Hyperons and quarks in massive compact stars

Armen Sedrakian

ITP, Goethe-University, Frankfurt Main, Germany

in collaboration: G. Colucci (Frankfurt), E. van Dalen (Tuebingen)

Binary Neutron Star Coalescence as a Fundamental Physics Laboratory

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Plan of this talk

- Hyperonization puzzle and hyperons in compact stars
- Color superconducting quark matter in compact stars
- Cooling and Cas A
- Rotationally induced phase transitions

I. Hypernuclear Equation of State for Compact Stars

Approaches to dense hypernuclear matter

- Microscopic approaches: NSC potentials + BHF theory Unfortunately fail to produce massive stars, even with 3B force
- Relativistic density functionals
 - Nuclear part is constrained by nuclear phenomenology
 - Hyperonic sector constrained by flavor symmetries of strong interactions
 - Λ -hyperon interactions can be constrained from Λ -hypernuclei

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Relativistic covariant Lagrangians for hypernuclear matter

Lagrangian for effective fields:

$$\mathcal{L} = \sum_{B} \bar{\psi}_{B} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega BB} \omega_{\mu} - \frac{1}{2} g_{\rho BB} \boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} \right) - (m_{B} - g_{\sigma BB} \sigma) \right] \psi_{B} + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \omega^{\mu\nu} \omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} - \frac{1}{4} \boldsymbol{\rho}^{\mu\nu} \boldsymbol{\rho}_{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu} + \sum_{\lambda} \bar{\psi}_{\lambda} (i \gamma^{\mu} \partial_{\mu} - m_{\lambda}) \psi_{\lambda} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu},$$

$$(1)$$

・ロト・日本・日本・日本・日本・日本

- B-sum is over the baryonic octet $B \equiv p, n, \Lambda, \Sigma^{\pm,0}, \Xi^{-,0}$
- Meson fields include σ meson, ρ_{μ} -meson and ω_{μ} -meson
- Leptons include electrons, muons and neutrinos for $T \neq 0$

Fixing the couplings: nucleonic sector

Density dependent parametrization of couplings, no meson self-interactions:

$$g_{iN}(\rho_B) = g_{iN}(\rho_0)h_i(x), \quad i = \sigma, \omega, \quad h_i(x) = a_i \frac{1 + b_i(x + d_i)^2}{1 + c_i(x + d_i)^2}$$
(2)
$$g_{\rho N}(\rho_B) = g_{\rho N}(\rho_0) \exp[-a_\rho(x - 1)].$$
(3)

DD-ME2 parametrization of D. Vretenar, P. Ring et al. Phys. Rev. C 71, 024312 (2005).

	<i>m</i> ; [MeV]	$\frac{\sigma}{550.1238}$	$\frac{\omega}{783.0000}$	$\frac{\rho}{763.0000}$
	$g_{Ni}(\rho_0)$	10.5396	13.0189	3.6836
	a_i	1.3881	1.3892	0.5647
	b_i	1.0943	0.9240	
	c_i	1.7057	1.4620	
	d_i	0.4421	0.4775	
otal number of para	meters 8: bou	ndary conditi	ons on $h(x)$ a	t x = 1.

Fixing the couplings: hyperonic sector

Hyperon-vector mesons couplings: SU(3)-flavor symmetry and vector dominance model

$$g_{\Xi\omega} = \frac{1}{3}g_{N\omega}, \quad g_{\Sigma\omega} = g_{\Lambda\omega} = \frac{2}{3}g_{N\omega}.$$
 (4)

$$g_{\Xi\rho} = g_{\rho N}, \qquad g_{\Sigma\rho} = 2g_{\rho N}, \qquad g_{\Lambda\rho} = 0.$$
 (5)

(Neglect heavy no strange mesons (for example ϕ exchanges).

Scalar σ -meson – hyperon couplings

$g_{N\sigma}$		$\cos\theta_S g_1 + \sin\theta_S (4\alpha_S - 1)g_S/\sqrt{3},$	(6)
$g_{\Lambda\sigma}$		$\cos\theta_S g_1 - 2\sin\theta_S (1 - \alpha_S)g_S/\sqrt{3},$	(7)
$g_{\Sigma\sigma}$		$\cos\theta_S g_1 + 2\sin\theta_S (1 - \alpha_S)g_S/\sqrt{3},$	(8)
$g_{\Xi\sigma}$	=	$\cos\theta_S g_1 - \sin\theta_S (1 + 2\alpha_S)g_S/\sqrt{3}.$	(9)

Inequalities for σ -meson couplings

For arbitrary underlying quark model we have

$$2(g_{N\sigma} + g_{\Xi\sigma}) = 3g_{\Lambda\sigma} + g_{\Sigma\sigma}.$$
(10)

e.g., for SU(6) symmetric quark model $g_{\Xi\sigma} = (1/3)g_{N\sigma}$ and $g_{\Lambda\sigma} = g_{\Sigma\sigma} = (2/3)g_{N\sigma}$.

$$g_{\Xi\sigma} = \frac{1}{2} (3g_{\Lambda\sigma} + g_{\Sigma\sigma}) - g_{N\sigma}, \qquad 0 \le g_{\Xi\sigma} \le g_{N\sigma}, \tag{11}$$

$$1 \leq \frac{1}{2} (3x_{\Lambda\sigma} + x_{\Sigma\sigma}) \leq 2x_{N\sigma}, \quad x_{i,\sigma} = \frac{g_{i\Sigma}}{g_{N\sigma}}$$
(12)

Nijmegen soft-core potential implies that (Timmermans et al)

$$x_{\Lambda\sigma} = 0.58, \qquad x_{\Sigma\sigma} = 0.448.$$
 (13)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Parameter space

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Blue region values allowed by the inequality
- NSC value blue dot

	$E_{Mass}[\Lambda 1s_{1/2}]$	$E[\Lambda 1s_{1/2}]$	E/A	r_p	r_n	r_{Λ}
	[MeV]	[MeV]	[MeV]	[fm]	[fm]	[fm]
$^{17}_{\Lambda}O$	-12.109	-11.716	-8.168	2.592	2.562	2.458
¹⁶ O	_	_	-8.001	2.609	2.579	—
$^{41}_{\Lambda}C$	-17.930	-17.821	-8.788	3.362	3.309	2.652
⁴⁰ Ca	_	_	-8.573	3.372	3.320	—
$^{49}_{\Lambda}$ Ca	-19.215	-19.618	-8.858	3.379	3.562	2.715
⁴⁸ Ca	_	_	-8.641	3.389	3.576	_

Table : Single-particle energies of the Λ 1s_{1/2} states, binding energies, and rms radii of the Λ -hyperon, neutron, and proton of ${}^{17}_{\Lambda}$ O, ${}^{41}_{\Lambda}$ C, and ${}^{49}_{\Lambda}$ Ca are presented for optimal model. In addition, single-particle energies of the Λ 1s_{1/2} states, i.e. separation energies of the Λ -particle, obtained from the mass formula are given for these Λ -hypernuclei. Furthermore, the properties of 16 O, 40 Ca, and 48 Ca are given for the optimal model; (van Dalen, Colucci, A. S., PLB 734, 383 (2014)).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Density distribution of baryons

Proton (dashed), neutron (dashed dotted), and Λ (dashed double dotted) density distributions in ${}^{49}_{\Lambda}$ C for the models *b* (left panel) and *c* (right panel); (van Dalen, Colucci, A. S.I PLB 734, 383 (2014)).

(日) (間) (目) (目) (目)

Parameter space

ヘロト 人間 とくきとくきとう

€ 990

- Blue region allowed by the inequality, NSC value blue dot,
- red line Λ-hypernuclei

EOS Nuclear vs Hypernuclear Matter

- Dashed (blue) nuclear, full (red) hypernuclear + variation of the scalar σ meson hypernuclear couplings.
- Parameters of nuclear functional: $\rho_0 = 0.152 \text{ fm}^{-3}$, binding energy per nucleon E/A = -16.14 MeV, incompressibility $K_0 = 250.90 \text{ MeV}$, symmetry energy J = 32.30 MeV, symmetry energy slope L = 51.24 MeV, and symmetry incompressibility $K_{sym} = -87.19 \text{ MeV}$ all taken at saturation density

Abundances of hyperons

- Left panel: T = 0, soft vs hard EOS
- Right panel: T = 50 MeV, neutrino-less vs neutrino-full matter

Mass vs Radius relationship

The solid (blue) lines show the cases $x_{\Sigma\sigma} = 0.26$ and $x_{\Lambda\sigma} = 0.58$ (upper panel) and $x_{\Sigma\sigma} = 0.52$ and $x_{\Lambda\sigma} = 0.448$ (lower panel). The (red) dots show the cases $x_{\Sigma\sigma} = 0.66$ and $x_{\Lambda\sigma} = 0.58$ (upper panel) and $x_{\Sigma\sigma} = 0.66$ and $x_{\Lambda\sigma} = 0.448$ (lower panel).

Parameter space

- Blue region allowed by the inequality, NSC value the blue dot
- red line Λ-hypernuclei,
- left of square (inset) along red line constraint from stars
- Best values of parameters

$$x_{\sigma\Lambda} = 0.6164, \quad 0.15 \le x_{\sigma\Sigma} \le 0.45,$$
 (14)

II. Quark Matter Equation of State for Compact Stars

Nambu-Jona-Lasinio Lagrangian:

$$\mathcal{L}_{Q} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - \hat{m})\psi + G_{V}(\bar{\psi}i\gamma^{0}\psi)^{2} + G_{S}\sum_{a=0}^{8}[(\bar{\psi}\lambda_{a}\psi)^{2} + (\bar{\psi}i\gamma_{5}\lambda_{a}\psi)^{2}] + G_{D}\sum_{\gamma,c}[\bar{\psi}_{\alpha}^{a}i\gamma_{5}\epsilon^{\alpha\beta\gamma}\epsilon_{abc}(\psi_{C})_{\beta}^{b}][(\bar{\psi}_{C})_{\rho}^{r}i\gamma_{5}\epsilon^{\rho\sigma\gamma}\epsilon_{rsc}\psi_{\sigma}^{8}] - K\left\{\det_{f}[\bar{\psi}(1+\gamma_{5})\psi] + \det_{f}[\bar{\psi}(1-\gamma_{5})\psi]\right\},$$
(15)

quark spinor fields ψ_{α}^{a} , color a = r, g, b, flavor ($\alpha = u, d, s$) indices, mass matrix $\hat{m} = \text{diag}_{f}(m_{u}, m_{d}, m_{s}), \lambda_{a} a = 1, ..., 8$ Gell-Mann matrices. Charge conjugated $\psi_{C} = C\bar{\psi}^{T}$ and $\bar{\psi}_{C} = \psi^{T}C C = i\gamma^{2}\gamma^{0}$.

- *a* sum is over the 8 gluons
- G_S is the scalar coupling fixed from vacuum physics; G_D is the scalar coupling, which is related to the G_S via Fierz transformation

うして ふぼう ふほう ふほう しょうく

• *G_D* is treated as a free parameter

Pairing patterns: Order parameter

 $\Delta \propto \langle 0 | \psi^a_{\alpha\sigma} \psi^b_{\beta\tau} | 0 \rangle$

- Antisymmetry in spin σ, τ for the BCS mechanism to work
- Antisymmetry in color *a*, *b* for attraction
- Antisymmetry in flavor to avoid Pauli blocking

At low densities 2SC phase (Bailin and Love '84)

$$\Delta \propto = \Delta \epsilon^{ab3} \epsilon_{\alpha\beta}$$

At high densities we expect 3 flavors of u, d, s massless quarks. The ground state is the color-flavor-locked phase (Alford, Rajagopal, Wilczek '99)

$$\Delta \propto \langle 0 | \psi^a_{\alpha L} \psi^b_{\beta L} | 0 \rangle = - \langle 0 | \psi^a_{\alpha R} \psi^b_{\beta R} | 0 \rangle = \Delta \epsilon^{abC} \Delta \epsilon_{\alpha \beta C}$$

うして ふぼう ふほう ふほう しょうく

EoS with equilibrium among nuclear, hyperonic, 2SC- and CFL-quark phases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�@

Mass vs Radius relationship

イロト イロト イモト イモト

- Dashed only 2SC, grey includes CFL.
- Stability is achieved for $G_V > 0.2$ and transition densities few ρ_0
- Left panel rapidly rotating stars

Parameter space

ヘロト 人間 とくほとう ほとう

æ

- Below dashed-dotted: 2SC stars are stable
- To the right of dashed curves CFL are stable few ρ_0

Cooling of Hybrid Stars

III. Non-standard (exotic) cooling of neutron stars

Cooling processes in quark matter

Quark cores of NS emit neutrons via: $d \rightarrow u + e + \bar{\nu}_e$ $u + e \rightarrow d + \nu_e$. The rate of the process is

 $\epsilon_{\nu\bar{\nu}} \propto \Lambda^{\mu\lambda}(q_1, q_2)\Im \Pi^R_{\mu\lambda}(q).$

via the response function

$$\Pi_{\mu\lambda}(q) = -i \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr}\left[(\Gamma_-)_{\mu} S(p)(\Gamma_+)_{\lambda} S(p+q)\right], \quad \Gamma_{\pm}(q) = \gamma_{\mu}(1-\gamma_5) \otimes \tau_{\pm}$$

with propagators

$$S_{f=u,d} = i\delta_{ab}\frac{\Lambda^+(p)}{p_0^2 - \epsilon_p^2}(\not p - \mu_f\gamma_0), \quad F(p) = -i\epsilon_{ab3}\epsilon_{fg}\Delta\frac{\Lambda^+(p)}{p_0^2 - \epsilon_p^2}\gamma_5C$$

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト 一臣 - つくで

CSC phases show non-trivial dependence on gap

- Two-flavor phase (2SC) No gapless excitations suppressed emissivities
- Crystalline (LOFF) phase Gapless excitations unsuppressed emissivities

ヘロト 不聞 と 不良 と 不良 とう

Temperature evolution

Cooling simulation of stars with quark matter cores, (D. Hess, A. Sedrakian, Phys. Rev. D 84, 063015 (2011))

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Phase diagram

• Can Cas A be a massive compact star with a quark core?

• Cas A cooling can be explained by a $1.4M_{\odot}$ star using as a cooling agent the pair-breaking processes.

CAS A: a cooling quark star?

- Two-parameter fit to the Cas A: w the width of the transition and T^* the temperature of the transition
- The blue quark gap is a further parameter.

Cas A and QCD phase diagram

IV. Rotation Induced Phase Transition to Color Superconducting State

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Improved equation of state: DD-ME2 +3f NJL model

Improves on Bonanno-Sedrakian (2012) by using more realistic nuclear equation of state (DD-ME2).

Frequency vs mass for rapidly rotating stars

Pulsar	M/M_{\odot}	P(ms)
J1740 - 5340	1.53 ± 0.19	3.65
J1903 + 0327	1.67 ± 0.01	2.15
J1909 - 3744	1.44 ± 0.024	2.95
J1614 - 2230	1.97 ± 0.04	3.15
J1748 — 2446ad	-	1.395

うして ふぼう ふほう ふほう しょうく

No constraints from rotation so far, but many more (millisecond)-pulsars will be observed $2.000 \rightarrow 10.000$ with the operation of SKA by 2020.

A new path to (color) superconductivity

Rotation induced phase transition to superfluid state

The star shrinks, density in the center increases overcoming the threshold for nucleation of color superconducting quark matter.

Phase transition within the QCD phase diagram

For very massive stars there might be a phase transition between the two color superconducting phases of QCD: CFL \rightarrow 2SC.

э

Neutron stars with hyperonic cores are not excluded by currently available data.

Combined with the hypernuclear data we can constrain some of the couplings in hypernuclear sector.

Cas A behavior may be explained as a phase transition within the QCD phase diagram.

The core of decelerating or spinning-up star can undergo transition from and to superconducting quark matter.

Conclusion

References

- G. Colucci and A. Sedrakian, Equation of state of hypernuclear matter: impact of hyperon–scalar-meson couplings. Phys. Rev. C 87, 055806 (2013)
- N. S. Ayvazyan, G. Colucci, D. H. Rischke and A. Sedrakian, *Rotating hybrid compact stars.* Astron. and Astrophys. 559, A118 (2013).
- E. N. E. van Dalen, G. Colucci and A. Sedrakian, *Constraining hypernuclear density functional with* Λ-hypernuclei and compact stars. Physics Letters B 734, 383 (2014).

 L. Bonanno, A. Sedrakian, Composition and stability of hybrid stars with hyperons and quark color-superconductivity. Astron. and Astrophys. 539, A16 (2012).