Electromagnetic Counterparts of Gravitational Wave Events

Bing Zhang

University of Nevada Las Vegas

Jul. 21, 2014, INT Program14-2a,

Binary Neutron Star Coalescence as a Fundamental Physics Laboratory

Collaborators: He Gao, Yun-Wei Yu, Xue-Feng Wu et al.

Transient Astrophysics in the Multi-Wavelength & Multi-messenger Era

Detection of gravitational wave is around the corner

NS+NS ~ 300 *Mpc* ($z \approx 0.1$) Event Rate $0.2 \sim 2000 \text{ yr}^{-1}$

Candidates: NS-NS & NS-BH mergers

- Known NS-NS systems in the **Galaxy**
- Indirect evidence of GW emission from PSR 1913+16 system
- Well studied "chirp" signals
- What EM signals accompany with these events?

http://physics.aps.org/articles/v3/29 (adapted from Kiuchi et al. 2010, PRL, 104, 141101)

Why EM signals are essential?

- Confirm the astrophysical origin of the GW signals
- Study the astrophysical physical origin of the GW sources (e.g. host galaxy, distance, etc)
- Study the detailed physics involved in GW events (e.g. equation of state of nuclear matter)

http://physics.aps.org/articles/v3/29 (adapted from Kiuchi et al. 2010, PRL, 104, 141101)

NS-NS and NS-BH mergers: Two types of merger products *CONTENTS* 6

Bartos, I., Brady, P., Marka, S. 2013, CQGrav., 30, 123001 observable for a few seconds to minutes. Upon the merger of the NSs, a binary with

EM signals for a BH post-merger product

SGRB�

Multi-wavelength afterglow *~hours, days*

Merger Nova (Macronova, Kilonova)�

Opical/IR flare *~ 1 day Li & Paczyński, 1998 …*

Ejecta-ISM interaction shock�

Nakar& Piran, 2011

Radio

~years

Metzger & Berger (2012)

Short GRBs

- In different types of host galaxies, including a few in elliptical/earlytype galaxies, but most in starforming galaxies
- Large offsets, in regions of low star formation rate in the host galaxy. Some are outside the galaxy.
- Leading model: NS-NS or NS-BH mergers

Rezzolla et al. 2011

Short GRBs as GWB EM counterpart: issues

- The NS-NS and NS-BH merger models cannot simultaneously interpret the BATSE and Swift short GRB data (Virgili et al. 2012)
- Even if there is a SGRB-GW burst association, SGRBs are collimated, only a small fraction of GWBs will have SGRBs.

Kilo-novae: faint, in IR?

- Li-Paczynski novae: 1-day V-band luminosity: 3×1041 erg/s (Metzger et al. 2010): 3-5 orders of magnitude fainter than GRB afterglow
	- Barnes & Kasen (2013): High opacity from heavier elements (e.g. lanthanides) – peak in IR
- Detection in GRB 130603B?

Tanvir et al. (2013, Nature), Berger et al. (2013, ApJL)

Radio afterglow

• Radio afterglow (Nakar & Piran): bright enough when $n=1$ cm⁻³. For mergers, one may expect $n \sim 10^{-3} - 10^{-4}$ cm⁻³, then radio afterglow not detectable

EM signals for a (supra-massive / stable) millisecond magnetar post-merger product

Zhang (2013); Gao et al. (2013); Yu et al. (2013)

SGRB?�

Late central engine activity *~Plateau & X-ray flare*

Magnetic Dissipation X-ray Afterglow� *1000 ~10000 s* up to $\sim 10^{-8}\, erg s^{-1}\, cm^{-2}$ *Zhang, 2013*

Magnetar-fed merger-novae�

Yu et al, 2013; Metzger & Piro 2014

Ejecta-ISM interaction with continuous energy injection �

Multi-band transient *~hours, days, weeks, or even years*

Gao et al, 2013

Observational hints of a (supramassive / stable) millisecond magnetar as the post-merger product (I)

- NS with mass $> 2 M_{\odot}$ has been discovered
- NS-NS systems: total mass can be $< 2.6 M_{\odot}$

Observational hints of a (supramassive / stable) millisecond magnetar as the post-merger product (I)

Stiff equation-of-state: maximum NS mass close to 2.5 M_{\odot}

Observational hints of a (supramassive / stable) millisecond magnetar as the post-merger product (2)

• X-ray plateaus in some short GRB afterglows

Rowlinson et al. (2010) Rowlinson et al. (2013)

Forming a supra-massive / stable neutron star via a NS-NS merger

For small enough NS masses and a reasonable NS equation of state, a stable magnetar can survive a NS-NS merger.

Giacomazzo & Perna (2013)

Supra-massive / stable magnetar

Additional energy budget from a millisecond magnetar: the spin energy

$$
E_{rot} = 2 \times 10^{52} \text{ erg } I_{45} P_{0,-3}^{-2}
$$

\n
$$
L_{sd,0} = 10^{49} \text{ erg s}^{-1} B_{p,15}^{2} R_{6}^{6} P_{0,-3}^{-4}
$$

\n
$$
T_{sd} = \frac{E_{rot}}{L_{0,sd}} \sim 10^{3} \text{ s } I_{45} B_{p,15}^{-2} R_{6}^{-6} P_{0,-3}^{2}
$$

A **postmerger magnetar** would be **initially rotating** near the **Keplerian velocity P~1ms**.

A huge energy budget: released in the EM form in different channels

Early EM afterglow of GWBs (Zhang, 2013, ApJ, 763, L22)

- Magnetar wind is essentially isotropic
- If the post-merger product of NS-NS coalescence is a millisecond magnetar, essentially every GWB would be accompanied by a bright early EM afterglow
- This applies regardless of whether NS-NS mergers are accompanied by short GRBs

EM signals for a (supra-massive / stable) millisecond magnetar post-merger product

Zhang (2013); Gao et al. (2013); Yu et al. (2013)

SGRB?�

Late central engine activity *~Plateau & X-ray flare*

Magnetic Dissipation X-ray Afterglow� *1000 ~10000 s* up to $\sim 10^{-8}\, erg s^{-1}\, cm^{-2}$ *Zhang, 2013*

Magnetar-fed merger-novae�

Yu et al, 2013; Metzger & Piro 2014

Ejecta-ISM interaction with continuous energy injection �

Multi-band transient *~hours, days, weeks, or even years*

Gao et al, 2013

Bright early X-ray Afterglow from NS-NS mergers

Zhang, 2013, ApJ, 763, L22

EM signals for a (supra-massive / stable) millisecond magnetar post-merger product

Zhang (2013); Gao et al. (2013); Yu et al. (2013)

SGRB?�

Late central engine activity *~Plateau & X-ray flare*

Magnetic Dissipation X-ray Afterglow� *1000 ~10000 s* up to $\sim 10^{-8}\, erg s^{-1}\, cm^{-2}$ *Zhang, 2013*

Magnetar-fed merger-novae�

Yu et al, 2013; Metzger & Piro 2014

Ejecta-ISM interaction with continuous energy injection �

Multi-band transient *~hours, days, weeks, or even years*

Gao et al, 2013

Enhanced (Magnetar powered) Merger Novae

Yu, Zhang & Gao, 2013, ApJ, 763, L22

Figure 2. Light curves of the merger-nova (thick) and afterglow (thin) emissions at different observational frequencies as labeled. The dashed and dotted lines are obtained for an optionally taken magnetar collapsing time as $t_{\text{col}} = 2t_{\text{md}}$ and $t_{\text{col}} = 10^4$ s, respectively. The ambient density is taken as 0.1 cm⁻³, and other model parameters are the same as Figure 1.

Figure 3. Optical (∼1 eV) light curves of the millisecond-magnetar-powered merger-nova, in comparison with the light curves of two supernovae (bolometric) and one radioactive-powered merger-nova (as labeled). The dash-dotted (blue) and solid (orange) lines represent $M_{ej} = 10^{-2} M_{\odot}$ and $10^{-4} M_{\odot}$, respectively. The thick and thin lines correspond to a magnetar collapsing time as $t_{\text{col}} =$ 10^4 s $\ll t_{\rm md}$ and $t_{\rm col} = 2t_{\rm md}$, respectively. The zero-times of the supernovae are set at the first available data.

 α ino (ω_0, t) finally reaches a peak at *the See also Metzger & Piro* (2014).

Kilo-novae in GRB 130603B:

- Can be magnetarpowered also, but the kinetic energy is small $(10^{51}$ erg), birth period is long: near 5 ms \sim Can be maynetar \sim powored dioo, but the which typically satisfies density satisfies dentally satisfied $(4.051 \text{ s} \cdot \text{s}^3)$ $(10^{51}$ erg) birth neriod is $\sum_{i=1}^{n}$ is $\sum_{i=1}^{n}$ is required in current after in current after a function in current after a function in current after $\sum_{i=1}^{n}$
- Gravitational wave loss of the supra-massive NS? accretion and [∼]10−⁴ for fall-back accretion, both the short ρ . Gravitational wave loss of **STATION BE ACCOUNTED FOR EXAMPLE FOR ALL 2009** We capta that we have

Fan et al. (2013, ApJL) $\lim_{\epsilon \to 0} \cos \alpha \cdot (-\cos \alpha + \cos \alpha)$

EM signals for a (supra-massive / stable) millisecond magnetar post-merger product

Zhang (2013); Gao et al. (2013); Yu et al. (2013)

SGRB?�

Late central engine activity *~Plateau & X-ray flare*

Magnetic Dissipation X-ray Afterglow� *1000 ~10000 s* up to $\sim 10^{-8}\, erg s^{-1}\, cm^{-2}$ *Zhang, 2013*

Magnetar-fed merger-novae�

Yu et al, 2013; Metzger & Piro 2014

Ejecta-ISM interaction with continuous energy injection �

Multi-band transient *~hours, days, weeks, or even years*

Gao et al, 2013

Later afterglow due to ejecta-medium interaction

Gao et al, 2013, ApJ, 771, 86

Gao et al. 2013, ApJ, 771, 86

Gao et al. 2013, ApJ, 771, 86

Gao et al. 2013, ApJ, 771, 86

Gao et al. 2013, ApJ, 771, 86

 $B_{\perp} \sim 10^{15} \, G , ~~ M_{\rm \, ej} \sim 10^{-3} \, M$ \perp 10 U, M_{ej} 10 M_{e}

Opt: $F_{peak} \sim 10 mJy$ $T_{peak} \sim T_{sd} \sim 10^3 s$

Radio:

$$
T_{peak} \sim 10^7 s
$$

$$
F_{peak} \sim 1 Jy
$$

Candidate 1: PTF11agg

Wu, et al., 2014, ApJL, 781, L10; See also Wang & Dai (2013)

Event Rate

- NS-NS merger: $2-2\times10^4$ Gpc⁻³ yr⁻¹
- Within advanced LIGO horizon ~ 300 Mpc: $R_{GWB-aq} \sim (0.2 - 2000)$ (f_{NS}) (f_{bw}) yr⁻¹

Most probable values:

- ~ 20 per year for NS-NS mergers
- ~ 2-10 per year for NS-NS mergers with a supra-massive millisecond magnetar engine?

Observational strategy

 $\frac{1}{\sqrt{2}}$ originaries the solid black lines denote the solid black lines denote the solid black lines denote the confidence regions.

X-ray observational strategy�

1) Small field of view (e.g. Swift XRT), requires fast-slew to search for the entire error box in $10^3 - 10^4$ s

Not easy

2) Large field of view with moderate sensitivity, rapid-slew to increase chance coincidence with GWB triggers

e.g. Einstein Probe, Lobster, ASTAR … 3.2.1. Case I: Triggering on a Network of Detectors

Observational strategy

Nissanke et al. 2011 $\frac{1}{\sqrt{2}}$ originaries the solid black lines denote the solid black lines denote the solid black lines denote the confidence regions.

Optical observational strategy�

 Large field of view, look for chance coincidence with GWB triggers; Follow-up observations if Xray triggers are made

Radio observational strategy�

No need of prompt follow up; All-sky radio survey important

If all the required observations can be made, how likely can we discover these early afterglows?

- We don't know
- Because we do not know the NS equation-of-state and total mass distribution of NS-NS systems, so that we do not know what fraction of NS-NS mergers will leave behind a stable magnetar rather than a black hole
- If a supra-massive millisecond magnetar forms, essentially every one would have a bright X-ray early afterglow
- The brightness of the multi-wavelength afterglow depends on viewing angle, ejecta mass, and medium density

Story I

- Imagine some time beyond 2020
- Advanced LIGO sends an alert to the EM community about a "chirp" GWB signal
- Einstein Probe / Lobster / ASTAR happens to cover the error box of advanced LIGO, but no bright X-ray emission is discovered
- The magnetar possibility is essentially ruled out. The upper limit of NS maximum mass constraints NS equation of state
- Deep searches of optical signal in the error box did not reveal a bright optical transient
- Deep searches of radio signal one year after the GWB trigger revealed a very faint object. It takes years to figure out whether it is a variable source, and hence, whether it is related to the NS-NS merger.

Story II

- Imagine some time beyond 2020
- Advanced LIGO sends an alert to the EM community about a "chirp" GWB signal
- Einstein Probe / Lobster / ASTAR happens to cover the error box of advanced LIGO, and a bright X-ray emission is discovered
- Optical and radio telescopes immediately slews to the error box provided by the X-ray detector, and discovers a bright afterglow
- Follow-up GW signal analysis reveals a phase of secular bar-mode instability signal of a hyper-massive neutron star
- From the duration of the X-ray plateau, the magnetar magnetic field is constrained.
- Combining GW analysis and afterglow analysis, one is able to derive many interesting physical parameters: the mass of the two parent NSs, ejecta mass, maximum mass of the survived NS, maximum mass of a non-spinning NS, equation-of-state of nuclear matter …

Look Early!

Both positive and negative detections are of great interest!

Only observations will make breakthrough!