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ABSTRACT
We study the excitation of non-axisymmetric modes in the post-merger phase of binary
compact object mergers and the associated gravitational wave emission. Our analysis is based
on general-relativistic simulations, in the spatial conformal flatness approximation, using
smoothed particle hydrodynamics for the evolution of matter, and we use a set of equal- and
unequal-mass models, described by two non-zero-temperature hadronic equations of state
and by one strange star equation of state. Through Fourier transforms of the evolution of
matter variables, we can identify a number of oscillation modes, as well as several non-linear
components (combination frequencies). We focus on the dominant m = 2 mode, which forms a
triplet with two non-linear components that are the result of coupling to the quasi-radial mode.
A corresponding triplet of frequencies is identified in the gravitational wave spectrum, when
the individual masses of the compact objects are in the most likely range of 1.2–1.35 M⊙. We
can thus associate, through direct analysis of the dynamics of the fluid, a specific frequency
peak in the gravitational wave spectrum with the non-linear component resulting from the
difference between the m = 2 mode and the quasi-radial mode. Once such observation becomes
available, both the m = 2 and quasi-radial mode frequencies could be extracted, allowing for
the application of gravitational wave asteroseismology to the post-merger remnant and leading
to tight constraints on the equation of state of high-density matter.
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– stars: neutron – stars: oscillation.

1 IN T RO D U C T I O N

Mergers of binary compact objects are prime sources for second-
and third-generation interferometric gravitational wave (GW) de-
tectors (Acernese et al. 2006; Abbott et al. 2009; Abadie et al.
2010). The expected GW signals from such events are estimated
through general-relativistic hydrodynamical simulations (see Duez
2010 for a review). The outcome of these simulations depends on
the binary parameters and on the equation of state (EOS) of high-
density matter. The latter is rather uncertain (Lattimer & Prakash
2007; Steiner, Lattimer & Brown 2010) and currently it is unclear
whether, for a given binary mass, the merger would lead to a hy-
permassive compact object or to prompt collapse to a black hole.
If a hypermassive compact object forms, it will not be axisym-
metric, but it will show transient non-axisymmetric deformations,
such as a bar-like shape, spiral arms, a double core structure and
quasi-radial and non-axisymmetric oscillations of the matter. Strong

⋆E-mail: niksterg@auth.gr

non-axisymmetric features should be distinguishable in the GW sig-
nal and could be used for characterizing the hypermassive compact
object (Zhuge, Centrella & McMillan 1994; Oechslin, Rosswog &
Thielemann 2002; Shibata & Uryū 2002; Shibata, Taniguchi & Uryū
2005; Shibata & Taniguchi 2006; Oechslin & Janka 2007; Baiotti,
Giacomazzo & Rezzolla 2008; Kiuchi et al. 2009; Bauswein,
Oechslin & Janka 2010a).

Here, we analyse the formed hypermassive compact object as
an isolated gravitating fluid, studying its oscillation modes. Fourier
transforms of the evolved variables reveal that the fluid is oscillating
in a number of modes that have discrete frequencies throughout the
star. Furthermore, we also identify several non-linear components,
sums and differences of discrete oscillation modes. The oscillations
identified in the fluid are in direct correspondence with peaks in
the GW spectrum, as obtained through the quadrupole formula.
We focus on the main quadrupole (m = 2) oscillation mode of the
fluid, which appears as a triplet, the side bands being due to the
non-linear coupling to the fundamental quasi-radial (m = 0) mode.
The lowest frequency side band, the difference between the m = 2
and 0 frequencies, coincides with a peak in the GW spectrum that
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We present a novel method for revealing the equation of state of high-density neutron star matter
through gravitational waves emitted during the postmerger phase of a binary neutron star system.
The method relies on a small number of detections of the peak frequency in the postmerger phase for
binaries of different (relatively low) masses, in the most likely range of expected detections. From
such observations, one can construct the derivative of the peak frequency versus the binary mass,
in this mass range. Through a detailed study of binary neutron star mergers for a large sample of
equations of state, we show that one can extrapolate the above information to the highest possible
mass (the threshold mass for black hole formation in a binary neutron star merger). In turn, this
allows for an empirical determination of the maximum mass of cold, nonrotating neutron stars to
within 0.1M⊙, while the corresponding radius is determined to within a few percent. Combining
this with the determination of the radius of cold, nonrotating neutron stars of 1.6 M⊙ (to within
a few percent, as was demonstrated in Bauswein et al., PRD, 86, 063001, 2012), allows for a clear
distinction of a particular candidate equation of state among a large set of other candidates. Our
method is particularly appealing because it reveals simultaneously the moderate and very high-
density parts of the equation of state, enabling the distinction of mass-radius relations even if
they are similar at typical neutron star masses. Furthermore, our method also allows to deduce
the maximum central energy density and maximum central rest-mass density of cold, nonrotating
neutron stars with an accuracy of a few per cent.

PACS numbers: 26.60.Kp,97.60.Jd,04.30.Db,95.85.Sz,04.25.dk,95.30.Lz

I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2]
gravitational-wave detectors are expected to observe be-
tween 0.4 and 400 mergers of binary neutron stars (NSs)
per year, when they start operating at their design sen-
sitivity [3].1 The Einstein Telescope design [5] promises
roughly 103 times higher detection rates. The merger of
NSs is a consequence of gravitational wave (GW) emis-
sion, which extracts energy and angular momentum from
the binary and thus forces the binary components on in-
spiraling trajectories. Events within a few tens of Mpc
are particulary interesting, because they bear the po-
tential to constrain the (still largely unknown) equation
of state (EoS) of neutron-star matter (see [6–10] for re-
views and e.g. [11, 12] for a discussion of the current
EoS and NS constraints). The properties of cold, high-
density matter are encoded in the stellar properties of
nonrotating NSs, since the EoS uniquely defines the stel-
lar structure via the Tolman-Oppenheimer-Volkoff equa-
tions [13, 14]. Since the dynamics of a merger is crucially
affected by the properties of NSs, the GW signal car-
ries information on the binary parameters and the EoS
(e.g. [15–35]).
For sufficiently nearby events, the chirp-like inspiral

GW signal reveals the total binary mass and the mass
ratio of the merging NSs (e.g. [36–41]). During the late

1 Similar rates are estimated for the upcoming KAGRA instru-
ment [4].

inspiral phase, deviations from the point-particle behav-
ior may be used to determine stellar properties of the in-
spiraling NSs (NS radii or the NS moment of inertia) with
some accuracy (e.g. [42–54]). As an additional method,
one may detect the dominant oscillations of the post-
merger remnant, which (unless there is prompt collapse
to a black hole (BH)) is a hot, massive, differentially
rotating NS (which is observationally the most likely
case) [15–34, 55–60]. The dominant peak in the grav-
itational wave spectrum of the postmerger phase orig-
inates from a fundamental quadrupolar (m = 2) fluid
oscillation mode (see [25] for an extraction of the mode
pattern, which confirms this description), which appears
as a pronounced peak in the GW spectrum, in the range
between 2− 3.5 kHz. Recently, it was found that for bi-
naries with a total mass of about 2.7M⊙ the frequency of
this peak determines the radius of a cold, nonrotating NS
with a mass of 1.6 M⊙ to within a few percent [29, 30] 2,
which was confirmed in [33] Even a single such detection
would thus tightly constrain the EoS in the density range
of 1.6 M⊙. Observations of more massive binaries would
provide estimates for the radii of more massive nonrotat-
ing NSs, since they probe a higher density regime [30].

The detection of binary NS mergers with masses larger
than 2.7 M⊙ is particularly interesting, because the de-
termination of the threshold binary mass to BH collapse
sets a tight constraint on the maximum mass of cold,

2 Note that the radii of NSs with masses somewhat different than
1.6 M⊙ are also obtained with good accuracy.
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The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent
numerical simulations with microphysical equation of state suggest the outcome of such events
depends on the mass of the neutron stars. For less massive systems, simulations favor the formation
of a hypermassive, quasi-stable neutron star, whose oscillations produce a short, high frequency
burst of gravitational radiation. Its dominant frequency content is tightly correlated with the radius
of the neutron star, and its measurement can be used to constrain the supranuclear equation of state.
In contrast, the merger of higher mass systems results in prompt gravitational collapse to a black
hole. We have developed an algorithm which combines waveform reconstruction from a morphology-
independent search for gravitational wave transients with Bayesian model selection, to discriminate
between post-merger scenarios and accurately measure the dominant oscillation frequency. We
demonstrate the efficacy of the method using a catalogue of simulated binary merger signals in
data from LIGO and Virgo, and we discuss the prospects for this analysis in advanced ground-based
gravitational wave detectors. From the waveforms considered in this work and assuming an optimally
oriented source, we find that the post-merger neutron star signal may be detectable by this technique
to ∼ 10–25Mpc. We also find that we successfully discriminate between the post-merger scenarios
with ∼ 95% accuracy and determine the dominant oscillation frequency of surviving post-merger
neutron stars to within ∼ 10Hz, averaged over all detected signals. This leads to an uncertainty in
the estimated radius of a non-rotating 1.6M⊙ reference neutron star of ∼ 100m.

PACS numbers: 04.80.Nn, 07.05.Kf, 97.60.Jd, 04.25.dk

I. INTRODUCTION

The inspiral and merger of binary neutron star systems
(BNS) is one of the most promising sources of gravita-
tional waves (GWs) for the second generation of ground-
based detectors, which include the US-based Advanced
Laser Interferometer Gravitational Wave Observatory
(aLIGO) [1], the French-Italian Advanced Virgo (AdV)
observatory [2, 3] and the Japanese Kamioka Gravita-
tional Wave Detector (KAGRA) observatory [4]. It is
expected that the aLIGO-AdV network will reach design
sensitivity in 2018-2020 [5], leading to the observation of
0.4–400 BNS coalescence events per year of operation [6],
where the range in values are set by uncertainties on the
BNS coalescence rate.

The internal composition and properties of matter at
supranuclear densities is currently poorly understood and
the equation of state (EoS) is not well constrained [7].
The GW signal from a BNS coalescence carries important
information on the EoS and offers and unprecedented
opportunity to probe the neutron star interior. As the
stars grow closer, increasing tidal interactions imprint a
distinctive EoS signature on the phase evolution of the
GW waveform [8–10]. These tidal effects on the inspiral
portion of the waveform may be detectable to distances
∼ 100Mpc in aLIGO, leading to the determination of NS
radii to an accuracy of about 1 km [11]. Complementary

and independent contraints on the EoS may be accessible
from the post-merger part of the coalescence signal.

The most likely post-merger scenario is the formation
of a massive (M > 2M⊙), differentially rotating neu-
tron star, hereafter referred to as the post-merger neutron
star (PMNS) [12–32]. The stability of the PMNS against
gravitational collapse depends on its mass. Less massive
systems result in a long-lived, stable PMNS. For more
massive systems, or where insufficient material has been
ejected during the merger, centrifugal and thermal effects
result in a quasi-stable remnant which eventually under-
goes gravitational collapse due to redistribution of energy
and angular momentum via viscous processes, radiation
of GWs and emission of neutrinos (“delayed collapse”).
Sufficiently high-mass systems will result in prompt col-
lapse to a black hole (BH), emitting a high-frequency
ring-down GW signal at ∼ 6–7kHz. The detection of
these stellar-mass black hole ringdowns will be very chal-
lenging in the next generation of ground based GW detec-
tors, due to their reduced sensitivity at high frequency;
we will not consider them further in this discussion. We
note that in [24] the authors suggest two subclasses of the
delayed collapse scenario characterized by the lifetime of
the post-merger remnant. In this work, however, we do
not distinguish between the cases of long- and short-lived
PMNS. Instead, we restrict our classification scheme to
the two cases: i) prompt collapse to a BH and ii) PMNS
formation. For simplicity, we will hereafter refer to (ii)



 

!      
!
                    

PART I: 
!

UNDERSTANDING POST-MERGER OSCILLATIONS



Outcome of Binary NS Mergers

 Most likely range of masses for binary system:     
!
!
    
!
 If EOS has nonrotating                   (as required by observations),      
 then a long-lived (τ >10ms) remnant is formed. 

! ! ! ! ! ! ! ! ! ! !                   (Hotokezaka et al., 2011)                                              
                     (Bauswein & Janka, 2012)  

2.7M sun<Mtot<2.8M sun

Mmax>2M sun

 The remnant is a hypermassive neutron star (HMNS), supported        
 by  differential rotation, with a mass larger than the maximum    
 mass  allowed for uniform rotation. 
!
!



Gravitational Waves

! Several peaks stand above the aLIGO/VIRGO or ET sensitivity             
 curves and are potentially detectable. Are these oscillations of the   
 HMNS?

inspiral

! The GW signal can be divided into three distinct phases:      
 inspiral, merger and post-merger ringdown.     
                                                               @40Mpc 
!!



Additional EOS Information in Post-Merger Signal

inspiral

 How can we interpret the triplet of frequencies above the ET     
 sensitivity curve?  
                                                                !!



Mergers of Compact Object Binaries

! Merger of equal/unequal mass binaries with LS, Shen, MIT60 EOS.     
 (3-D GR CFC/SPH code) Example: Shen EOS: 1.35Msun+1.35Msun     
!
!

NS, Bauswein, Zagkouris, Janka (2011)  

! Rotating bar shape + radial oscillation => transient double core     



GW Scaled Power Spectral Density

! Split the time-series into pre-merger and post-merger parts:    

! Triplet of frequencies:  f- , f2 , f+ originates in post-merger part.    

!    pre-merger    

post- 
merger



! Linear sums and differences of linear mode frequencies       

!
      

Nonlinear Combination Frequencies

Passamonti, NS & Nagar (2007)

! The amplitude of combination frequencies can become large, when     
 the linear modes have amplitude of O(1).



Equal mass: Lattimer-Swesty 1.35+1.35

Gravitational waves and oscillation modes 433

Figure 5. Same as Fig. 3, but for model LS 12135.

Especially for the low-mass model of 1.1 M⊙, the density profile is
roughly uniform. This causes the oscillation properties of the MIT60
models to differ considerably from those of the hadronic models.
The GW spectrum of the MIT60 1111 model is still qualitatively
similar to the previous hadronic models and one can still identify
a triplet of frequencies f −, f 2 and f +. However, in this case, the
frequency of the quasi-radial mode is higher than for the hadronic

Figure 6. Same as Fig. 3, but for model LS 135135.

models and, in fact, coincides with the frequency of the ‘2−0’
non-linear component. The latter differs, for this model only, from
the f − peak in the GW spectrum. It is possible that the f −, f 2 and
f + triplet is caused by the non-linear interaction of the f 2 mode
with a mode other than the quasi-radial mode or that these are
combination frequencies of higher order. Note also that, for this
model, the frequency of the m = 2 mode is twice the frequency

C⃝ 2011 The Authors, MNRAS 418, 427–436
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS



Unequal mass: Lattimer-Swesty 1.2+1.35

Gravitational waves and oscillation modes 433

Figure 5. Same as Fig. 3, but for model LS 12135.

Especially for the low-mass model of 1.1 M⊙, the density profile is
roughly uniform. This causes the oscillation properties of the MIT60
models to differ considerably from those of the hadronic models.
The GW spectrum of the MIT60 1111 model is still qualitatively
similar to the previous hadronic models and one can still identify
a triplet of frequencies f −, f 2 and f +. However, in this case, the
frequency of the quasi-radial mode is higher than for the hadronic

Figure 6. Same as Fig. 3, but for model LS 135135.

models and, in fact, coincides with the frequency of the ‘2−0’
non-linear component. The latter differs, for this model only, from
the f − peak in the GW spectrum. It is possible that the f −, f 2 and
f + triplet is caused by the non-linear interaction of the f 2 mode
with a mode other than the quasi-radial mode or that these are
combination frequencies of higher order. Note also that, for this
model, the frequency of the m = 2 mode is twice the frequency

C⃝ 2011 The Authors, MNRAS 418, 427–436
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS



Fourier extraction of axisymmetric mode eigenfunctions:

Spatial distribution of FFT magnitude at mode-frequency 
determines shape of eigenfunction (but change sign at nodal 
lines). 

(NS, Apostolatos, Font, 2004)

Eigenfunction Extraction



Eigenfunctions in Equatorial Plane

          m=0, 2, 4 (Shen 1.35Msun+1.35Msun)    m=1 (MIT60 1.2Msun+1.35Msun) 

! m=0    

! m=2    

! m=4    

! m=1    



Summary and Prospects

! !  
 A HMNS created in a binary neutron star merger oscillates in              
 several frequencies with initially high amplitude.  
!
 A triplet of frequencies f- , f2 , f+ is prominent and potentially               
 detectable. 
    
 Identification:     
!
  f2 : m=2 mode         
  f-  : (m=2) - (m=0) nonlinear combination frequency         
!
 In case of detection: determine both m=0 and m=2 frequencies     
!
 In progress: construct axisymmetric equilibrium model of HMNS          
 remnant and obtain linear oscillation modes. 



 

!      
!
                    

PART II: 
!

EXTRACTING EOS INFORMATION
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TABLE I: Equation of state models with references and resulting stellar properties. Mmax denotes the maximum mass of
nonrotating NSs with the cirumferential radius Rmax corresponding this maximum-mass configuration. emax and ρmax are the
central energy density and the central rest-mass density of the maximum-mass configuration. R1.6 refers to the circumferential
radius of a nonrotating 1.6 M⊙ NS. Mthres is the highest total binary mass which leads to differentially rotating NS merger
remnant for the given EoS. The dominant GW frequency of this postmerger remnant is f thres

peak . Hatted quantities are the
estimates for these merger properties and stellar parameters based on the extrapolation procedure described in the main text
(Sect. IV).

Mmax M̂max R1.6 R̂1.6 Mthres M̂thres f thres
peak f̂ thres

peak Rmax R̂max ec,max êc,max ρc,max ρ̂c,max

EoS (M⊙) (M⊙) (km) (km) (M⊙) (M⊙) (kHz) (kHz) (km) (km) (g/cm3) (g/cm3) (g/cm3) (g/cm3)

NL3 [70, 71] 2.79 2.68 14.81 14.72 3.8 3.73 2.77 2.87 13.40 12.78 1.52×1015 1.68 ×1015 1.09×1015 1.25×1015

LS375 [73] 2.71 2.69 13.76 13.86 3.6 3.57 3.04 2.93 12.32 12.62 1.78×1015 1.74 ×1015 1.25×1015 1.29×1015

DD2 [71, 74] 2.42 2.40 13.26 13.18 3.3 3.33 3.08 3.00 11.90 12.38 1.95×1015 1.83 ×1015 1.41×1015 1.35×1015

TM1 [68, 69] 2.21 2.28 14.36 14.34 3.4 3.45 2.93 2.96 12.57 12.49 1.80×1015 1.79 ×1015 1.36×1015 1.32×1015

SFHX [75] 2.13 2.19 11.98 12.07 3.0 3.05 3.52 3.43 10.77 11.06 2.39×1015 2.33 ×1015 1.74×1015 1.71×1015

GS2 [76] 2.09 2.07 13.38 13.35 3.2 3.17 3.22 3.24 11.81 11.64 2.05×1015 2.11 ×1015 1.56×1015 1.55×1015

SFHO [75] 2.06 1.97 11.77 11.76 2.9 2.88 3.71 3.68 10.31 10.29 2.67×1015 2.63 ×1015 1.91×1015 1.92×1015

LS220 [73] 2.04 1.98 12.52 12.47 3.0 2.99 3.55 3.52 10.65 10.80 2.55×1015 2.43 ×1015 1.86×1015 1.78×1015

TMA [69, 77] 2.02 2.12 13.73 13.89 3.2 3.27 2.98 3.08 12.12 12.14 1.92×1015 1.92 ×1015 1.48×1015 1.42×1015

IUF [71, 78] 1.95 2.05 12.57 12.50 3.0 3.04 3.36 3.44 11.32 11.03 2.19×1015 2.34 ×1015 1.67×1015 1.72×1015
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FIG. 7: Same as Fig. 6 for two EoSs with similar stellar prop-
erties in the intermediate mass range around 1.6 M⊙ where
the two mass-radius relations cross. using the extrapolation
procedure described in the main text (Sect. IV) the two EoSs
can clearly be distinguished.

with the stability line also provides an estimate for the
GW oscillation frequency at Mthres. This peak frequency
f thres
peak scales well with the radius Rmax of the maximum-
mass configuration of cold, nonrotating NSs (see left
panel of Fig. 3 in [32] and Fig. 8). (The relation can
be understood by noting that f thres

peak should scale approx-

imately with
√

Mthres/R3
max, where the variation in R3

max
dominates over the relatively small change in Mthres.) In
Fig. 8 we display the extrapolated fpeak (circles) and the

actual frequency obtained in the simulations (crosses) as
a function of Rmax for different EoSs. Using the linear
fit to the simulation data

Rmax = −3.065 · f thres
peak + 21.57 (±0.7), (4)

the extrapolated frequency determines the radius of the
maximum-mass configuration with an accuracy of typ-
ically 4% or better. Only for the NL3 EoS the esti-
mated Rmax deviates by 5%. The somewhat larger dif-
ference is understandable, considering that for NL3 the
extrapolation is performed over the largest distance be-
tween data measured at 2.7 M⊙ and at the intersection
at Mthres ≈ 3.8 M⊙). The results of the extrapolation
procedure are listed in Table I, together with the actual
values of Rmax. The estimated and actual radii of the
maximum-mass configuration are also shown in Fig. 5.
The shifts denoted in parentheses in Eq. (4) define curves
which lead to upper and lower limits for Rmax, when used
in the extrapolation procedure.

C. Estimating the maximum central density

For maximum-mass TOV solutions it is empirically
known and intuitive that the stiffness of an EoS, quan-
tified by the ratio ⟨e⟩max/ec,max between the mean den-
sity and the central density, roughly scales linearly with
the compactness Cmax = GMmax

c2Rmax
[12, 79] (see also Fig. 2

in [32]). Here, e refers to the energy density, which, how-
ever, is related to the rest-mass density through the EoS
and therefore, the following analysis yields analogous re-
sults when applied to the rest-mass density (see Table I).
Adopting ⟨e⟩max = 3

4π
Mmax

R3
max

implies that the central

density should scale roughly as 1/R2
max. Consequently,
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FIG. 4: Mass-radius relations for all EoSs with the gravita-
tional mass M in isolation and the areal radius R. The color
scheme is the same as in Fig. 2. The dashed lines denote
mass-radius relations for strange quark matter EoSs. The
horizontal line corresponds to the observed 1.97 M⊙ NS [10].
For EoSs where the merger of two stars with 1.35 M⊙ leads
to the prompt formation of a BH the maximum-mass configu-
ration is indicated by a cross. Maximum-mass configurations
depicted by a circle correspond to EoSs where in the simu-
lation of this binary setup the formation of a differentially
rotating object is found.

sponding radii, denoted as Rmax, spanning from 8.65 km
to 14.30 km (Fig. 4, Tab. I). There has not been any
special selection procedure for the EoSs, except that we
require a maximum mass larger than roughly 1.8 M⊙.
This being fulfilled we include every EoS that is available
to us. The lower bound of about 1.8 M⊙ is motivated
by the discovery of a NS with a gravitational mass of
(1.97 ± 0.04) M⊙ [10]. This measured mass is indicated
as horizontal line in Fig. 4. This detection practically
rules out some EoSs of our sample with Mmax below the
limit. We do not dismiss such excluded models because
they may still provide a viable model at lower densities
(see also Sect. VC). For instance, during the first 5 ms
after merging the central density in the merger remnant
described by the excluded LS180 EoS remains below the
central density of a nonrotating 1.5 M⊙ NS modeled by
this EoS. For such “low-mass” stars the mass-radius re-
lations of excluded EoSs are partially similar to those ob-
tained from EoSs compatible with the observation of [10].
Hence, in the corresponding density regimes relevant for
the low-mass stars and the merger remnant such EoSs
can still yield a viable description of high-density matter.
In addition to that, the inclusion of EoSs with relatively
low Mmax extends (maybe artificially) the range of varia-
tions of stellar parameters, and correlations between NS
properties and GW characteristics that hold over a wider
parameter range can be inferred easier. We note that all

of the four technical EoS categories cover a similar range
of stellar parameter values. Only the mass-radius rela-
tions of class (iv) lie in a more narrow band, which was
the main result of [45].
A common feature of most EoSs is a relatively small

variation of the NS radius between about 0.5 M⊙ and
about (Mmax − 0.5 M⊙). This suggests to use the radii
in this mass range as a characteristic feature of a given
EoS.
Finally, the MIT60 and MIT40 EoSs deserve a com-

ment. These models describe absolutely stable strange
quark matter within the MIT bag model [57, 58], i.e. a
deconfined quark phase with an energy per baryon lower
than the one of nucleonic matter (E/A =860 MeV for
MIT60 and E/A =844 MeV for MIT40). As a conse-
quence of the strange matter hypothesis [59, 60] under-
lying these two EoSs, the compact stars observed in the
universe, commonly referred to as NSs, would actually be
strange quark stars (consisting of strange quark matter).
This possibility has not yet been ruled out theoretically
or observationally (see e.g. [2, 3, 53] for details and for
observational consequences discriminating this scenario
from ordinary NS; see [37, 61] for the consequences of this
hypothetical state of matter in the context of compact bi-
nary mergers). As a striking difference to nucleonic NSs,
strange quark stars show an inverse mass-radius relation
typical of this class of objects because of the self-binding
of strange quark matter. The particular model MIT60
with Mmax = 1.88 M⊙ is excluded by the observation of
the two-solar-mass pulsar. The MIT40 EoS, however, is
compatible with present knowledge. For the MIT40 EoS
belonging to class (ii), we adopt Γth = 1.34.
Note that throughout this paper we use the more com-

mon term NS instead of compact star for all compact stel-
lar objects including strange quark stars. With “purely”
or “fully” microphysical EoSs we refer to models of class
(i) or (ii), which do not involve piecewise polytropes (see
Sect. II). Moreover, in this paper “accepted” EoSs de-
note models which are compatible with the detection of
the 1.97 M⊙ NSs taking into account the error bars of
the observation by [10].

IV. SIMULATIONS

A. Dynamics

According to pulsar observations [6, 7] and population
synthesis studies [11] binaries of two NSs with a gravita-
tional mass of about 1.35 M⊙ each are the most abun-
dant systems in the binary NS population. Therefore, we
choose a symmetric binary with M1 = M2 = 1.35 M⊙

and simulate for all EoSs discussed in Sect. III the late
inspiral phase, the merging, and the early postmerger
evolution of this system until an approximately station-
ary state has formed (10 to 20 ms after merging). The
inspiral is driven by the loss of angular momentum and
energy due to the GW emission and lasts between some
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! For 1.35+1.35 Msun the empirical relation is remarkably       
 accurate.     

             Bauswein, Janka, Hebeler & Schwenk (2012)  
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! For given 1.35+1.35 Msun:     
!
        f2 correlates with Rremnant         
    Rremnant is proportional to R1.6             
  => f2 correlates with R1.6        

             Bauswein, Janka, Hebeler & Schwenk (2012)  
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EoSs in different ranges of the peak frequency.

C. Interpretation

In a previous paper we presented arguments why the
dominant oscillation frequency of the differentially rotat-
ing merger remnant scales with the radius of a nonro-
tating NS whose mass is generally smaller than the one
of the remnant [40]. As has been shown in [80], the GW
emission at the peak frequency is generated by the funda-
mental quadrupolar oscillation mode. The frequency of
this mode is known to be proportional to the square root

of the mean density,
√

M
R3 with M and R being the mass

and the radius of the oscillating object (see [85, 86]). The
mass of the merger remnant is approximately given by
the total binary mass and therefore it is the same for all
models discussed in this section neglecting small amounts
of ejecta and differences in the inflated torus surrounding
the central object. Hence, the peak frequency is entirely
determined by the radius of the DRO. The radius of the
merger remnant cannot be defined unambiguously be-
cause one cannot identify a well defined surface of the
object (see e.g. Fig. 5 in [37]). Using arbitrarily the ra-
dius of a sphere enclosing 2.6 M⊙ of rest mass as the
radius of the DRO, Fig. 13 confirms the close relation
between fpeak and the so chosen radius of the merger
remnant Rremnant. Here, Rremnant is measured 8 ms after
merging when the oscillations of the DRO are sufficiently
damped (see Figs. 5 and 6). The radii of the merger rem-
nants for different EoSs are also provided in Tab. II. (The
data point in Fig. 13 with fpeak = 3.2 kHz, which is lo-
cated slightly below the relation (Rremnant = 8.53 km),
corresponds to the fully microphysical BurgioNN EoS,
where our somewhat arbitrary definition of Rremnant fails.
In particular the time, when Rremnant is determined, is
arbitrarily chosen. It should be sufficiently early to char-
acterize the GW emission, but not too early when the
DRO, and thus Rremnant, are still strongly oscillating,
which is the case for the BurgioNN model.)
To understand the correlations found in Figs. 9 to 12,

where the frequency showed a tight anticorrelation with
radii of static TOV configurations, we hypothesize that
for a given EoS the radius of the differentially rotating
merger remnant of about 2.6 M⊙ scales with the ra-
dius RTOV of a nonrotating NS for a chosen mass. This
hypothesis is confirmed when considering Rremnant as a
function of RTOV = R1.35, R1.6, R1.8, or Rmax, of which
the relation with R1.6 shows the smallest scatter. Ne-
glecting effects due to thermal contributions and differ-
ential rotation, a linear relation between Rmax and the
radius of the most massive, uniformly rotating NS con-
figuration was reported in [79]. Adopting therefore a
linear dependence between Rremnant and RTOV, one ex-

pects that fpeak is proportional to R−3/2
TOV . When fitting a

power law fpeak = a′ ·R−3/2
TOV to the data points of Figs. 9

to 12 similar residuals as listed in Tab. III are found,
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FIG. 13: Peak frequency of the postmerger GW emission ver-
sus the radius of a sphere enclosing 2.6 M⊙ of rest mass of
the merger remnant for all fully microphysical EoSs 8 ms after
merging. Symbols have the same meaning as in Fig. 9.
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FIG. 14: Peak frequency of the postmerger GW emission ver-

sus
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2.6

R

3
1.6

in geometrical units for different EoSs. Symbols

have the same meaning as in Fig. 9.

which implies that in fact there exists a tight relation be-
tween Rremnant and RTOV. Additionally, Fig. 14 shows

the peak frequency as a function of
√

2.6
R3

1.6
, a quantity

which according to the above reasoning is proportional
to the mean density of the merger remnant. This behav-
ior is confirmed by the linear scaling evident from Fig. 14,
which should be considered as an empirical finding of this
work.
The fact that the relation between fpeak and the radius

of a NS with 1.6M⊙ shows the best quality, can be under-
stood by investigating the involved density regimes. For
a given EoS the central density in the merger remnant
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FIG. 1: Dominant GW frequency fpeak of the postmerger
phase as a function of the total binary mass Mtot for all EoSs.
Different EoSs are distinguished by different solid lines. The
highest frequency f thres

peak for a given EoS is highlighted by a
thick cross. The dashed line approximates the dependence of
f thres
peak on the maximum binary mass Mthres which still pro-
duces an (at least transiently) stable merger remnant.

the binary mass Mthres (resulting in the most massive
NS remnant) and the corresponding GW oscillation fre-
quency f thres

peak . (The crosses in Fig. 1 are identical to the
right panel of Fig. 3 in [32]). For all EoSs the data points
(Mthres, f thres

peak ) form a “stability line” (thick dashed line
in Fig. 1) beyond which binary mergers lead to the di-
rect formation of a BH. Our definition of the threshold
mass Mthres is motivated by the observation that simula-
tions with Mthres yield (at least transiently) stable rem-
nants, whereas simulations with Mthres+0.1M⊙ result in
prompt BH formation. (Note that in [32] an intermediate
value of Mthres + 0.05 M⊙ was denoted as Mthres, which
only reflects the uncertainty in determining Mthres with
our current set of simulated binary masses.)
It has also been pointed out in [32] that the determi-

nation of Mthres and f thres
peak may yield important insights

into the maximum mass of nonrotating NSs and on the
radius of the maximum-mass configuration. As argued
in the introduction, Mthres might be difficult to deter-
mine directly, because the merger of binary systems with
masses near Mthres (which would be suitable for directly
probing the approach to collapse), is expected to be less
frequent, according to population synthesis studies and
observations (e.g. [12, 63]). Moreover, several detections
with different binary masses above and below the thresh-
old would be required to deduce Mthres with a certain
precision.
It is evident from Fig. 1 that (at least) two measure-
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FIG. 2: Dominant GW frequency f thres
peak of the most massive

NS merger remnant as a function of the corresponding total
binary mass Mthres for different EoSs (crosses). Circles of the
same color denote the estimated values for f thres

peak and Mthres

extrapolated entirely from GW information from low-mass NS
binary mergers.

ments of fpeak at slightly different masses yield the slope
dfpeak(Mtot)

dMtot
and can be used for an extrapolation along

the corresponding solid line. For a given EoS the ex-
trapolation yields the intersection with the stability line,
i.e. the line formed by the Mthres points for different
EoSs (dashed line). In particular, to determine the slope
dfpeak(Mtot)

dMtot
, detections in the mostly likely range of bi-

nary parameters with Mtot ∼ 2.7 M⊙ can be employed.
In Fig. 1 we notice that for all sequences of different EoSs
the slope (of the solid lines) becomes steeper towards the
(dashed) stability line at Mthres. Hence, a linear extrap-
olation in general will tend to overestimate Mthres and
underestimate the corresponding f thres

peak .
The increasing slope with the binary mass can be

understood because the dominant GW emission of
the postmerger phase is produced by the fundamen-
tal quadrupolar (m = 2) fluid mode [25], whose fre-
quency scales approximately with the mean density, i.e.
√

Mremnant/R3
remnant [29, 72]. For a given EoS, radii

of massive NSs decrease with mass, which explains the
steeper increase of fpeak at higher Mtot.
The main idea of this work is to introduce an extrap-

olation procedure, which employs GW detections of bi-
naries at masses of about 2.7M⊙, in order to estimate
the properties of mergers at higher masses. Through-
out this paper, crosses mark data which have been ob-
tained by numerical calculations and are considered to
be the “true” (actual) values for a given EoS. Circles are
used whenever a quantity is estimated by means of the

threshold to  
collapse
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It has also been pointed out in [32] that the determi-
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into the maximum mass of nonrotating NSs and on the
radius of the maximum-mass configuration. As argued
in the introduction, Mthres might be difficult to deter-
mine directly, because the merger of binary systems with
masses near Mthres (which would be suitable for directly
probing the approach to collapse), is expected to be less
frequent, according to population synthesis studies and
observations (e.g. [12, 63]). Moreover, several detections
with different binary masses above and below the thresh-
old would be required to deduce Mthres with a certain
precision.
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Prompt merger collapse and the maximum mass of neutron stars
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We perform hydrodynamical simulations of neutron-star mergers for a large sample of
temperature-dependent, nuclear equations of state, and determine the threshold mass above which
the merger remnant promptly collapses to form a black hole. We find that, depending on the equa-
tion of state, the threshold mass is larger than the maximum mass of a non-rotating star in isolation
by between 30 and 70 per cent. Our simulations also show that the ratio between the threshold mass
and maximum mass is tightly correlated with the compactness of the non-rotating maximum-mass
configuration. We speculate on how this relation can be used to derive constraints on neutron-star
properties from future observations.

PACS numbers: 04.30.Tv,26.60.Kp,97.60.Jd,04.40.Dg

Introduction: Merging neutron stars (NSs) are among
the most promising sources of gravitational radiation for
the new generation of gravitational wave (GW) interfer-
ometers. Detection rates for Advanced LIGO [1] and
Advanced Virgo [2] have been estimated to be between
0.4 and 400 events per year [3]. The merger may result
either in a black hole (BH) with a hot accretion torus,
or a massive, hot, differentially rotating NS. Compact bi-
nary mergers were also suggested as the central engines
of short gamma-ray bursts (GRBs) [4, 5]. Material that
becomes gravitationally unbound during the coalescence
may undergo rapid neutron-capture nucleosynthesis and
contribute to the galactic enrichment by heavy, neutron-
rich elements [5, 6]. The heat release by the radioactive
decay of the nucleosynthesis products may also power
electromagnetic counterparts [7–9], which are already be-
ing searched for [10, 11].

The dynamics and observable signatures of NS merger
depend on the binary masses M1,2 and the equation of
state (EoS) [12–25] (see also [26–28] for reviews). At nu-
clear densities, the EoS is not completely known (see,
e.g., [29]) but plays a crucial role in determining the
immediate outcome of coalescence. For sufficiently low-
mass binaries the merger results in a stable NS. For more
massive binaries the remnant will ultimately form a BH.
In the delayed collapse scenario, the two stars form a sin-
gle, differentially rotating merger remnant that is tem-
porarily supported against gravitational collapse by cen-
trifugal and thermal effects [30, 31]. Viscous processes,
radiation of GWs and emission of neutrinos redistribute
and reduce the remnant’s angular momentum and energy,
prompting a delayed collapse on a secular timescale. Al-
ternatively, the merger may lead to an immediate, prompt
collapse on a dynamical timescale. Such a collapse is
triggered for more massive binaries, whose total mass
Mtot = M1 +M2 cannot be stabilized. For a given EoS
one can thus define a threshold binary mass Mthres that
separates the two scenarios of prompt and delayed col-
lapse. The former occurs for Mtot > Mthres, while a

dynamically stable remnant is formed for Mtot < Mthres.
It is intuitive to assume that Mthres scales with the

maximum mass Mmax of isolated, nonrotating NSs [20],

Mthres = k ·Mmax. (1)

Here Mmax is determined by the EoS and can be found
by integrating the Tolman-Oppenheimer-Volkoff (TOV)
equations (equations of relativistic hydrostatic equilib-
rium) [32, 33]. The coefficient k also depends on the
EoS, or equivalently on NS properties [12–14, 20].
In this paper we adopt a large set of temperature-

dependent, nuclear EoSs in numerical simulations of bi-
nary neutron-star mergers to examine the dependence
of k on the EoS, and to establish a relation between
Mthres and Mmax. We focus on equal-mass binaries,
but also comment on asymmetric systems below. We
find that k is tightly correlated with the compactness
Cmax = (GMmax)/(c2Rmax) of the maximum-mass TOV
configuration (G is the gravitational constant and c the
speed of light). We provide a simple, analytical model
to motivate such a correlation, and discuss how our re-
sults can be used to constrain NS properties, in particu-
lar Mmax, from future observations. For a given EoS our
findings predict which binary systems undergo prompt or
delayed collapse upon merger with corresponding conse-
quences for the post-merger GW signal, the mass ejec-
tion during coalescence and the particular conditions
for launching a collimated outflow favorable for a GRB
(e.g. torus properties and baryon loading of the environ-
ment).
Method: We perform numerical simulations of NS

mergers to determine the EoS dependence of Mthres, us-
ing a 3D relativistic smoothed particle hydrodynamics
(SPH) code that employs the conformal flatness approx-
imation of Einstein’s field equations and includes a GW
backreaction scheme to account for energy and angular
momentum losses due to GW emission (see [15, 34, 35] for
details of the code). Our study considers 12 microphys-
ical, fully temperature-dependent EoSs with maximum
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FIG. 1: Coefficient k (eq. (1)) as a function of Cmax =
GMmax/(c2Rmax) (crosses) and C∗

1.6 = GMmax/(c2R1.6) (cir-
cles).

correlation (see Fig. 2, left panel, and Tab. I; R1.6 is
very similar to R1.4). However, using the numerical data
of [20] and expressing k as a function of C∗

1.6 or Cmax

rather than R1.4, we found a tight correlation, as for our
results. Therefore, we suspect that the approximate scal-
ing with R1.4 suggested in [20] is a selection effect due to
the limited number of EoSs used therein [64].

The compactness Cmax is a measure of the EoS’s stiff-
ness at high densities (Fig. 2, right panel; see also [29,
55]), where we characterize the stiffness by the ratio of
the mean density, ⟨ρ⟩ = 3Mmax/(4πR3

max), to the cen-
tral density ρc (i.e. the inverse central condensation).
A tight correlation between k and Cmax thus implies
that k depends predominantly on the stiffness of the
EoS. This dependence can be motivated qualitatively
with the help of a simple Newtonian model. As sug-
gested in [56], a rough estimate of the fractional increase
in the maximum mass, δM/Mmax, is given by 3T/|W |,
so that k ≈ 1 + 3T/|W |. Here T is the rotational ki-
netic energy and W the potential energy. We compute
T = J2/(2I), where I is the remnant’s moment of inertia,
from the angular momentum J that the binary carries
at the instant of merging. Approximating the merging
of an equal-mass binary in circular orbit to occur when
the binary separation is twice the radius of each individ-
ual (spherical) star, R⋆, and assuming that the progen-
itors’ masses are concentrated at their centers, we find
J2 ≈ GM3

totR⋆/8. Neglecting mass loss as well as devi-
ations from spherical symmetry, and assuming that the
merger remnant forms a polytrope with polytropic index
n, we have W = −3G/(5 − n)M2

tot/R, where R is the
radius of the remnant, and I = 2κnMtotR2/5. Here the
coefficients κn depend on n only and are tabulated in
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[57]. The EoS’s stiffness as well as κn increases with de-
creasing n. Using the polytropic mass-radius relationship
for the merging NSs and merger remnant we also have
R⋆/R = 2(n−1)/(3−n). Collecting terms we now obtain
k ≈ 1+5(5−n) 2(n−1)/(3−n)/(32κn). While this crude ap-
proximation overestimates the deviation of k from unity
by about a factor of two, it correctly predicts two im-
portant qualitative features of our numerical results: It
suggests that k depends predominantly on the EoS’s stiff-
ness (since for Newtonian polytropes the stiffness ⟨ρ⟩/ρc
depends on n only), and it shows that k decreases with
increasing stiffness (which can be seen by inserting values
for n and κn). Loosely speaking, a binary with a stiffer
EoS (i.e. a larger ⟨ρ⟩/ρc) has less angular momentum
when merging and its remnant has a larger moment of in-
ertia. These effects combine to decrease T/|W |, thereby
decreasing k.

For the EoSs in our sample we also observe a tight
correlation between Rmax and R1.6, which implies a close
relation between Cmax and C∗

1.6.

Observational constraints on the maximum NS mass:
The findings of this study may help to place limits on
the maximum mass Mmax of NSs in the case that future
observations, e.g. GW detections, provide an estimate of
Mthres (cf. [12]). We assume that delayed and prompt col-
lapse can be distinguished from the presence or absence
of GW emission in the 2-4 kHz range produced by the
oscillations of the merger remnant, and that the binary
mass of the merger can be inferred from the preceeding
GW inspiral signal, which thus sets a bound on Mthres.
Depending on the nature of available observations, this
information could be used in different ways. In the fol-
lowing we discuss three speculative possibilities.

We first assume that a number of detections of NS
mergers have been made, and that observations of both
prompt and delayed collapses bracket Mthres to a certain
accuracy. If R1.6 is independently known to some accu-
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Introduction: Merging neutron stars (NSs) are among
the most promising sources of gravitational radiation for
the new generation of gravitational wave (GW) interfer-
ometers. Detection rates for Advanced LIGO [1] and
Advanced Virgo [2] have been estimated to be between
0.4 and 400 events per year [3]. The merger may result
either in a black hole (BH) with a hot accretion torus,
or a massive, hot, differentially rotating NS. Compact bi-
nary mergers were also suggested as the central engines
of short gamma-ray bursts (GRBs) [4, 5]. Material that
becomes gravitationally unbound during the coalescence
may undergo rapid neutron-capture nucleosynthesis and
contribute to the galactic enrichment by heavy, neutron-
rich elements [5, 6]. The heat release by the radioactive
decay of the nucleosynthesis products may also power
electromagnetic counterparts [7–9], which are already be-
ing searched for [10, 11].

The dynamics and observable signatures of NS merger
depend on the binary masses M1,2 and the equation of
state (EoS) [12–25] (see also [26–28] for reviews). At nu-
clear densities, the EoS is not completely known (see,
e.g., [29]) but plays a crucial role in determining the
immediate outcome of coalescence. For sufficiently low-
mass binaries the merger results in a stable NS. For more
massive binaries the remnant will ultimately form a BH.
In the delayed collapse scenario, the two stars form a sin-
gle, differentially rotating merger remnant that is tem-
porarily supported against gravitational collapse by cen-
trifugal and thermal effects [30, 31]. Viscous processes,
radiation of GWs and emission of neutrinos redistribute
and reduce the remnant’s angular momentum and energy,
prompting a delayed collapse on a secular timescale. Al-
ternatively, the merger may lead to an immediate, prompt
collapse on a dynamical timescale. Such a collapse is
triggered for more massive binaries, whose total mass
Mtot = M1 +M2 cannot be stabilized. For a given EoS
one can thus define a threshold binary mass Mthres that
separates the two scenarios of prompt and delayed col-
lapse. The former occurs for Mtot > Mthres, while a

dynamically stable remnant is formed for Mtot < Mthres.
It is intuitive to assume that Mthres scales with the

maximum mass Mmax of isolated, nonrotating NSs [20],

Mthres = k ·Mmax. (1)

Here Mmax is determined by the EoS and can be found
by integrating the Tolman-Oppenheimer-Volkoff (TOV)
equations (equations of relativistic hydrostatic equilib-
rium) [32, 33]. The coefficient k also depends on the
EoS, or equivalently on NS properties [12–14, 20].
In this paper we adopt a large set of temperature-

dependent, nuclear EoSs in numerical simulations of bi-
nary neutron-star mergers to examine the dependence
of k on the EoS, and to establish a relation between
Mthres and Mmax. We focus on equal-mass binaries,
but also comment on asymmetric systems below. We
find that k is tightly correlated with the compactness
Cmax = (GMmax)/(c2Rmax) of the maximum-mass TOV
configuration (G is the gravitational constant and c the
speed of light). We provide a simple, analytical model
to motivate such a correlation, and discuss how our re-
sults can be used to constrain NS properties, in particu-
lar Mmax, from future observations. For a given EoS our
findings predict which binary systems undergo prompt or
delayed collapse upon merger with corresponding conse-
quences for the post-merger GW signal, the mass ejec-
tion during coalescence and the particular conditions
for launching a collimated outflow favorable for a GRB
(e.g. torus properties and baryon loading of the environ-
ment).
Method: We perform numerical simulations of NS

mergers to determine the EoS dependence of Mthres, us-
ing a 3D relativistic smoothed particle hydrodynamics
(SPH) code that employs the conformal flatness approx-
imation of Einstein’s field equations and includes a GW
backreaction scheme to account for energy and angular
momentum losses due to GW emission (see [15, 34, 35] for
details of the code). Our study considers 12 microphys-
ical, fully temperature-dependent EoSs with maximum
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Introduction: Merging neutron stars (NSs) are among
the most promising sources of gravitational radiation for
the new generation of gravitational wave (GW) interfer-
ometers. Detection rates for Advanced LIGO [1] and
Advanced Virgo [2] have been estimated to be between
0.4 and 400 events per year [3]. The merger may result
either in a black hole (BH) with a hot accretion torus,
or a massive, hot, differentially rotating NS. Compact bi-
nary mergers were also suggested as the central engines
of short gamma-ray bursts (GRBs) [4, 5]. Material that
becomes gravitationally unbound during the coalescence
may undergo rapid neutron-capture nucleosynthesis and
contribute to the galactic enrichment by heavy, neutron-
rich elements [5, 6]. The heat release by the radioactive
decay of the nucleosynthesis products may also power
electromagnetic counterparts [7–9], which are already be-
ing searched for [10, 11].

The dynamics and observable signatures of NS merger
depend on the binary masses M1,2 and the equation of
state (EoS) [12–25] (see also [26–28] for reviews). At nu-
clear densities, the EoS is not completely known (see,
e.g., [29]) but plays a crucial role in determining the
immediate outcome of coalescence. For sufficiently low-
mass binaries the merger results in a stable NS. For more
massive binaries the remnant will ultimately form a BH.
In the delayed collapse scenario, the two stars form a sin-
gle, differentially rotating merger remnant that is tem-
porarily supported against gravitational collapse by cen-
trifugal and thermal effects [30, 31]. Viscous processes,
radiation of GWs and emission of neutrinos redistribute
and reduce the remnant’s angular momentum and energy,
prompting a delayed collapse on a secular timescale. Al-
ternatively, the merger may lead to an immediate, prompt
collapse on a dynamical timescale. Such a collapse is
triggered for more massive binaries, whose total mass
Mtot = M1 +M2 cannot be stabilized. For a given EoS
one can thus define a threshold binary mass Mthres that
separates the two scenarios of prompt and delayed col-
lapse. The former occurs for Mtot > Mthres, while a

dynamically stable remnant is formed for Mtot < Mthres.
It is intuitive to assume that Mthres scales with the

maximum mass Mmax of isolated, nonrotating NSs [20],

Mthres = k ·Mmax. (1)

Here Mmax is determined by the EoS and can be found
by integrating the Tolman-Oppenheimer-Volkoff (TOV)
equations (equations of relativistic hydrostatic equilib-
rium) [32, 33]. The coefficient k also depends on the
EoS, or equivalently on NS properties [12–14, 20].
In this paper we adopt a large set of temperature-

dependent, nuclear EoSs in numerical simulations of bi-
nary neutron-star mergers to examine the dependence
of k on the EoS, and to establish a relation between
Mthres and Mmax. We focus on equal-mass binaries,
but also comment on asymmetric systems below. We
find that k is tightly correlated with the compactness
Cmax = (GMmax)/(c2Rmax) of the maximum-mass TOV
configuration (G is the gravitational constant and c the
speed of light). We provide a simple, analytical model
to motivate such a correlation, and discuss how our re-
sults can be used to constrain NS properties, in particu-
lar Mmax, from future observations. For a given EoS our
findings predict which binary systems undergo prompt or
delayed collapse upon merger with corresponding conse-
quences for the post-merger GW signal, the mass ejec-
tion during coalescence and the particular conditions
for launching a collimated outflow favorable for a GRB
(e.g. torus properties and baryon loading of the environ-
ment).
Method: We perform numerical simulations of NS

mergers to determine the EoS dependence of Mthres, us-
ing a 3D relativistic smoothed particle hydrodynamics
(SPH) code that employs the conformal flatness approx-
imation of Einstein’s field equations and includes a GW
backreaction scheme to account for energy and angular
momentum losses due to GW emission (see [15, 34, 35] for
details of the code). Our study considers 12 microphys-
ical, fully temperature-dependent EoSs with maximum
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FIG. 1: Coefficient k (eq. (1)) as a function of Cmax =
GMmax/(c2Rmax) (crosses) and C∗

1.6 = GMmax/(c2R1.6) (cir-
cles).

correlation (see Fig. 2, left panel, and Tab. I; R1.6 is
very similar to R1.4). However, using the numerical data
of [20] and expressing k as a function of C∗

1.6 or Cmax

rather than R1.4, we found a tight correlation, as for our
results. Therefore, we suspect that the approximate scal-
ing with R1.4 suggested in [20] is a selection effect due to
the limited number of EoSs used therein [64].

The compactness Cmax is a measure of the EoS’s stiff-
ness at high densities (Fig. 2, right panel; see also [29,
55]), where we characterize the stiffness by the ratio of
the mean density, ⟨ρ⟩ = 3Mmax/(4πR3

max), to the cen-
tral density ρc (i.e. the inverse central condensation).
A tight correlation between k and Cmax thus implies
that k depends predominantly on the stiffness of the
EoS. This dependence can be motivated qualitatively
with the help of a simple Newtonian model. As sug-
gested in [56], a rough estimate of the fractional increase
in the maximum mass, δM/Mmax, is given by 3T/|W |,
so that k ≈ 1 + 3T/|W |. Here T is the rotational ki-
netic energy and W the potential energy. We compute
T = J2/(2I), where I is the remnant’s moment of inertia,
from the angular momentum J that the binary carries
at the instant of merging. Approximating the merging
of an equal-mass binary in circular orbit to occur when
the binary separation is twice the radius of each individ-
ual (spherical) star, R⋆, and assuming that the progen-
itors’ masses are concentrated at their centers, we find
J2 ≈ GM3

totR⋆/8. Neglecting mass loss as well as devi-
ations from spherical symmetry, and assuming that the
merger remnant forms a polytrope with polytropic index
n, we have W = −3G/(5 − n)M2

tot/R, where R is the
radius of the remnant, and I = 2κnMtotR2/5. Here the
coefficients κn depend on n only and are tabulated in
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FIG. 2: Left panel: Coefficient k (eq. (1)) versus radius R1.6 of
a 1.6 M⊙ NSs. Right panel: Compactness Cmax as a function
of the EoS’s stiffness expressed by the ratio of the average
density ⟨ρ⟩ = 3Mmax/(4πR

3
max) and central energy density

ρc.

[57]. The EoS’s stiffness as well as κn increases with de-
creasing n. Using the polytropic mass-radius relationship
for the merging NSs and merger remnant we also have
R⋆/R = 2(n−1)/(3−n). Collecting terms we now obtain
k ≈ 1+5(5−n) 2(n−1)/(3−n)/(32κn). While this crude ap-
proximation overestimates the deviation of k from unity
by about a factor of two, it correctly predicts two im-
portant qualitative features of our numerical results: It
suggests that k depends predominantly on the EoS’s stiff-
ness (since for Newtonian polytropes the stiffness ⟨ρ⟩/ρc
depends on n only), and it shows that k decreases with
increasing stiffness (which can be seen by inserting values
for n and κn). Loosely speaking, a binary with a stiffer
EoS (i.e. a larger ⟨ρ⟩/ρc) has less angular momentum
when merging and its remnant has a larger moment of in-
ertia. These effects combine to decrease T/|W |, thereby
decreasing k.

For the EoSs in our sample we also observe a tight
correlation between Rmax and R1.6, which implies a close
relation between Cmax and C∗

1.6.

Observational constraints on the maximum NS mass:
The findings of this study may help to place limits on
the maximum mass Mmax of NSs in the case that future
observations, e.g. GW detections, provide an estimate of
Mthres (cf. [12]). We assume that delayed and prompt col-
lapse can be distinguished from the presence or absence
of GW emission in the 2-4 kHz range produced by the
oscillations of the merger remnant, and that the binary
mass of the merger can be inferred from the preceeding
GW inspiral signal, which thus sets a bound on Mthres.
Depending on the nature of available observations, this
information could be used in different ways. In the fol-
lowing we discuss three speculative possibilities.

We first assume that a number of detections of NS
mergers have been made, and that observations of both
prompt and delayed collapses bracket Mthres to a certain
accuracy. If R1.6 is independently known to some accu-

2

masses in the range of 1.95 to 2.79 M⊙, which is compat-
ible with the observation of a 1.97± 0.04 M⊙ pulsar [36]
(see Tab. I). With the exception of the IUF EoS, these
EoSs are also consistent with the detection of a NS with
a mass of 2.01 ± 0.04 M⊙ [37]. The radii Rmax of the
maximum-mass configurations vary between 10.32 and
13.43 km (see also [23] for the mass-radius relations of
most EoSs considered here). The EoSs are chosen with-
out any selection procedure and cover approximately the
full range of high-density models regarding their stellar
properties. As initial conditions we set up cold NSs in
neutrinoless beta-equilibrium on a quasi-equilibrium or-
bit a few revolutions before merging. We assume irro-
tational stars since tidal locking is unlikely [38, 39] and
the orbital period is short compared to possible stellar
rotation. Unless stated otherwise we use a resolution of
about 340,000 SPH particles.
For each EoS we determine Mthres by performing sim-

ulations of binaries with different values of Mtot, which
is defined as the binary’s total gravitational mass at in-
finitely large binary separation. We focus on equal-mass
binaries here and increase Mtot in increments of 0.1 M⊙.
We identify Mstab with the mass of the most massive
binary in our sample with dynamically stable remnant,
i.e. the most massive system that results in a delayed col-
lapse. We similarly identify Munstab with the mass of the
least massive binary whose merger triggers prompt col-
lapse. We then estimate Mthres = (Mstab +Munstab)/2±
0.05M⊙.
Since thermal pressure has an important effect on the

collapse behavior (see, e.g., [31, 35]), we have only con-
sidered fully temperature-dependent EoSs in this study.
Many other simulations instead supplement a barotropic,
zero-temperature EoS with a thermal ideal-gas com-
ponent in order to approximate finite-temperature ef-
fects [12–14, 19, 20, 23, 26, 35]. We have found that
in such a “hybrid” treatment the threshold mass Mthres

depends strongly on the ideal-gas index Γth. Since Γth

is neither unambiguously defined nor constant [35], fully
temperature-dependent EoSs will provide more reliable
values for Mthres than a hybrid treatment.
In order to calibrate the error introduced by the con-

formal flatness approximation we reproduced the fully
relativistic simulations of [20] and found the same col-
lapse behavior in all but one case, for which we obtained
a small shift in Mthres [62]. We conclude that the effects
of the conformal flatness approximation on our results
are small. Finally, we verified that our resolution with
SPH particles is sufficient by reproducing our findings
for the DD2 EoS with both 731,000 and 1,202,000 SPH
particles.
Results: The EoS dependence of Mthres and k can be

expressed by the stellar parameters of nonrotating NSs,
which are uniquely determined by the EoS and thus char-
acterize a given EoS. Our survey reveals that k scales very
well with the compactness Cmax = (GMmax)/(c2Rmax)

TABLE I: Sample of termperature-dependent, nuclear EoSs
used in this study. Here Mmax, Rmax, Cmax, and ρc are
the gravitational mass, areal radius, compactness, and cen-
tral energy density of the maximum-mass TOV configura-
tions. We list ρc in units of the nuclear saturation density
ρ0 = 2.7 × 1014 g/cm3. R1.6 is the areal radius of 1.6 M⊙

NSs. Mthres denotes the total binary mass that separates
prompt from delayed collapse (see text). f stab

peak is the domi-
nant GW frequency in the post-merger phase of the binary
with Mtot = Mstab, the most massive binary configuration of
our sample that does not collapse promptly.

EoS Mmax Rmax Cmax R1.6 Mthres ρc/ρ0 f stab
peak

[M⊙] [km] [km] [M⊙] [kHz]

NL3 [40, 41] 2.79 13.43 0.307 14.81 3.85 5.6 2.78

GS1 [42] 2.75 13.27 0.306 14.79 3.85 5.7 2.81

LS375 [43] 2.71 12.34 0.325 13.71 3.65 6.5 3.05

DD2 [41, 44] 2.42 11.90 0.300 13.26 3.35 7.2 3.06

Shen [45] 2.22 13.12 0.250 14.46 3.45 6.7 2.85

TM1 [46, 47] 2.21 12.57 0.260 14.36 3.45 6.7 2.91

SFHX [48] 2.13 10.76 0.292 11.98 3.05 8.9 3.52

GS2 [49] 2.09 11.78 0.262 13.31 3.25 7.6 3.19

SFHO [48] 2.06 10.32 0.294 11.76 2.95 9.8 3.67

LS220 [43] 2.04 10.62 0.284 12.43 3.05 9.4 3.52

TMA [47, 50] 2.02 12.09 0.247 13.73 3.25 7.2 2.96

IUF [41, 51] 1.95 11.31 0.255 12.57 3.05 8.1 3.31

of the maximum-mass configuration of nonrotating NSs
(Fig. 1). We find a similarly tight relation when k is ex-
pressed as a function of C∗

1.6 = (GMmax)/(c2R1.6), where
R1.6 is the radius of a 1.6 M⊙ NS (see Fig. 1). Since R1.6

may be more accessible than Rmax, both by future obser-
vations [23, 29, 52, 53] and theoretical considerations [54],
C∗

1.6 might be a more useful quantity than Cmax.
As can be seen in Fig. 1, k is a nearly linear function

of C∗
1.6 in the regime of interest. The maximum residual

from the linear fit k = j · C∗
1.6 + a with j = −3.359 and

a = 2.315 is only 0.026 [63]. By fixing R1.6 or Rmax (see
also the discussion of Fig. 3), Mthres becomes a quadratic
function of Mmax only. Considering the maximum devi-
ation of k from the fit implies that Mthres can be con-
verted to Mmax with a precision of a few per cent for a
fixed R1.6. An uncertainty of, for instance, 0.5 km in R1.6

would add another ∼ 5 per cent error. The actual error
may be smaller because the deviation of k from the fit
includes the intrinstic scatter among different EoSs but
also an artificial contribution from the finite sampling of
Mtot values.
We compared our findings with those of [20], where

six barotropic EoSs with a hybrid treatment of finite-
temperature effects were adopted and an approximate
relation between k and the radius R1.4 of a 1.4 M⊙ NS
was suggested. Testing this relationship with our ex-
tended set of temperature-dependent EoSs results in a
distribution with rather wide scattering instead of a tight
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FIG. 8: Dominant GW frequency f thres
peak of the most mas-

sive NS merger remnant as a function of the radius Rmax

of the maximum-mass configuration of cold, nonrotating NSs
for different EoSs (crosses). The diagonal solid line is a fit to
Rmax(f

thres
peak ). Circles denote the estimated values for f thres

peak ,
estimated entirely from GW information from low-mass NS
binary mergers. The estimated values for Rmax can be in-
ferred by projecting horizontally, i.e. following the short lines
to the diagonal line representing the fit to the numerical data
(crosses).

it is possible to employ our extrapolation method to esti-
mate the maximum central density of NSs and to estab-
lish lower and upper limits. The linear relation in Fig. 8
suggests a relation between ec,max and f thres

peak , which is

shown in Fig. 9. In addition, Fig. 9 provides f thres
peak , es-

timated with the extrapolation of GW data measured in
low-mass NS binary mergers. Again, we employ a lin-
ear fit to the (actual) simulation data (crosses) and con-
vert the extrapolated values for f thres

peak to an estimate for
ec,max. The function fitting the data is given by

ec,max = 1.166 · f thres
peak − 1.668 (±0.2). (5)

Here, ec,max is given in 1015g/cm3, while frequencies are
measured in kHz.
In Table I, the estimated central energy densities are

compared with the actual ones. The estimated values and
the actual values agree within 7% (except for the NL3
Eos, which deviates by 11%). By using fit formulae that
embrace the numerical data (shifting the fit in Eq. (5) by
±0.2 kHz) one can define upper and lower limits for the
given set of EoSs.
Similarly, estimates for the central rest-mass density

can be obtained by the fit

ρc,max = 0.828 · f thres
peak − 1.130 (±0.1) (6)
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FIG. 9: Dominant GW frequency f thres
peak of the most massive

NS merger remnant as a function of the maximum central
energy density ec,max of the maximum-mass configuration of
nonrotating NSs for different EoSs (crosses). The diagonal
solid line is a fit to ec,max(f

thres
peak ). Circles denote the estimated

values for f thres
peak , extrapolated entirely from GW information

from low-mass NS binary mergers. The estimated values for
ec,max can be inferred by projecting horizontally, i.e. following
the short lines to the diagonal line representing the fit to the
numerical data (crosses).

with the same units for quantities as in Eq. (5). The fit is
based on the data shown in Fig. 10. The maximum devi-
ation of the estimated central rest-mass density from its
actual value is below 5% (expect for the NL3 EoS, which
shows a deviation of 14%) (see Table I). In parenthe-
ses, we provide the modifications to Eq. (6) for obtaining
upper and lower limits on the central rest-mass density,
using the extrapolation method.
It is important to note that the relation between f thres

peak
and Mthres means that Rmax or the maximum central
density also relate to Mthres. This is illustrated in Fig. 11
for the rest-mass density (the corresponding plot for the
energy density is very similar). The relation implies that
not only Rmax but also ρc,max can be estimated or con-
strained from any determination or limit on Mthres. This
is important, because a bound on the threshold mass
may be deduced from any observational identification of
a prompt collapse event for high-mass binaries. Also, any
identification of a delayed collapse immediately implies a
corresponding lower limit on the threshold mass. Ob-
servationally, such cases might be distinguished by their
electromagnetic counterparts [80, 81], which are expected
to be much weaker in cases of prompt collapse to BH [82].
The involved binary masses, which will set the limit on
the threshold mass, can be inferred from the GW inspiral
signal.

! At Mtot ~ 2.7 Msun    
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FIG. 6: Mass-radius relations for the EoSs considered in this study with the radius R and the gravitational mass M . Boxes
illustrate the maximum deviation of the estimated properties of the maximum-mass configuration, which are inferred from GW
detections of low-mass binary NS mergers. The size of the boxes is chosen to be the largest deviation found in the sample of
EoSs with low maximum masses (Mmax < 2.2 M⊙) and the sample of EoSs with high maximum masses (Mmax > 2.2 M⊙).
Bars at 1.6 M⊙ indicate the maximum deviation of the estimated radius inferred from a single GW detection of a low-mass
binary NS merger. The size of the bars is chosen to be the largest deviation from the actual value found in the whole sample of
EoSs.

tions [61, 62]. The remaining EoSs of the upper branch
appear to have smaller deviations, which can be under-
stood because the stability line is steeper and closer to
the measured data at Mtot = 2.7 M⊙.
Moreover, in Fig. 6 we use horizontal error bars to indi-

cate the deviations of the R1.6 estimate via fpeak(Mtot =
2.7 M⊙) when employing Eq. (3). A powerful feature of
our method is that it allows to distinguish (by estimat-
ing the maximum mass model) two EoSs that cross at
around 1.6 M⊙. This is demonstrated clearly in Fig. 7,
where the two EoSs LS375 and TMA have very similar
radii of about 13.8 km at 1.6 M⊙ (and thus an individual
radius estimate, based on only Eq. (3) would be degen-
erate with respect to the underlying EoS). In contrast,
having also the estimate on the mass and radius of the
maximum mass model (based on the novel extrapolation
procedure described above) clearly distinguishes the two
EoSs. More examples of this type can be identified in
Fig. 6.

Note that the extrapolation proposed here is also useful
to identify lower and upper limits on the maximum mass
of cold, nonrotating NS. The data points forming the
stability line in Fig. 1 can be embraced by displacing
Eq. (1) downwards by 0.2 kHz, to obtain a lower limit
and by adding 0.2 kHz to obtain an upper limit consistent
with our current sample of models.

B. Estimating the radius of the maximum-mass
configuration

As mentioned already in the previous sections, Mthres

or f thres
peak determine also other stellar properties of

NSs [32] and we proceed by discussing further insights
that can be obtained, by applying our extrapolation
method of GW information obtained from low-mass bi-
nary NS mergers. The intersection of the curves in Fig. 1
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TABLE I: Equation of state models with references and resulting stellar properties. Mmax denotes the maximum mass of
nonrotating NSs with the cirumferential radius Rmax corresponding this maximum-mass configuration. emax and ρmax are the
central energy density and the central rest-mass density of the maximum-mass configuration. R1.6 refers to the circumferential
radius of a nonrotating 1.6 M⊙ NS. Mthres is the highest total binary mass which leads to differentially rotating NS merger
remnant for the given EoS. The dominant GW frequency of this postmerger remnant is f thres

peak . Hatted quantities are the
estimates for these merger properties and stellar parameters based on the extrapolation procedure described in the main text
(Sect. IV).

Mmax M̂max R1.6 R̂1.6 Mthres M̂thres f thres
peak f̂ thres

peak Rmax R̂max ec,max êc,max ρc,max ρ̂c,max

EoS (M⊙) (M⊙) (km) (km) (M⊙) (M⊙) (kHz) (kHz) (km) (km) (g/cm3) (g/cm3) (g/cm3) (g/cm3)

NL3 [70, 71] 2.79 2.68 14.81 14.72 3.8 3.73 2.77 2.87 13.40 12.78 1.52×1015 1.68 ×1015 1.09×1015 1.25×1015

LS375 [73] 2.71 2.69 13.76 13.86 3.6 3.57 3.04 2.93 12.32 12.62 1.78×1015 1.74 ×1015 1.25×1015 1.29×1015

DD2 [71, 74] 2.42 2.40 13.26 13.18 3.3 3.33 3.08 3.00 11.90 12.38 1.95×1015 1.83 ×1015 1.41×1015 1.35×1015

TM1 [68, 69] 2.21 2.28 14.36 14.34 3.4 3.45 2.93 2.96 12.57 12.49 1.80×1015 1.79 ×1015 1.36×1015 1.32×1015

SFHX [75] 2.13 2.19 11.98 12.07 3.0 3.05 3.52 3.43 10.77 11.06 2.39×1015 2.33 ×1015 1.74×1015 1.71×1015

GS2 [76] 2.09 2.07 13.38 13.35 3.2 3.17 3.22 3.24 11.81 11.64 2.05×1015 2.11 ×1015 1.56×1015 1.55×1015

SFHO [75] 2.06 1.97 11.77 11.76 2.9 2.88 3.71 3.68 10.31 10.29 2.67×1015 2.63 ×1015 1.91×1015 1.92×1015

LS220 [73] 2.04 1.98 12.52 12.47 3.0 2.99 3.55 3.52 10.65 10.80 2.55×1015 2.43 ×1015 1.86×1015 1.78×1015

TMA [69, 77] 2.02 2.12 13.73 13.89 3.2 3.27 2.98 3.08 12.12 12.14 1.92×1015 1.92 ×1015 1.48×1015 1.42×1015

IUF [71, 78] 1.95 2.05 12.57 12.50 3.0 3.04 3.36 3.44 11.32 11.03 2.19×1015 2.34 ×1015 1.67×1015 1.72×1015
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FIG. 7: Same as Fig. 6 for two EoSs with similar stellar prop-
erties in the intermediate mass range around 1.6 M⊙ where
the two mass-radius relations cross. using the extrapolation
procedure described in the main text (Sect. IV) the two EoSs
can clearly be distinguished.

with the stability line also provides an estimate for the
GW oscillation frequency at Mthres. This peak frequency
f thres
peak scales well with the radius Rmax of the maximum-
mass configuration of cold, nonrotating NSs (see left
panel of Fig. 3 in [32] and Fig. 8). (The relation can
be understood by noting that f thres

peak should scale approx-

imately with
√

Mthres/R3
max, where the variation in R3

max
dominates over the relatively small change in Mthres.) In
Fig. 8 we display the extrapolated fpeak (circles) and the

actual frequency obtained in the simulations (crosses) as
a function of Rmax for different EoSs. Using the linear
fit to the simulation data

Rmax = −3.065 · f thres
peak + 21.57 (±0.7), (4)

the extrapolated frequency determines the radius of the
maximum-mass configuration with an accuracy of typ-
ically 4% or better. Only for the NL3 EoS the esti-
mated Rmax deviates by 5%. The somewhat larger dif-
ference is understandable, considering that for NL3 the
extrapolation is performed over the largest distance be-
tween data measured at 2.7 M⊙ and at the intersection
at Mthres ≈ 3.8 M⊙). The results of the extrapolation
procedure are listed in Table I, together with the actual
values of Rmax. The estimated and actual radii of the
maximum-mass configuration are also shown in Fig. 5.
The shifts denoted in parentheses in Eq. (4) define curves
which lead to upper and lower limits for Rmax, when used
in the extrapolation procedure.

C. Estimating the maximum central density

For maximum-mass TOV solutions it is empirically
known and intuitive that the stiffness of an EoS, quan-
tified by the ratio ⟨e⟩max/ec,max between the mean den-
sity and the central density, roughly scales linearly with
the compactness Cmax = GMmax

c2Rmax
[12, 79] (see also Fig. 2

in [32]). Here, e refers to the energy density, which, how-
ever, is related to the rest-mass density through the EoS
and therefore, the following analysis yields analogous re-
sults when applied to the rest-mass density (see Table I).
Adopting ⟨e⟩max = 3

4π
Mmax

R3
max

implies that the central

density should scale roughly as 1/R2
max. Consequently,
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FIG. 10: Dominant GW frequency f thres
peak of the most massive

NS merger remnant as a function of the maximum central
rest-mass density ρc,max of the maximum-mass configuration
of nonrotating NSs for different EoSs (crosses). The diagonal
solid line is a fit to ρc,max(f

thres
peak ). Circles denote the estimated

values for f thres
peak , extrapolated entirely from GW information

from low-mass NS binary mergers. The estimated values for
ρc,max can be inferred by projecting horizontally, i.e. following
the short line to the diagonal line representing the fit to the
numerical data (crosses).

D. Further considerations

The details of the extrapolation procedure described
above should be considered to be empirically motivated
by the behavior of the curves in Fig. 1 and the outly-
ing behavior of data points in Fig. 3. We stress that the
precision of the procedure does not depend strongly on
these particular choices. Also, the specific forms of the
fit formulae do not change the results significantly and
might possibly be optimized to yield even better esti-
mates. Note that the uncertainties of the mass estimates
are of the order of the numerical determination of the
threshold mass, which in this study is achieved only to a
certain accuracy. Given a finite sampling of the binary
masses, the numerical value of Mthres can only represent
a lower bound to the actual value, which, however, lies at
most 0.1 M⊙ above. Clearly, this numerical inaccuracy
is inherent and reflected in the uncertainty of the extrap-
olation procedure, which thus may be further improved.
We also expect that the fit formulae may be modified and
tuned to even better estimate high-mass NS properties,
e.g. for specific mass regimes. Enlarging the set of EoSs
will also be a good test for the accuracy of our method.
The final accurcay of the extrapolation procedure de-

pends on the errors of the slope and of the frequency
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FIG. 11: Threshold NS binary mass distinguishing the
prompt collapse to a BH from the formation of an (at least
transiently) stable merger remnant as a function of the maxi-
mum central energy density ec,max of the maximum-mass con-
figuration of cold, nonrotating NSs, for different EoSs.

determination. The error of the slope will be affected
by the uncertainty of the individual frequency measure-
ments [29, 30], by the number of measurements, by the
EoS, and in particular by the uncertainty of the values
and the exact separation of the distinct binary masses
for which GWs are detected. Considering, for exam-
ple, only two detection events with Mtot = 2.4 M⊙ and
Mtot = 2.8 M⊙ one can infer the error on the slope deter-
mination. If we assume that the peak frequencies at both
binary masses can be measured with a precision of 10 Hz,
we can quantify the expected error on the intersection of
the extrapolating curve with the stability line. We find
errors in Mthres above and below one per cent strongly
sensitive to the EoS and correspondingly the proximity
of the detection to the stability line. It is important to
stress that the extrapolation scheme becomes more ac-
curate if the slope is determined at even higher binary
masses.
In the present study, we do not investigate unequal

mass binaries, but we note that for fairly unequal 1.2-
1.5 M⊙ systems the peak frequency is at most 90 Hz
smaller than the dominant GW frequency of the cor-
responding equal-mass merger of the same total binary
mass. Known NS binaries show smaller mass inequalities
(see e.g. [12] for a compilation of the measured masses),
and we thus argue that the most likely GW observations
will have smaller deviations from the equal-mass case
than the mentioned example. Moreover, we expect that
the impact of the mass ratio can be taken into account,
once the full dependence of fpeak on the mass inequality
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commondate this shortcoming of our approach we also
include a set of hybrid waveforms, constructed from a
subset of the numerical waveforms described in the pre-
vious section. We extend the numerical waveform with
an analytically prescribed waveform. The analytical part
is described with a sinusoidal waveform, which follows
a prescribed frequency evolution and damping behavior.
The analytical model waveform is attached to the numer-
ical waveform when the numerical amplitue has decayed
to one half of the initial postmerger GW amplitude. This
happens after several milliseconds when the remnant en-
ters a quasi-stationary phase. The initial frequency of
the analytical waveform is chosen to be the frequency of
the GW signal at the matching point. We make con-
servative assumptions about the further evolution of the
frequency and the damping timescale of the analytical
model as explained below.

The damping of the postmerger oscillations and the
evolution of the dominant oscillation frequency may be
affected by different physical processes, such as gravita-
tional wave emission, magnetic fields, neutrino heating
and bulk viscosity (e.g. [95–97] and references therein).
Here, we assume that the extraction of energy and an-
gular momentum by gravitational waves is the dominant
process responsible for the damping. Currently, there
are no reliable estimates of the timescales of the other
damping mechanisms, which is why we restrict ourselves
to pure GW damping.

For cold, nonrotating NSs the damping timescale of the
fundamental quadrupolar fluid mode is known to depend
on the star’s mass and radius (see, e.g. [98]). However,
the postmerger remnant is a hypermassive object rotat-
ing rapidly with strong differential rotation. For such a
case, there still exists no calculation of the actual damp-
ing timescales (see [99] for the status on the subject).

The damping timescales due to gravitational wave
emission, assuming a quasi-stationary background, will
be affected by a number of factors: a) rapid rotation,
b) differential rotation, c) high mass, d) the equation of
state, e) strong field gravity. In addition, if the back-
ground is evolving on a comparable timescale, then this
will result in a time-dependent damping timescale. In the
absence of a proper calculation that takes all of the above
effects into account simultaneously, we are forced, at this
point, to resort to some approximations in order to esti-
mate upper and lower bounds for the expected damping
timescale for each particular merger event we consider.
Next, we give a detailed account of how we arrive at the
particular upper and lower bounds used in the present
work. We focus on the corotating l = m = 2 f−mode,
as this is the oscillation mode that is more likely to be
excited during the merger of two neutron stars with a
frequency of ∼ 2 − 3 kHz. The corresponding counter-
rotating mode will likely have a lower frequency in the
inertial frame, as it is dragged towards corotation by ro-
tation.

As an estimate for an upper bound on the damping

timescale, we apply the empirical formula from [98]:

1

τ0[s]
=

M̄3

R̄4

[

22.85− 14.65
M̄

R̄

]

, (11)

where τ0 is the damping timescale (in seconds) of an l = 2
f−mode of a star of dimensionless mass M̄ = M/1.4M⊙

and dimensionless radius R̄ = R/10 km. Although the
above formula was derived for nonrotating stars, we use
it as an upper bound, since the actual damping timescale
for rapidly rotating stars is shorter. Above, we use the
mass of the remnant (not of the individual components
before merger) and we extract the equatorial radius of the
remnant, neglecting its low-density envelope and consider
the mass enclosed within this radius. For example, for
the DD2 EoS we find an upper bound on the damping
time scale of ∼ 200 ms for the remnant that results from
the merger of two NSs with 1.35 M⊙ each. We note that
the applicability of the above formula is limited only to
remnants for which it still gives positive values for the
damping timescale, i.e. to remnants for which M̄

R̄
< 1.56.

As an estimate for a lower bound on the damping
timescale, we consider the following. In [100, 101] the
damping timescale due to gravitational wave emission of
the l = m = 2 f−mode in rapidly rotating stars was
studied, assuming uniform rotation and the Cowling ap-
proximation. In particular, [101] used tabulated EoSs
and estimated that the Cowling approximation overes-
timates the mode frequencies by up to 30%, while it
underestimates damping timescales by up to a factor of
three. Nevertheless, [101] found an empirical relation be-
tween the damping timescale τ of a corotating f−mode
in a uniformly rotating star and the corresponding damp-
ing timescale in a nonrotating model of the same central
density. This relation shows that a star rotating at the
mass-shedding limit will have a damping timescale which
is ∼ 1/10 of the corresponding nonrotating model with
the same central density. We find that for remnants that
are far from the threshold to prompt collapse, the cen-
tral density of the remnant remains comparable, within
a factor of two, to the central density of one of the bi-
nary component before merger. Therefore, one can re-
late the damping timescale of the rotating remnant to
the damping timescale of a nonrotating model with mass
equal to the mass of one of the binary components be-
fore merger, through the empirical relation found in [101].
We consider this as an approximate lower bound, because
the central density of the remnant is actually increasing
somewhat, compared to the single star before merger, the
actual damping timescale could be somewhat shorter, but
at this level other uncertainties come into play and only
a real calculation could give a precise result.
For example, for a 1.35+1.35M⊙ merger with the DD2

EoS, using Eq. (11) for a nonrotating 1.35 M⊙ model,
which has a radius of ∼ 13.2km for this EoS, one ob-
tains τ0 ∼ 280 ms, and applying the empirical formula
of [101], this corresponds to τ ∼ 28ms for a uniformly
rotating star at the mass-shedding limit. For the same
mass but with the APR EoS, we estimate a lower bound

! When this is applied to the mass and radius of the remnant:!    
!
!
! ! ! ! ! ! !              τ ~ 200 ms.                             
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 frequency (linear time-evolution code)      
!
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respectively. Naturally, the second one correlates the
frequencies in the nonrotating limit with the mean density
of the star, similar to the relations obtained in [5,6].

We will follow [8] and use the oscillation frequencies in
the comoving frame. As it turns out, in this frame the
spread of the frequencies for different EoS is considerably
smaller than in the inertial frame [15], therefore providing
a natural frame for this model-independent fitting. Another
nice feature of the comoving frame is that, in contrast to the
inertial frame, mode frequencies of both branches never
become negative.

The normalized frequencies in the comoving frame
!c=!0 (!0 is the frequency in the nonrotating limit) as a
function of !=!K for all the EoS considered in this work

are shown in Fig. 3. It should be noted here that in the
comoving frame the order of the two branches is reversed;
i.e., the potentially unstable branches attain larger frequen-
cies than the stable ones, in contrast to the depiction in the
inertial frame.
The relations for different values of l, shown in Fig. 3,

can be fitted very accurately with a polynomial of second
order. We thus obtain the following relations for the
frequencies of the potentially unstable branches !u

c ,
for l ¼ m ¼ 2,

!u
c l¼2

!0
¼ 1þ 0:402

!
!

!K

"
# 0:406

!
!

!K

"
2
; (21)

for l ¼ m ¼ 3,

!u
c l¼3

!0
¼ 1þ 0:373

!
!

!K

"
# 0:485

!
!

!K

"
2
; (22)

and for l ¼ m ¼ 4,

!u
c l¼4

!0
¼ 1þ 0:360

!
!

!K

"
# 0:543

!
!

!K

"
2
: (23)

As one can see from Fig. 3, the frequencies for the stable
branches !s

c can be fitted very well by a single quadratic
polynomial for all values of l, and we obtain

!s
c

!0
¼ 1# 0:235

!
!

!K

"
# 0:358

!
!

!K

"
2
: (24)

As discussed previously, the relations (21)–(24) have to
be supplemented with additional information on how the
mode frequencies in the nonrotating limit !0 depend on
the neutron star mass and radius. It has been shown [5,6]
that the average density is a good measure to parametrize
this dependency, and Fig. 4 shows the results with our pool
of configurations.

FIG. 2 (color online). f-mode frequencies in the inertial frame corresponding to l ¼ jmj ¼ 2 and l ¼ jmj ¼ 4 as a function of the
rotation rate for both corotating and counterrotating branches. The dashed lines correspond to the less compact configurations in
Table II.

FIG. 3 (color online). The normalized oscillation frequencies
as a function of the normalized rotation rate in the comoving
frame. The results for l ¼ jmj ¼ 2, 3, 4 and for all of the
configurations in Table II are depicted.
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respectively. Naturally, the second one correlates the
frequencies in the nonrotating limit with the mean density
of the star, similar to the relations obtained in [5,6].

We will follow [8] and use the oscillation frequencies in
the comoving frame. As it turns out, in this frame the
spread of the frequencies for different EoS is considerably
smaller than in the inertial frame [15], therefore providing
a natural frame for this model-independent fitting. Another
nice feature of the comoving frame is that, in contrast to the
inertial frame, mode frequencies of both branches never
become negative.

The normalized frequencies in the comoving frame
!c=!0 (!0 is the frequency in the nonrotating limit) as a
function of !=!K for all the EoS considered in this work

are shown in Fig. 3. It should be noted here that in the
comoving frame the order of the two branches is reversed;
i.e., the potentially unstable branches attain larger frequen-
cies than the stable ones, in contrast to the depiction in the
inertial frame.
The relations for different values of l, shown in Fig. 3,

can be fitted very accurately with a polynomial of second
order. We thus obtain the following relations for the
frequencies of the potentially unstable branches !u
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As one can see from Fig. 3, the frequencies for the stable
branches !s

c can be fitted very well by a single quadratic
polynomial for all values of l, and we obtain
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¼ 1# 0:235
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As discussed previously, the relations (21)–(24) have to
be supplemented with additional information on how the
mode frequencies in the nonrotating limit !0 depend on
the neutron star mass and radius. It has been shown [5,6]
that the average density is a good measure to parametrize
this dependency, and Fig. 4 shows the results with our pool
of configurations.

FIG. 2 (color online). f-mode frequencies in the inertial frame corresponding to l ¼ jmj ¼ 2 and l ¼ jmj ¼ 4 as a function of the
rotation rate for both corotating and counterrotating branches. The dashed lines correspond to the less compact configurations in
Table II.

FIG. 3 (color online). The normalized oscillation frequencies
as a function of the normalized rotation rate in the comoving
frame. The results for l ¼ jmj ¼ 2, 3, 4 and for all of the
configurations in Table II are depicted.
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Let us again draw a comparison with the polytropic EoS
at this point. The relation for the normalized damping
times of the potentially unstable branch (32) is quite simi-
lar in both cases, due to the fact that there are only two
independently adjustable parameters. The corresponding
relation for the stable branches changes though. First, it
was already pointed out that the relations used here,
(33)–(35), differ slightly from the ones in [8]—here we
plot !=!0 ! ð!c=!0Þ2l instead of !=!0 ! ð!c=!0Þ. In
order to compare our results for realistic EoS with the
polytropic ones, the dependence !=!0 ! ð!c=!0Þ for
l ¼ %m ¼ 2 is depicted in Fig. 9. The analytic dependence
for polytropes found in [8] is shown there as well. As one
can see, the difference is quite big, but this is most likely
due to the fact that in [8] several very soft equations of state
are used, while most of the realistic EoS utilized here are
rather stiff. If one excludes the very soft EoS from [8], the
relations for both the polytropes and the realistic EoS will
be quite similar.

When comparing the damping times between polytropes
and realistic EoS in the nonrotating limit, we have to keep
in mind the following: Because of the errors in the damping
times related to the Cowling approximation, a correction
factor was introduced in [8] in order to compensate the
deviations from full GR. This factor was derived after a
systematic comparison with fully relativistic results in the
quadrupolar case [36]. Since we also present relations for
l > 2 here, the correction factor is unknown so we decided
to present the original results for the damping time.

In Fig. 10, we show the fits for damping times of quad-
rupolar modes in the nonrotating limit for both polytropes
and realistic EoS. In order to make a proper comparison,
we introduce the same correction factor used in [8]. As one
can see, the fit for realistic EoS generally leads to smaller

damping times compared to polytropes. This might be
due to the fact that the correction factor for our set of
EoS is different from the one used for polytropes.9

Another possible source of error might be our treatment
of the numerical instabilities near the neutron drip point;
see the discussion at the beginning of this section.

V. SOLVING THE INVERSE PROBLEM

After obtaining empirical relations for gravitational
wave asteroseismology, we need to address the inverse
problem—determining the mass, radius and rotation rate
of a neutron star when some observed frequencies and/or
damping times are provided. Since three characteristic
neutron star parameters need to be identified, one corre-
spondingly needs three observables. But not all of the
combinations of frequencies and damping times are suit-
able for solving the inverse problem. For example, in the
simplest case one could suggest using three frequencies of
different modes in order to determine neutron star parame-
ters. But the derived empirical relations for the frequencies
of fast rotating neutron stars can only be used to obtain the
rotation rate ! and the average density M=R3 but not the
mass and radius independently. The reason for this is that
in relations (21)–(29) the independent variables are!,!K

andM=R3. Since!K can also be expressed as a function of
M=R3 up to leading order [see (29)],10 this cannot be used
to provide an additional constraint on the mass and radius.
We are led to the conclusion that by observing at least two
mode frequencies of a single rotating star, we will be able

FIG. 9 (color online). Normalized damping times !=!0 as a
function of normalized mode frequencies in the comoving frame
!c=!0. The analytic dependence for polytropes found in [8] is
depicted as a dashed line.

FIG. 10. Normalized damping times as a function of the
compactness M=R for nonrotating models. The correction factor
used in [8] is introduced in order to compare our data to the
polytropic case presented there.

9Strictly speaking this factor does not only depend on the EoS,
but most likely on the mass and radius of the stars as well.
10As mentioned above, the coefficients in the relation (29) also
depend on the compactnessM=R but this is a second-order effect
and cannot be used to accurately determine M and R.
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! At rapid rotation: we estimate       
              τ ~ τ0/10     i.e. ~ 20 ms.                     
  Real GW timescale is probably     
       20ms < τ <200ms -> work in progress!                             
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TABLE I: Equation of state models with references and resulting stellar properties. Mmax denotes the maximum mass of
nonrotating NSs with the cirumferential radius Rmax corresponding this maximum-mass configuration. emax and ρmax are the
central energy density and the central rest-mass density of the maximum-mass configuration. R1.6 refers to the circumferential
radius of a nonrotating 1.6 M⊙ NS. Mthres is the highest total binary mass which leads to differentially rotating NS merger
remnant for the given EoS. The dominant GW frequency of this postmerger remnant is f thres

peak . Hatted quantities are the
estimates for these merger properties and stellar parameters based on the extrapolation procedure described in the main text
(Sect. IV).

Mmax M̂max R1.6 R̂1.6 Mthres M̂thres f thres
peak f̂ thres

peak Rmax R̂max ec,max êc,max ρc,max ρ̂c,max

EoS (M⊙) (M⊙) (km) (km) (M⊙) (M⊙) (kHz) (kHz) (km) (km) (g/cm3) (g/cm3) (g/cm3) (g/cm3)

NL3 [70, 71] 2.79 2.68 14.81 14.72 3.8 3.73 2.77 2.87 13.40 12.78 1.52×1015 1.68 ×1015 1.09×1015 1.25×1015

LS375 [73] 2.71 2.69 13.76 13.86 3.6 3.57 3.04 2.93 12.32 12.62 1.78×1015 1.74 ×1015 1.25×1015 1.29×1015

DD2 [71, 74] 2.42 2.40 13.26 13.18 3.3 3.33 3.08 3.00 11.90 12.38 1.95×1015 1.83 ×1015 1.41×1015 1.35×1015

TM1 [68, 69] 2.21 2.28 14.36 14.34 3.4 3.45 2.93 2.96 12.57 12.49 1.80×1015 1.79 ×1015 1.36×1015 1.32×1015

SFHX [75] 2.13 2.19 11.98 12.07 3.0 3.05 3.52 3.43 10.77 11.06 2.39×1015 2.33 ×1015 1.74×1015 1.71×1015

GS2 [76] 2.09 2.07 13.38 13.35 3.2 3.17 3.22 3.24 11.81 11.64 2.05×1015 2.11 ×1015 1.56×1015 1.55×1015

SFHO [75] 2.06 1.97 11.77 11.76 2.9 2.88 3.71 3.68 10.31 10.29 2.67×1015 2.63 ×1015 1.91×1015 1.92×1015

LS220 [73] 2.04 1.98 12.52 12.47 3.0 2.99 3.55 3.52 10.65 10.80 2.55×1015 2.43 ×1015 1.86×1015 1.78×1015

TMA [69, 77] 2.02 2.12 13.73 13.89 3.2 3.27 2.98 3.08 12.12 12.14 1.92×1015 1.92 ×1015 1.48×1015 1.42×1015

IUF [71, 78] 1.95 2.05 12.57 12.50 3.0 3.04 3.36 3.44 11.32 11.03 2.19×1015 2.34 ×1015 1.67×1015 1.72×1015
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FIG. 7: Same as Fig. 6 for two EoSs with similar stellar prop-
erties in the intermediate mass range around 1.6 M⊙ where
the two mass-radius relations cross. using the extrapolation
procedure described in the main text (Sect. IV) the two EoSs
can clearly be distinguished.

with the stability line also provides an estimate for the
GW oscillation frequency at Mthres. This peak frequency
f thres
peak scales well with the radius Rmax of the maximum-
mass configuration of cold, nonrotating NSs (see left
panel of Fig. 3 in [32] and Fig. 8). (The relation can
be understood by noting that f thres

peak should scale approx-

imately with
√

Mthres/R3
max, where the variation in R3

max
dominates over the relatively small change in Mthres.) In
Fig. 8 we display the extrapolated fpeak (circles) and the

actual frequency obtained in the simulations (crosses) as
a function of Rmax for different EoSs. Using the linear
fit to the simulation data

Rmax = −3.065 · f thres
peak + 21.57 (±0.7), (4)

the extrapolated frequency determines the radius of the
maximum-mass configuration with an accuracy of typ-
ically 4% or better. Only for the NL3 EoS the esti-
mated Rmax deviates by 5%. The somewhat larger dif-
ference is understandable, considering that for NL3 the
extrapolation is performed over the largest distance be-
tween data measured at 2.7 M⊙ and at the intersection
at Mthres ≈ 3.8 M⊙). The results of the extrapolation
procedure are listed in Table I, together with the actual
values of Rmax. The estimated and actual radii of the
maximum-mass configuration are also shown in Fig. 5.
The shifts denoted in parentheses in Eq. (4) define curves
which lead to upper and lower limits for Rmax, when used
in the extrapolation procedure.

C. Estimating the maximum central density

For maximum-mass TOV solutions it is empirically
known and intuitive that the stiffness of an EoS, quan-
tified by the ratio ⟨e⟩max/ec,max between the mean den-
sity and the central density, roughly scales linearly with
the compactness Cmax = GMmax

c2Rmax
[12, 79] (see also Fig. 2

in [32]). Here, e refers to the energy density, which, how-
ever, is related to the rest-mass density through the EoS
and therefore, the following analysis yields analogous re-
sults when applied to the rest-mass density (see Table I).
Adopting ⟨e⟩max = 3

4π
Mmax

R3
max

implies that the central

density should scale roughly as 1/R2
max. Consequently,
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Fig. 4 Diagnostic Δ1 versus the flattening parameter f times (1−αmin). Solid lines represent polytropes
with N = 1 and K = 100, while dotted lines represent polytropes with N = 0.5 and K = 1. Circle, rectan-
gle and diamond points represent sequences A, B and C respectively. The maximum mass model of the
corresponding Keplerian sequence is denoted with a cross. Down triangle points represent the Keplerian
sequence of polytropes with N = 0.5 and K = 1. Star and up triangle points represent two differentially ro-
tating sequences of fixed rp/re with values of 0.7 and 0.5. The dashed line is our linear, empirical relation
that approximates the data.

5 Discussion

In order to answer the question which diagnostic performs better as a measure of the
error of the IWM–CFC approximation, we should look at how well they correlate
with the maximum errors encountered in physical quantities. The constructed mea-
sures Δ1 and Δ2 qualify as adequate choices. Their values and qualitative behaviour
are in agreement with that of physical quantities Ωc and Re implying that they are
more sensitive to the degree of rotation than integrated physical quantities, such as
M and T/|W |. Preliminary results presented in [35] showed that the relative error Δ1
peaks around s ≃ 0.4, or r ≃ 2

3 re. Our current analysis confirms that the maximum
deviation appears at around s≃ 0.42−0.44 for all models considered in this survey.
Therefore, if one aims to assign a single number to each model in order to evaluate the
accuracy of IWM–CFC, then calculating Δ1 at the point where it attains its maximum
value provides a simple way to do so for the case of isolated rotating stars.
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