Important during freeze-out once $(n,\gamma) \leftrightarrow (\gamma,n)$ breaks

Accessibility Limits

CARIBU

Predicted FRIB

Contributes to calculation of (γ,n) -rate (detailed balance)

Mass surface defines the path during equilibrium

Kinks in mass surface can cause features in final abundances

Important during $(n,\gamma) \leftrightarrow (\gamma,n)$ equilibrium & freeze-out

Accessibility Limits

CARIBU

Predicted FRIB

Beta-decay Rates

Surman, Mumpower, et al. ICFN5 (2013) Mumpower et al. AIP Stardust(2014)

Important during

all stages of the r-process

Sets timescale for heavy element production

Slow rates (waiting points) build up material

Rates are particularly important at closed shells (A=130 / A=190) and rare earth peak (A~160 or N~104)

Predicted FRIB

Beta-delayed Neutron Emission

Mumpower & Surman (in prep)

Important primarily during

freeze-out

Provides additional neutrons for capture during freeze-out

Along with neutron capture it determines the fine details of the abundance patterns (smoothing?)

Rates are particularly important at closed shells (A=130 / A=190) and rare earth region (A~160)

Accessibility Limits

Beta-delayed Neutron Emission Probabilities Turned on vs Turned off

Mumpower & Surman in prep.

Wind r-Process Sensitivity Study Results

Differences in Mass Model Predictions Across The Chart of Nuclides

Impact On *r*-process Abundances

Towards A Mass Sensitivity Study

How do mass uncertainties change final abundances?

- Neutron separation energies (Z,A) (Z,A+1)
- Neutron capture rates (Z,A) (Z,A-1)
- Beta-decay rates (Z,A) (Z-1,A)
- Beta-delayed n-emission probabilities (Z,A) (Z-1,A) \rightarrow (Z-1,A+3)

Result: 140Sn (Z=50) +0.5MeV

¹⁴⁰Sn (Z=50) neutron capture rates only

¹⁴⁰Sn (Z=50) beta-decay only

¹⁴⁰Sn (Z=50) photodissociation rates

¹⁴⁰Sn (Z=50) All changes together

Over an order of magnitude change in the abundance for +0.5MeV change in mass of 140-Sn

Results of Our Mass Sensitivity Study Wind *r*-Process

N~82 region with +/- 0.5 MeV mass uncertainty

Results of Our Mass Sensitivity Study Wind *r*-Process

N~126 region with +/- 1.0 MeV mass uncertainty

Estimated Final Abundances With Uncertainties

Variations in masses of N~82 and N~126 nuclei of +/- 1 MeV

Why Are New Measurements Important? Can be used to constrain r-process site e.g. rare earth peak

Insight From New Measurements

149Sm	150Sm	151Sm	152Sm	153Sm	154Sm	155Sm	156Sm	157Sm	158Sm	159Sm	160Sm	161Sm	162Sm	163Sm	164Sm	165Sm
148Pm	149Pm	150Pm	151Pm	152Pm	153Pm	154Pm	155Pm	156Pm	157Pm	158Pm	159Pm	160Pm	161Pm	162Pm	163Pm	
147Nd	148Nd	149Nd	150Nd	151Nd	152Nd	153Nd	154Nd	155Nd	156Nd	157Nd	158Nd	159Nd	160Nd	161Nd		
146Pr	147Pr	148Pr	149Pr	150Pr	151Pr	152Pr	153Pr	154Pr	155Pr	156Pr	157Pr	158Pr	159Pr			
145Ce	146Ce	147Ce	148Ce	149Ce	150Ce	151Ce	152Ce	153Ce	154Ce	155Ce	156Ce	157Ce				
144La	145La	146La	147La	148La	149La	150La	151La	152La	153La	154La	155La					
143Ba	144Ba	145Ba	146Ba	147Ba	148Ba	149Ba	150Ba	151Ba	152Ba	153Ba						
142Cs	143Cs	144Cs	145Cs	146Cs	147Cs	148Cs	149Cs	150Cs	151Cs							
141Xe	142Xe	143Xe	144Xe	145Xe	146Xe	147Xe	148Xe									

In total over 40 new beta-decay half-lives measured @ RIKEN!

Preliminary hints at deformed sub-shell closure around N~100

Jin Wu et al. in preparation (2014)

Summary & Outlook

- *Individual* nuclear physics inputs can be critical for calculations of *r*-process nucleosynthesis.
- Masses impact Q-values and calculations of half-lives, reaction rates and the properties of fission.
- We don't need to measure 'everything' but we do need to understand how trends evolve with neutron excess.
- Improved nuclear models will help to strengthen our knowledge of freeze-out and narrow down the uncertainty in the site(s) of the r process.

Fission Model

Grid Size	Parameter	Definition
45	Q ₂	Elongation (fission direction)
35	α_{g}	(M1-M2)/(M1+M2) Mass asymmetry
15	ε _{f1}	Left fragment deformation
15	ε _{f2}	Right fragment deformation
15	d	Neck
Total		5,009,235 grid points

Fission Barrier Height Calculations

Figure by Peter Moller

New Fission Barrier Heights

Moller, ..., Mumpower submitted (2014)

New Fission Barrier Heights

Moller, ..., Mumpower submitted (2014)