Understanding Neutron Stars from Gravitational Wave Observations

Binary Neutron Star Coalescence as a Fundamental Physics Laboratory: INT, Seattle, 30 June 2014

B.S. Sathyaprakash

School of Physics and Astronomy, Cardiff University

 Observing neutron stars can primarily impact the following fundamental physics questions:

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?
- May also provide insight into related questions:

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?
- May also provide insight into related questions:
 - How do neutron stars form and evolve?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?
- May also provide insight into related questions:
 - How do neutron stars form and evolve?
 - Do relativistic instabilities occur in neutron stars, if so what is the nature of such instabilities?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?
- May also provide insight into related questions:
 - How do neutron stars form and evolve?
 - Do relativistic instabilities occur in neutron stars, if so what is the nature of such instabilities?
 - What is the crustal strength of neutron stars and what sort of ellipticity are they able to support?

- Observing neutron stars can primarily impact the following fundamental physics questions:
 - What is the equation of state of neutron stars?
 - What maximum mass can they have and is there a state of matter beyond?
 - Is General Relativity the correct theory of gravity when gravity becomes super strong?
 - What is the nature of dark energy and how does it evolve?
- May also provide insight into related questions:
 - How do neutron stars form and evolve?
 - Do relativistic instabilities occur in neutron stars, if so what is the nature of such instabilities?
 - What is the crustal strength of neutron stars and what sort of ellipticity are they able to support?
- Focus here on **binary** neutron star mergers

• Upcoming gravitational wave detectors

• Upcoming gravitational wave detectors

Advanced detectors, Einstein Telescope

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.
 - Measurement accuracy of distance and NS masses

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.
 - Measurement accuracy of distance and NS masses
- Fundamental physics with the observation of BNS mergers

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.
 - Measurement accuracy of distance and NS masses
- Fundamental physics with the observation of BNS mergers
 - NS equation of state

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.
 - Measurement accuracy of distance and NS masses
- Fundamental physics with the observation of BNS mergers
 - NS equation of state
 - Strong field tests of GR

- Upcoming gravitational wave detectors
 - Advanced detectors, Einstein Telescope
- Sensitivity to binary neutron star mergers
 - -> Distance reach, signal duration, etc.
 - Measurement accuracy of distance and NS masses
- Fundamental physics with the observation of BNS mergers
 - NS equation of state
 - Strong field tests of GR
 - Dark energy equation of state

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

American LIGO Hanford and Livingston detectors

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

Advanced Detectors: Ca 2015-2025

Detector Networks 2015-

Baselines in light travel time (ms)

6

Detector Networks 2016-

Baselines in light travel time (ms)

7

Detector Networks 2018-

Baselines in light travel time (ms)

Detector Networks 2022-

Baselines in light travel time (ms)

Detector Beam Pattern Function

- Gives the sensitivity of a detector to sources at different parts of the sky
- For a single
 detector the beam
 is a quadrupole
- For a network of 5

 or more globally
 distributed
 detectors the
 pattern can
 essentially become
 isotropic

Challenge of Gravitational Wave Searches

- A network of gravitational wave detectors is always on and sensitive to most of the sky
- Signals can be milliseconds long or last for years
- Multiple signals could be in band but with different amplitudes
- We can integrate and build SNR by coherently tracking signals in phase

Advanced LIGO Sensitivity

Tuesday, 1 July 2014

12
Beyond Advanced Detectors: 2G+ and Einstein Telescope

2008–2011 European Conceptual Design Study

2013_2016 ET R&D

Underground detectors should have Significant reduction in GG

16

Sources in Advanced Detectors

Sources in ET

• Amplitude from a source of size R at a distance D is

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

 $L = (\text{Asymmetry factor}) \times (\text{GM}/\text{Rc}^2)^5$

• Gravitational wave detectors are essentially detectors of neutron stars and black holes

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency $f \sim \sqrt{G\rho}$

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency $f \sim \sqrt{G\rho}$
 - For binaries dominant gravitational_wave frequency is twice the orbital frequency: A binary of 20 solar masses merges at a frequency of 200 Hz

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency $f \sim \sqrt{G\rho}$
 - For binaries dominant gravitational_wave frequency is twice the orbital frequency: A binary of 20 solar masses merges at a frequency of 200 Hz
- **Polarization** can be measured with a detector network

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency $f \sim \sqrt{G\rho}$
 - For binaries dominant gravitational_wave frequency is twice the orbital frequency: A binary of 20 solar masses merges at a frequency of 200 Hz
- Polarization can be measured with a detector network
- Source Location can be determined with a network of three or more detectors

• Amplitude from a source of size R at a distance D is

 $h = (\text{Asymmetry factor}) (\text{GM} / \text{Dc}^2) (\text{GM} / \text{Rc}^2)$

• **Luminosity** of a binary of size R can be inferred from the chirp rate:

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency $f \sim \sqrt{G\rho}$
 - For binaries dominant gravitational_wave frequency is twice the orbital frequency: A binary of 20 solar masses merges at a frequency of 200 Hz
- Polarization can be measured with a detector network
- Source Location can be determined with a network of three or more detectors
- **Source Distance** can be inferred if the signal model is accurate

Sky Localization Error Ellipses:

Binary Neutron Stars at 160 Mpc; Uses only Timing Information

Red crosses denote regions where the network has blind spots

20

Fairhurst 2011

Sky Localization Error Ellipses:

Binary Neutron Stars at 160 Mpc; Uses only Timing Information

Fairhurst 2011

Comparison of Gravitational Wave Detector Network Sky Localization Approximations

K. Grover,¹ S. Fairhurst,² B. F. Farr,^{3,1} I. Mandel,¹ C. Rodriguez,³ T. Sidery,¹ and A. Vecchio¹

Sky Localization Improves when all the information is included:

A factor 3 better than was thought before

Median size of patches could be as small as about 2.5 Sq Degrees with LIGO_Virgo network

How long do BNS signals last in our detectors?

NS Equation_of_State

Maximum Mass of a Neutron Star and Mass Gap

- Heaviest known neutron star has a mass of 2 solar masses
 - Although many equations of state are ruled out by this model many more remain
- Finding heavier neutron stars is not likely to fix the problem
 - Many EoS predict heavier neutron stars with exotic cores
- Measuring both NS mass and Radius is the key
 - If radius can be measured to within a few km then EoS will be very tightly constrained

 Advanced detectors would go someway but ET will be critical to resolving the issues

Effect of tides in BNS inspiral

K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A. Sundararajan, Phys. Rev. D, **71**, 084008 (2005), arXiv:gr-qc/0411146.

$$\Psi_{PP}(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\eta x^{5/2}} \sum_{k=0}^{N} \alpha_k x^{k/2}$$

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys. Rev. D, **81**, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].

$$\Psi^{\text{tidal}}(f) = \sum_{a=1,2} \frac{3\lambda_a}{128\eta} \left[-\frac{24}{\chi_a} \left(1 + \frac{11\eta}{\chi_a} \right) \frac{x^{5/2}}{M^5} \right]$$

$$-\frac{5}{28\chi_a} \left(3179 - 919\chi_a - 2286\chi_a^2 + 260\chi_a^3 \right) \frac{x^{7/2}}{M^5} \right]$$

$$x = (\pi M f)^{2/3} \qquad \lambda = (2/3) R_{\text{ns}}^5 k_2$$

$$(3)$$

BNS mergers and equation of state of NS

- Spectrum of gravitational radiation from black hole binaries is featureless
- Radiation from binary neutron star mergers carries an imprint of the star's mass and equation of state

Tuesday, 1 July 2014

NS EoS with a population of BNS mergers: Advanced detectors, ~25 merger events

Dark Energy Equation_of_State

Why are BNS signals standard sirens? ³¹

- Luminosity distance *D* can be inferred if one can measure:
 - the flux of radiation F and
 - ⋅ absolute luminosity L

 $D_L = \sqrt{\frac{L}{4\pi F}}$

Schutz Nature1986

- Flux of gravitational waves determined by amplitude of gravitational waves measured by our detectors
- Absolute luminosity can be inferred from the rate f at which the frequency of a source changes
 - Not unlike Cephied variables except that *f* is completely determined by general relativity
- Therefore, compact binaries are self_calibrating standard sirens

Advanced LIGO Distance Reach to Binary Coalescences

Hubble Constant from Advanced Detectors ³³ Assuming short_hard_GRBs are binary neutron stars

we find that *one* year of observation should be enough to measure H_0 to an accuracy of ~ 1% if SHBs are dominated by beamed NS-BH binaries using the "full" network of LIGO, Virgo, AIGO, and LCGT—admittedly,

Nissanke et al 2009

Hubble Constant from Advanced Detectors

• 25 events:

H₀= 69 ± 3 km s⁻¹ Mpc⁻¹ (~4% at 95% confidence)

50 events:

- $H_0 = 69 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (~3% at 95% confidence)
- WMAP7+BAO+SnIa (Komatsu et al.,2011):

H_o= 70.2 ± 1.4 km s⁻¹ Mpc⁻¹ (~2% at 68% confidence)

Del Pozzo, 2011

ET Distance Reach to Coalescing Binaries

ET Distance Reach to Coalescing Binaries

ET Distance Reach to Coalescing Binaries

ETB, z=1 10^{3} 10 20 Visibility 30 of **Binary** 10^{2} 50 Inspirals 70 M_2/M_{\odot} in 60 80 Einstein 10 Telescope 40 20 10 10^{2} 10^{3} M_1/M_{\odot}

ET: Measuring Dark Energy and Dark Matter ³⁷

- ET will observe 100's of binary neutron stars and GRB associations each year
- GRBs could give the host location and red_shift, GW observation provides DL

Class. Quantum Grav. 27 (2010) 215006

Sathyaprakash et al 2010

Measuring w and its variation with z Baskaran, Van Den Broeck, Zhao, Li, 2011 $w(z) \equiv p_{de}/\rho_{de} = w_0 + w_a z/(1+z)$ **0.8 0.6 BAO+CMB SNIa+CMB GW+CMB**

Hubble without the Hubble: Cosmology using advanced gravitational-wave detectors alone

Stephen R. Taylor*

Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Jonathan R. Gair[†]

Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Ilya Mandel[‡]

NSF Astronomy and Astrophysics Postdoctoral Fellow, MIT Kavli Institute, Cambridge, MA 02139; and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (Dated: January 31, 2012)

Cosmology with the lights off: Standard sirens in the Einstein Telescope era

Stephen R. Taylor^{*} and Jonathan R. Gair[†] Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK (Dated: July 6, 2012)

Cosmology without EM Counterparts

Distribution of Chirp Mass

$$\mathcal{M} \sim N(\mu_c, \sigma_c^2),$$

$$\mu_c \approx 2(0.25)^{3/5} \mu_{\rm NS}, \quad \sigma_c \approx \sqrt{2}(0.25)^{3/5} \sigma_{\rm NS},$$

$$\mu_{\rm NS} \in [1.0, 1.5] M_{\odot}, \, \sigma_{\rm NS} \in [0, 0.3] M_{\odot}$$

$$w(a) = w_0 + w_a(1-a),$$

 $w(z) = w_0 + w_a\left(\frac{z}{1+z}\right).$

Taylor, Gair 2012

Measuring dark energy EoS and its variation with redshift

41

Measuring red_shift from GW observations alone

Messenger_Read method to measure redshift makes use of the post_Newtonian tidal term

43

K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A. Sundararajan, Phys. Rev. D, **71**, 084008 (2005), arXiv:gr-qc/0411146.

$$\Psi_{PP}(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\eta x^{5/2}} \sum_{k=0}^{N} \alpha_k x^{k/2}$$

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys. Rev. D, **81**, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].

$$\Psi^{\text{tidal}}(f) = \sum_{a=1,2} \frac{3\lambda_a}{128\eta} \left[-\frac{24}{\chi_a} \left(1 + \frac{11\eta}{\chi_a} \right) \frac{x^{5/2}}{M^5} \right]$$

$$-\frac{5}{28\chi_a} \left(3179 - 919\chi_a - 2286\chi_a^2 + 260\chi_a^3 \right) \frac{x^{7/2}}{M^5} \right]$$

$$x = (\pi M f)^{2/3} \qquad \lambda = (2/3)R_{\text{ns}}^5 k_2$$

$$(3)$$

Host redshifts from gravitational wave observations ⁴⁵

Host-galaxy redshifts from gravitational-wave observations of binary neutron star mergers

C. Messenger,¹ Kentaro Takami,^{2,3} Sarah Gossan,⁴ Luciano Rezzolla,^{3,2} and B. S. Sathyaprakash⁵

Binary Neutron Star GW Spectrum – post Merger

Measurement Accuracies of Char. Frequencies

47

How well can we measure z?

Topics for discussion

- Missing post_Newtonian terms
 - Tidal terms are at 5 and 5.5 PN order; unknown terms at 4 and 4.5
 PN severely bias the estimation of parameters
 - What progress can be made in computing 4 and 4.5 PN terms?
 - Are there other ways of mitigating the effect of unknown PN terms?
- Signal from the merger phase and bar mode instability
 - Would it be possible to build a complete analytic model for the signal emitted during and post_merger?
- Effect of strong magnetic fields, high spins, multicomponent fluid, ...
 - How far away are we from "realistic" BNS simulations?
 - How good are these simulations: stability and convergence?