Joint Gravitational Wave and Electromagnetic Observations of Neutron-Star–Black-Hole Coalescing Binaries

Francesco Pannarale *in collaboration with Frank Ohme*

Cardiff University

INT, University of Washington, Seattle - July 22, 2014

Introduction

Introduction

The inspiral...

- BH-BH template banks safe enough for NS-BH inspiral searches $(< 1\%$ losses)
- Stiff equations of state are marginally distinguishable

[[Pannarale, Rezzolla, Ohme, Read \(2011\)](http://journals.aps.org/prd/abstract/10.1103/PhysRevD.84.104017)]

...and beyond

The tidal deformability $\Lambda = 2 k_2 R_{\rm NS}^5/(3\mathit{M}_{\rm NS})^5$ may be extracted at high frequencies

[[Lackey, Kyutoku, Shibata, Brady, Friedman \(2012\)](http://journals.aps.org/prd/abstract/10.1103/PhysRevD.85.044061)]

- Coherently combining the (small) inspiral and high-frequency matter effects improves the measurability of Λ by a factor \sim 3
- However, incorporating correlations between all the waveform parameters then decreases the measurability of Λ by a factor \sim 3

[[Lackey, Kyutoku, Shibata, Brady, Friedman \(2014\)](http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.043009)]

Introduction

- Given a GW observation, do we expect an EM counterpart?
- Given an SGRB trigger, can we improve a GW offline search?
- ³ Given a *joint* GW+EM observation, can we constrain the NS equation of state (EOS)?

[[Pannarale & Ohme, arXiv:1406.6057, ApJL accepted](http://arxiv.org/abs/1406.6057)]

14 B K 4 B

Part I: GW measurement

GW detection will not be able to determine all parameters with high accuracy [[Ohme, Nielsen, Keppel, & Lundgren \(2013\)](http://dx.doi.org/10.1103/PhysRevD.88.042002)]

• Understanding the waveform structure throughout the parameter space allows for efficient search strategies and correct interpretations of future observations

Part I: GW measurement

Principal component analysis (PCA)

PCA of post-Newtonian expansion coefficients: computationally cheap and accurate waveform (dis)agreement calculation technique [Tanaka & Tagoshi (2000), Sathyaprakash & Schutz (2003), Pai & Arun (2013), Brown *et al* (2012)]

Eigenvectors µ*ⁱ* represent *principal directions* ranked by their eigenvalues λ*ⁱ*

$$
\left\|\Delta h\right\|^2 = \sum_i \lambda_i (\Delta \mu_i)^2
$$

Degeneracies

- $\mu_1 \sim \mathcal{M}_{\text{Chirp}} = (\mathcal{M}_{\text{NS}} \mathcal{M}_{\text{BH}})^{3/5}/(\mathcal{M}_{\text{NS}} + \mathcal{M}_{\text{BH}})^{1/5}$ (extremely well measurable)
- \bullet μ_2 : mass-ratio/spin degeneracy (well constrainable)
- Higher components add less information, neglected here
- \Rightarrow GW measurement \rightarrow 1D line in the M_{BH} M_{BH} M_{BH} – M_{NS} _{T_{Kf BH} space}

Part I: GW measurement

Part II: EM counterparts $\frac{1}{2}$

M14-7-S9 13 23 1.5 11 14 [1](#page-6-0)6

-
- o Size: 10 1000km
	- Density: 10^{8-12} g/cm³
	- Temperature: >MeV
- **a** Accretion rate **of the Unbour**

• Disk mass: 10⁻³ – 0.1*M*_☉ **•** Angular momentum distribution \bullet Disk mass: 10⁻³ – 0.1 M_\odot $\qquad \bullet$ Angular momentum distribution

④ → → ⇒ →

- Size: 10 − 1000km
	- \bullet ν cooling
	- **•** Composition
- Accretion rate **A 10 ms after merger. All luminosities are in united average are in united in unites of 1052**

Part II: EM counterparts $\frac{1}{2}$

baryonic matter. *Center:* Electron fraction in the vertical slice perpendicular to the orbital plane of the disk which passes through the initial

localistication of the black hole is the density condition (SGRR ignition) EM counterpart production condition (SGRB ignition) − 2 − 2 √

 $\mathcal{W}_{\text{b,disk}} > \mathcal{W}_{\text{b,Threshold}} \gtrsim 0.01 \mathcal{M}_{\odot}$

Francesco Pannarale **INT, University of Washington, Seattle - July 22, 2014**

Part III: Combining the information

Algorithm

- **1** Pick a class of target systems ($\chi_{\text{BH}} = 0.998$ to maximize $M_{\text{h disk}}$)
	- (A) Constant chirp mass, as accurately determined by GW measurement.
	- (B) Systems degenerate with $M_{NS} = 1.35 M_{\odot}$, $\chi_{f BH} = \text{const.}$
- ² Perform PCA, identify GW degeneracies through constant principal components (Advanced LIGO ZDHP, 15 Hz cutoff)
- ³ Pick an equation of state
- 4 Calculate $M_{\text{b,disk}}$ for each point along the GW degeneracy
- **6** Regions with $M_{b,\text{disk}} > M_{b,\text{Threshold}} = 0.03 M_{\odot}$ are EM loud
- **6** Overlay GW degeneracies with EM loud parameter space regions

K 何 ▶ K ヨ ▶ K ヨ ▶

メロメメ 倒 メメ きょくきょう

- Regions in which EM follow-ups are favourable/unfavourable
- Increasing(decreasing) the target $\chi_{\hat{L}, BH} (M_{Chirp})$ enhances the chances of having an EM counterpart

- Regions in which EM follow-ups are favourable/unfavourable
- Increasing(decreasing) the target $\chi_{\hat{L},BH}$ (M_{Chirp}) enhances the chances of having an EM counterpart

- Regions in which EM follow-ups are favourable/unfavourable
- Increasing(decreasing) the target $\chi_{\hat{L}, BH} (M_{Chirp})$ enhances the chances of having an EM counterpart

- Regions in which EM follow-ups are favourable/unfavourable
- Increasing(decreasing) the target $\chi_{\hat{L},BH}$ (M_{Chirp}) enhances the chances of having an EM counterpart

- GW degeneracies hardly intersect with EOS thresholds
- \bullet Joint GW+EM detection \rightarrow lower bound on the NS EOS stiffness
- Low $\chi_{\rm LBH}$ \rightarrow exclude soft EOSs (possibly strange quark matter) for most M_{Chirp} values

Part V: Improving offline searches

An SGRB is detected and it triggers and offline NS-BH GW search:

• M_{NS} ∈ [1, 2.8] M_{\odot} , M_{BH} ∈ [3, 15] M_{\odot} , $\chi_{\text{f, BH}}$ ∈ [-0.95, 0.95]

Conservatively estimate the size of parameter space where an SGRB counterpart cannot be ignited:

- \bullet χ _{BH} = 0.998
- 2H 2-piecewise-polytrope → high $\mathit{M}_{\text{NS}}^{\text{Max}}$ \sim 2.8 M_{\odot} and large R_{NS}
- No SGRB counterpart for $M_{\text{b,disk}} = 0 M_{\odot}$

- \Rightarrow At most 35%(25%) of the parameter space is useful in following up an SGRB trigger
- \Rightarrow 43%(48%) of the templates cover the SGRB silent region
- \Rightarrow Increase in speed and sensitivity

(ロ) (何) (ヨ) (ヨ)

Conclusions

- Conventional wisdom (high χ _{BH}, low M_{BH} favour SGRBs) translated into quantitative predictions for CBC searches
- Joint GW+EM detection potentially places lower bound on EOS stiffness
- Developed framework to assess the importance of an EM follow-up

 Ω

- Can easily be turned into an add-on for search/parameter-estimation pipelines
- Potential speed-up in offline GW searches following SGRB triggers C