Nucleosynthesis and Chemical Evolution, INT, UW, Seattle, USA, August 18, 2014

## Supernovae from the **First Stars and the Abundance Patterns** of Metal-Poor Stars



😹 MONASH University

Alexander Heger Stan Woosley Ken Chen Conrad Chan Pamela Vo

# Overview

 Stellar Burning and **Nucleosynthesis**  Pair Instability Supernovae Yields from Massive Stars Yields from Multiple Stars



## Chapter One: A Brief History of the Universe







The Cosmic Dark Age

(Alexander Heger 2013)

Visualization: Kähler (ZIB), Cox, Patterson, Levy (NCSA), Simulations (Tom Abel, Greg Bryan, Mike Norman)



#### The Hubble Deep Field

#### **Cosmic Dark Age**



#### time



## Setting the Stage: Stellar Evolution



# Formation and Mass of the First Stars

#### No metals $\rightarrow$ no metal cooling $\rightarrow$ more massive stars

(Bromm, Coppi, & Larson 1999, 2002; Abel, Bryan, & Norman 2000, 2002; Nakamura & Umemura 2001; O'Shea & Norman 2006,...)

→ typical mass scale ~10...300 M<sub>\_</sub>?

• Newer simulations indicate binaries may exist



• But ...

(Turk, Abel, O'Shea 2010)

We still don't have a really strong constrain on Pop III star masses in general

credit: Matt Turk



Formation Environment of the First Stars

(Hirano et al. 2013)

### The Most Massive Stars Today



#### **R136**

- young massive star cluster
- Age around 1.5 Myr
- Star "a1": maybe 200 M<sub>o</sub> initial mass
- (Crother et al. 2010)

Eta Car – a really big star in our galaxy today

#### **Nuclear Burning Stages**

| Burning stages |                 | 20 M <sub>☉</sub> Star   |                        | 200 $M_{\odot}$ Star     |                    |
|----------------|-----------------|--------------------------|------------------------|--------------------------|--------------------|
| Fuel           | Main<br>Product | Т<br>(10 <sup>9</sup> К) | Time<br>(yr)           | Т<br>(10 <sup>9</sup> К) | Time<br>(yr)       |
| н              | He              | 0.02                     | <b>10</b> <sup>7</sup> | 0.1                      | 2×10 <sup>6</sup>  |
| He             | 0, C            | 0.2                      | <b>10</b> <sup>6</sup> | 0.3                      | 2×10 <sup>5</sup>  |
| C              | Ne,<br>Mg       | 0.8                      | <b>10</b> <sup>3</sup> | 1.2                      | 10                 |
| Ne             | O, Mg           | 1.5                      | 3                      | 2.5                      | 3×10 <sup>-6</sup> |
| 0              | Si, S           | 2.0                      | 0.8                    | 3.0                      | <b>2×10</b> -6     |
| Si             | Fe              | 3.5                      | 0.02                   | 4.5                      | 3×10 <sup>-7</sup> |

# The Death of the Stars







## Explosive Nucleosynthesis

| Fuel                | Main<br>Product                         | Secondary<br>Product                                                                           | T<br>(10 <sup>9</sup> K) | Time<br>(s) | Main<br>Reaction                                |
|---------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|--------------------------|-------------|-------------------------------------------------|
| Innermost<br>ejecta | <i>r</i> -process<br><i>vp</i> -process | -                                                                                              | >10?                     | 1           | (n,γ), β <sup>-</sup>                           |
| Si, O               | <sup>56</sup> Ni                        | iron group                                                                                     | >4                       | 0.1         | (α,γ)                                           |
| Ο                   | Si, S                                   | CI, Ar,<br>K, Ca                                                                               | 3 - 4                    | 1           | <sup>16</sup> <b>O</b> + <sup>16</sup> <b>O</b> |
| O, Ne               | O, Mg, Ne                               | Na, Al, P                                                                                      | 2 - 3                    | 5           | (γ,α)                                           |
|                     |                                         | <i>p</i> -process<br><sup>11</sup> B, <sup>19</sup> F,<br><sup>138</sup> La, <sup>180</sup> Ta | 2 - 3                    | 5           | (ɣ,n)                                           |
|                     |                                         | <i>v</i> -process                                                                              |                          | 5           | (v, v'), (v, e <sup>_</sup> )                   |

## **Taxonomy of Massive Stars**

- AGB/SAGB/ECSN
- Off-center Si burning
- Off-center Ne/O burning
- Off-center C burning
- "normal" massive stars
- Pulsational pair SNe
- Pair SNe

MASS

- Direct Collapse to Black Hole
- Extremely Massive Stars
- Ultramassive Stars
- Supermassive Stars

massive stars





## Nucleosynthesis In **Pair-Instability** Supernovae















## Problem

Pair-Instability Supernovae do not reproduce the abundances as observed in very metal poor halo stars!



#### **Pulsational Pair SN Scenario I**



#### **Pulsational Pair SN Scenario II**



## Nucleosynthesis In **Massive Pop III** Stars



## Mixing in 25 M<sub>O</sub> Stars

Growth of Rayleigh-Taylor instabilities

Interaction of instabilities (mixing) and fallback determines nucleosynthesis yields

➔ Pop III stars show much less mixing than modern Pop I stars due to their compact hydrogen envelope



Simulations: Candace Joggerst (UCSC/LANL T-2)





### Fallback and Remnants

➔ Pop III stars show much more fallback than modern Pop I stars due to their compact hydrogen envelope

(Zhang, Woosley, Heger 2007)

#### Supernovae, Nucleosynthesis, & Mixing



## **Pop III Nucleosynthesis**



Mg yield (ejecta mass fraction)

Heger & Woosley (2010)

### Production of <sup>7</sup>Li by $p(v,e^+)n$





#### SMSS J031300.362670839.3

 $[Fe] < -7.1 (3\sigma)$ 

#### The "Iron-Free" Star



#### SMSS J031300.362670839.3

[Fe] < -7.1 (3σ)









### **Reconstruction of the IMF**





#### **Enrichment from Single and Binary Stars**

Spatial distribution of metal for different SN model with same total stellar mass Metal enrichment as a function of distance from centre of DM halo for different SN model with same total stellar mass



## Fit Your Own Star http://starfit.org

## STARFIT

| 🖲 Single Star 🔍 Genetic Algorithm 🔍 Complete Search              |                            |  |  |  |  |
|------------------------------------------------------------------|----------------------------|--|--|--|--|
| Star data (Leave blank for HE1327-2326):                         | Choose file No file chosen |  |  |  |  |
| Model database (Leave blank for<br>znuc.S4.star.el.y.stardb.gz): | Choose file No file chosen |  |  |  |  |
| Time limit: (really long jobs will time out)                     | 5                          |  |  |  |  |
| Population size:                                                 | 200                        |  |  |  |  |
| Gene size (number of stars):                                     | 2                          |  |  |  |  |
| Combine elements:                                                | ◉None ○CN ○CNO             |  |  |  |  |
| Max Z:                                                           | 30                         |  |  |  |  |
|                                                                  |                            |  |  |  |  |

Website under development by **Conrad Chan** 

- Use genetic algorithm or complete search
- Upload your own observational star data
- Upload your own data base

Run

# Summary

The IMF or the First Stars – and hence how they come to pass – still remains elusive without direct observational data

- IMF may have bimodal distribution for single stars
- For some stars the abundance pattern is very suggestive of originating from two stars, *possibly binary stars*
- Stellar forensics, determining abundance patterns of what the first stars left behind, may be our best tool in the near future (e.g., constraints on pair-SNe).
- Nucleosynthesis ashes of Pair-Instability SNe have not been directly observed