POST-MERGER OSCILLATIONS AND THE NEWCOMPSTAR ACTION

NIKOLAOS STERGIOULAS

DEPARTMENT OF PHYSICS ARISTOTLE UNIVERSITY OF THESSALONIKI

Seattle, July 1, 2014

Plan of Talk

Part I: Understanding post-merger oscillations

Mon. Not. R. Astron. Soc. **418**, 427–436 (2011)

Gravitational waves and non-axisymmetric oscillation modes in mergers of compact object binaries

Nikolaos Stergioulas,^{1*} Andreas Bauswein,² Kimon Zagkouris¹ and Hans-Thomas Janka²

Part II: Extracting EOS information

arxiv:1403.5301, Phys. Rev. D, in press (2014)

Revealing the high-density equation of state through binary neutron star mergers

A. Bauswein,¹ N. Stergioulas,¹ and H.-T. Janka²

Part III: Towards hybrid waveforms

arxiv:1406.5444, submitted to Phys. Rev. D (2014)

Prospects For High Frequency Burst Searches Following Binary Neutron Star Coalescence With Advanced Gravitational Wave Detectors

J. Clark,¹ A. Bauswein,² L. Cadonati,^{1,3} H.-T. Janka,⁴ C. Pankow,⁵ and N. Stergioulas²

PART I:

UNDERSTANDING POST-MERGER OSCILLATIONS

Outcome of Binary NS Mergers

(Hotokezaka et al., 2011) (Bauswein & Janka, 2012)

Most likely range of masses for binary system:

 $2.7 M_{sun} < M_{tot} < 2.8 M_{sun}$

If EOS has nonrotating $M_{max} > 2 M_{sun}$ (as required by observations), then a long-lived ($\tau > 10$ ms) remnant is formed.

The remnant is a *hypermassive neutron star (HMNS)*, supported by *differential rotation*, with a mass larger than the maximum mass allowed for uniform rotation.

Gravitational Waves

The GW signal can be divided into three distinct phases: *inspiral, merger* and *post-merger ringdown*.

Several peaks stand above the aLIGO/VIRGO or ET sensitivity curves and are potentially detectable. Are these *oscillations* of the HMNS?

Additional EOS Information in Post-Merger Signal

How can we interpret the triplet of frequencies above the ET sensitivity curve?

Mergers of Compact Object Binaries

NS, Bauswein, Zagkouris, Janka (2011)

Merger of equal/unequal mass binaries with LS, Shen, MIT60 EOS. (3-D GR CFC/SPH code) Example: Shen EOS: 1.35M_{sun}+1.35M_{sun}

Rotating bar shape + radial oscillation => transient double core

GW Scaled Power Spectral Density

Split the time-series into *pre-merger* and *post-merger* parts:

Triplet of frequencies: f_1 , f_2 , f_+ originates in post-merger part.

Nonlinear Combination Frequencies

Passamonti, NS & Nagar (2007)

Linear sums and differences of linear mode frequencies

The amplitude of combination frequencies can become large, when the linear modes have amplitude of O(1).

Equal mass: Lattimer-Swesty 1.35+1.35

Unequal mass: Lattimer-Swesty 1.2+1.35

Eigenfunction Extraction

(NS, Apostolatos, Font, 2004)

Fourier extraction of axisymmetric mode eigenfunctions:

Spatial distribution of FFT *magnitude* at mode-frequency determines shape of *eigenfunction* (but change sign at nodal lines).

Eigenfunctions in Equatorial Plane

Summary and Prospects

A HMNS created in a binary neutron star merger oscillates in several frequencies with initially high amplitude.

A triplet of frequencies f_1 , f_2 , f_+ is prominent and potentially detectable.

Identification:

 f_2 : m=2 mode f_2 : (m=2) - (m=0) nonlinear combination frequency

In case of detection: determine both m=0 and m=2 frequencies

In progress: construct axisymmetric equilibrium model of HMNS remnant and obtain linear oscillation modes.

PART II:

EXTRACTING EOS INFORMATION

Revealing the EOS

Large EOS Sample

Bauswein, Janka, Hebeler & Schwenk (2012)

Bauswein, Janka, Hebeler & Schwenk (2012) For 1.35+1.35 Msun the empirical relation is remarkably accurate.

 $f_{\text{peak}} = \begin{cases} -0.2823 \cdot R_{1.6} + 6.284 & \text{for } f_{\text{peak}} < 2.8 \text{ kHz} \\ -0.4667 \cdot R_{1.6} + 8.713 & \text{for } f_{\text{peak}} > 2.8 \text{ kHz} \end{cases}$

Bauswein, Janka, Hebeler & Schwenk (2012)

For given 1.35+1.35 Msun:

 f_2 correlates with $R_{remnant}$ $R_{remnant}$ is proportional to $R_{1.6}$ => f_2 correlates with $R_{1.6}$

M_{thres} vs. M_{max} correlation

Bauswein, Baumgarte, Janka PRL (2013)

The threshold mass is related to the maximum TOV mass as

$$M_{\rm thres} = k \cdot M_{\rm max}$$

where k is dependent on the compactness.

M_{thres} vs. M_{max} correlation

Bauswein, Baumgarte, Janka PRL (2013)

The threshold mass is related to the maximum TOV mass as

$$M_{\rm thres} = k \cdot M_{\rm max}$$

where k is dependent on the compactness.

 f_{thres} vs. R_{max} correlation

At $M_{tot} \sim 2.7 \ M_{sun}$

Largest error bars for maximum mass model

Breaking the EOS degeneracy

Estimating the density of the maximum-mass model

PART III:

TOWARDS HYBRID WAVEFORMS

GW damping timescale for f-modes

Andersson & Kokkotas (1998)

No rotation: EOS-independent empirical relation:

$$\frac{1}{\tau_0[s]} = \frac{\bar{M}^3}{\bar{R}^4} \left[22.85 - 14.65 \frac{\bar{M}}{\bar{R}} \right]$$

When this is applied to the mass and radius of the remnant:

 $\tau \sim 200$ ms.

f-modes of rapidly rotating neutron stars

Doneva, Gaertig, Kokkotas, Krueger (2013) Uniform rotation, Cowling approximation, $I=\pm m=2$ f-mode frequency (linear time-evolution code)

f-modes of rapidly rotating neutron stars

Doneva, Gaertig, Kokkotas, Krueger (2013)

Corotating frame: same rotational effect, independent of EOS!

 \rightarrow Empirical relations for GW asteroseismology.

GW damping timescale for f-modes

Doneva, Gaertig, Kokkotas, Krueger (2013)

Uniform rotation: same rotational effect, independent of EOS!

At rapid rotation: we estimate $\tau \sim \tau_0/10$ i.e. ~ 20 ms. Real GW timescale is probably 20ms < τ <200ms -> work in progress!

THANK YOU

SUPPLEMENTARY MATERIAL

TABLE I: Equation of state models with references and resulting stellar properties. M_{max} denotes the maximum mass of nonrotating NSs with the cirumferential radius R_{max} corresponding this maximum-mass configuration. e_{max} and ρ_{max} are the central energy density and the central rest-mass density of the maximum-mass configuration. $R_{1.6}$ refers to the circumferential radius of a nonrotating 1.6 M_{\odot} NS. M_{thres} is the highest total binary mass which leads to differentially rotating NS merger remnant for the given EoS. The dominant GW frequency of this postmerger remnant is $f_{\text{peak}}^{\text{thres}}$. Hatted quantities are the estimates for these merger properties and stellar parameters based on the extrapolation procedure described in the main text (Sect. IV).

	$M_{\rm max}$	\hat{M}_{\max}	$R_{1.6}$	$\hat{R}_{1.6}$	$M_{\rm thres}$	$\hat{M}_{\rm thres}$	$f_{\rm peak}^{\rm thres}$	$\hat{f}_{\rm peak}^{\rm thres}$	R_{\max}	\hat{R}_{\max}	$e_{ m c,max}$	$\hat{e}_{\mathrm{c,max}}$	$ ho_{ m c,max}$	$\hat{ ho}_{ m c,max}$
EoS	(M_{\odot})	(M_{\odot})	(km)	(km)	(M_{\odot})	(M_{\odot})	(kHz)	(kHz)	(km)	(km)	(g/cm^3)	(g/cm^3)	(g/cm^3)	(g/cm^3)
NL3 [70, 71]	2.79	2.68	14.81	14.72	3.8	3.73	2.77	2.87	13.40	12.78	1.52×10^{15}	1.68×10^{15}	1.09×10^{15}	$1.25{\times}10^{15}$
LS375 [73]	2.71	2.69	13.76	13.86	3.6	3.57	3.04	2.93	12.32	12.62	1.78×10^{15}	1.74×10^{15}	1.25×10^{15}	$1.29{\times}10^{15}$
DD2 [71, 74]	2.42	2.40	13.26	13.18	3.3	3.33	3.08	3.00	11.90	12.38	1.95×10^{15}	1.83×10^{15}	1.41×10^{15}	$1.35{\times}10^{15}$
TM1 [68, 69]	2.21	2.28	14.36	14.34	3.4	3.45	2.93	2.96	12.57	12.49	1.80×10^{15}	1.79×10^{15}	1.36×10^{15}	$1.32{\times}10^{15}$
SFHX [75]	2.13	2.19	11.98	12.07	3.0	3.05	3.52	3.43	10.77	11.06	2.39×10^{15}	2.33×10^{15}	1.74×10^{15}	$1.71{\times}10^{15}$
GS2 [76]	2.09	2.07	13.38	13.35	3.2	3.17	3.22	3.24	11.81	11.64	2.05×10^{15}	$2.11\ \times 10^{15}$	$1.56{\times}10^{15}$	$1.55{\times}10^{15}$
SFHO [75]	2.06	1.97	11.77	11.76	2.9	2.88	3.71	3.68	10.31	10.29	2.67×10^{15}	2.63×10^{15}	$1.91{\times}10^{15}$	$1.92{\times}10^{15}$
LS220 [73]	2.04	1.98	12.52	12.47	3.0	2.99	3.55	3.52	10.65	10.80	2.55×10^{15}	2.43×10^{15}	1.86×10^{15}	$1.78{\times}10^{15}$
TMA [69, 77]	2.02	2.12	13.73	13.89	3.2	3.27	2.98	3.08	12.12	12.14	1.92×10^{15}	$1.92~\times10^{15}$	1.48×10^{15}	$1.42{\times}10^{15}$
IUF [71, 78]	1.95	2.05	12.57	12.50	3.0	3.04	3.36	3.44	11.32	11.03	2.19×10^{15}	2.34×10^{15}	1.67×10^{15}	$1.72{\times}10^{15}$

ACCURACY OF IWM-CFC APPROXIMATION

losif, Stergioulas, arXiv:1406.7375 (2014)

