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- Observing neutron stars can primarily impact the following
fundamental physics questions:
-»- Whatis the equation of state of neutron stars?
-» What maximum mass can they have and is there a state of matter
beyond?
-2 Is General Relativity the correct theory of gravity when gravity becomes
super strong?

-» Whatis the nature of dark energy and how does it evolve?
-» May also provide insight into related questions:

-» How do neutron stars form and evolve?

-» Do relativistic instabilities occur in neutron stars, if so what is the nature
of such instabilities?

-» Whatis the crustal strength of neutron stars and what sort of ellipticity
are they able to support?

-»- Focus here on binary neutron star mergers
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-# Upcoming gravitational wave detectors

-»- Advanced detectors, Einstein Telescope

-»- Sensitivity to binary neutron star mergers
-» Distance reach, signal duration, etc.
-» Measurement accuracy of distance and NS masses
-» Fundamental physics with the observation of BNS
mergers

-» NS equation of state
- Strong field tests of GR
-»- Dark energy equation of state
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Advanced Detectors:
Ca2015-2025
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Detector Beam Pattern Function
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Challenge of Gravitational Wave Searches
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Beyond Advanced Detectors:
2G+ and Einstein Telescope
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-»-  Amplitude from a source of size Ratadistance Dis
h=(Asymmetry factor) (GM/Dc?) (GM/Rc?)
-»  Luminosity of a binary of size R can be inferred from the chirp rate:

L - (Asymmetry factor) x (GM/Rc?)®

.»- Frequency of the waves is the dynamical frequency f~+/Gp

-» For binaries dominant gravitational-wave frequency is twice the orbital
frequency: A binary of 20 solar masses merges at a frequency of 200 Hz

-»  Polarization can be measured with a detector network

-»  Source Location can be determined with a network of three or more
detectors
.» Source Distance can be inferred if the signal model is accurate
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Sky Localization Error Ellipses:
Binary Neutron Stars at 160 Mpc; Uses only Timing Information

Red crosses denote
regions where the
network has blind spots 5

Fairhurst 201 |
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Comparison of Gravitational Wave Detector Network Sky Localization

K. Grover,! S. Fairhurst,? B. F. Farr,>! I. Mandel,! C. Rodriguez,® T. Sidery,! and A. Vecchio!

Sky Localization
Improves when all the
information is included:

A factor 3 better than
was thought before

Median size of patches
could be as small as
about 2.5 Sq Degrees
with LIGO-Virgo network

Approximations

Declination (degrees)
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How long do BNS signals last in our detectors?
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NS Equation_of_State
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Maximum Mass of a Neutron Star and Mass Gap

-» Heaviest known neutron star has a mass of 2 solar
masses

-» Although many equations of state are ruled out by this model
many more remain

-» Finding heavier neutron stars is not likely to fix the
problem

-2 Many EoS predict heavier neutron stars with exotic cores

-®-Measuring both NS mass and Radius is the key

-» If radius can be measured to within a few km then EoS will be
very tightly constrained

-» Advanced detectors would go someway but ET will be
critical to resolving the issues

25
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Effect of tides in BNS inspiral

K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.
Sundararajan, Phys. Rev. D, 71, 084008 (2005), arXiv:gr-
qc/0411146.

Prp(f) = 2nfte = pe = 5 128nx5/2 Z !

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D, 81, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].
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sources at 300 Mpc
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NS EoS with a population of BNS mergers:
Advanced detectors, ~25 merger events

| 95% conf MST
| 95%confH4 |
| W 95% conf SQM3 |
| --- True value 5

Events
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Dark Energy Equation_of_State
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Why are BNS signals standard sirens?

-» Luminosity distance D can be inferred if one can measure:

-»- the flux of radiation F and D L
-» absolute luminosity L L= A F
Schutz Nature 1986

- Flux of gravitational waves determined by amplitude of
gravitational waves measured by our detectors

.» Absolute luminosity can be inferred from the rate f at
which the frequency of a source changes

-» Not unlike Cephied variables except thatfis completely
determined by general relativity

-# Therefore, compact binaries are self calibrating standard

sirens
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Advanced LIGO Distance Reach to Binary

Coalescences
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Hubble Constant from Advanced Detectors

33

Assuming short_hard—_GRBs are binary neutron stars
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we find that one year of observation should be enough
to measure Hy to an accuracy of ~ 1% if SHBs are dom-
inated by beamed NS-BH binaries using the “full” net-
work of LIGO, Virgo, AIGO, and LCGT—admittedly,
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Hubble Constant from Advanced Detectors
without EM counterparts

25 events:

H, = 69 £ 3 km s7*Mpc (~4% at 95% confidence)
50 events:

H, =69 + 2 km s *Mpc (~3% at 95% confidence)
WMAP7+BAO+Snla (Komatsu et al.,2011):

H =70.2 £ 1.4 km s Mpc (~2% at 68%
confidence)

Del Pozzo, 2011

Tuesday, 1 July 2014



ET Distance Reach to Coalescing Binaries
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ET Distance Reach to Coalescing Binaries
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ET: Measuring Dark Energy and Dark Matter >’

-» ET will observe 100’s of binary neutron stars and GRB
associations each year

-»- GRBs could give the host location and red_shift, GW
observation provides D,

Class. Quantum Grav. 27 (2010) 215006 SOThYO pra kash et al 2010

-1.27

~1.4}

-0.1 0 0.1 0.2 0.3 0.4
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Measuring w and its variation with z

Baskaran, Van Den Broeck, Zhao, Li, 2011

1y W) = Dae/pae = wo + waz/(1+ 2)

—— BAO+CMB |
—— SNIa+CMB ]|
—— GW+CMB

0.6 -
04+

0.2
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Hubble without the Hubble:
Cosmology using advanced gravitational-wave detectors alone

Stephen R. Taylor*
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Jonathan R. Gair'
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Ilya Mandel?
NSF Astronomy and Astrophysics Postdoctoral Fellow,
MIT Kavli Institute, Cambridge, MA 02139; and

School of Physics and Astronomy, Unwversity of Birmingham, FEdgbaston, Birmingham, B15 2TT
(Dated: January 31, 2012)

Cosmology with the lights off: Standard sirens in the Einstein Telescope era

Stephen R. Taylor* and Jonathan R. Gairf
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
(Dated: July 6, 2012)
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Cosmology without EM Counterparts *

-2 Distribution of Chirp Mass

M ~ N (g, 02)7
e =~ 2(0.25)3 P uns, 0 ~ v2(0.25)% Pong,
UNS € [1.0, 1.5]M@, ONS € [0,0.S]M@

w(a) = wy + we(l —a),

w(z):wo—l—wc,,(ljZ).

Taylor, Gair 2012
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Measuring dark energy EoS and its  *

variation with redshift

-1.4 -1.2 —1 -0.8 -0.6
0 Taylor, Gair 2012
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Measuring red_shift from GW observations alone
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Messenger—_Read method to measure redshift

makes use of the post_Newtonian tidal term
K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.

Sundararajan, Phys. Rev. D, 71, 084008 (2005), arXiv:gr-
qc/0411146.

Prp(f) = 2nfte = pe = 5 128nx5/2 Z !

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D, 81, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].
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Measurement 1 ;
accuracy of
source redshift
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N
<
102 . ,
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Messenger and Read, PRL, 2011 redshift z
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Host redshifts from gravitational wave observations >

Host-galaxy redshifts from gravitational-wave observations of binary neutron star mergers
C. Messenger,! Kentaro Takami,>? Sarah Gossan,* Luciano Rezzolla,>? and B. S. Sathyaprakash’
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Binary Neutron Star GW Spectrum — post Merger
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Measurement Accuracies of Char. Frequencies
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3.0

How well can we measure z?
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Topics for discussion

-2 Missing post-Newtonian terms

-» Tidal terms areat5and 5.5 PN order; unknown terms at4 and 4.5
PN severely bias the estimation of parameters

-» What progress can be made in computing 4 and 4.5 PN terms?
-» Are there other ways of mitigating the effect of unknown PN terms?
-» Signal from the merger phase and bar mode instability

-» Would it be possible to build a complete analytic model for the
signal emitted during and post-merger?

-» Effect of strong magnetic fields, high spins, multi-
component fluid, ...
-» How far away are we from “realistic” BNS simulations?

-»- How good are these simulations: stability and convergence?
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