Progenitors of Neutron Starforming Supernovae

Ken Nomoto (Kavli IPMU, U. Tokyo)

Neutron star-forming supernovae

- 1) Magnetar-forming supernovae
 - GRB (XRF)-supernovae ?
 - Superluminous supernovae ?
- 2) Electron capture supernovae
- 3) Accretion induced collapse (AIC) of white dwarfs

GRB-SN Connection (GRB 030329 / SN 2003dh)

Stanek et al (2003) ;Hjorth et al (2003)

Spectraf Supernovae & Hypernovae

Bolometric Magnitude

⁵⁶Co-decay

Photoabsorption Excitation/Ionization

(L∝M(⁵⁶Ni) Shape:Mej

SNe [M_{ms}-E relation]

SNe [M_{ms}-M(⁵⁶Ni) relation]

Magnetar – X Ray Flash – Optical Light Curve ?

XRF 060218/ SN 2006aj (& XRF100316D/SN 2010bh)

Small Oxygen Mass < 1.3 M_{\odot} $M_{ej} \sim 2 M_{\odot} (M_{ms} \sim 20 M_{\odot})$ $E \sim 2 \times 10^{51} \text{ erg}$ $M(^{56}\text{Ni}) \sim 0.2 M_{\odot}$

- Neutron Starforming SN ?
- Magnetar-driven XRF ?
 Magnetar-powered LC?

(Pian+, Chornock+, Bufano+)

SN Ib 2005bf: Double Peak Light Curve

Superluminous Supernovae

Magnetar models for Superluminous SNe

Faint Supernovae

Neutron star-forming supernovae

- Magnetar-forming supernovae -- GRB (XRF)-supernovae ?
- 2) Electron capture supernovae
- 3) Accretion induced collapse (AIC) of white dwarfs

Final Fates of Stars:

 $M < 8 M_{\odot} \rightarrow Electron-Degenerate Core \rightarrow White Dwarf$ $M = 8 - 10 M_{\odot} \rightarrow Electron-Degenerate ONeMg Core \rightarrow ??$ $M > 10 M_{\odot} \rightarrow Fe Core \rightarrow Collapse (NS or BH)$

Evolution of the central density & temperature of 8.8 M_o star → Collapse

Electron Capture (EC) in 8-10 M_o Stars

Electron-degenerate O+Ne+Mg Core

- ²⁴Mg(e⁻,v)²⁴Na
 (e⁻,v)²⁴Ne
- ρ >4.0 × 10⁹gcm⁻³
- →collapse

(Nomoto 1984)

Evolution of 8 – 12 M_{\odot} Stars

(Jones, Hirschi, Nomoto+ 13; Takahashi+13; Ritossa+99)

Evolution of the O+Ne Core Carbon burning ($^{12}C+^{12}C$) \rightarrow X(^{16}O)=0.57, X(^{20}Ne)=0.34, X(^{23}Na)=0.06, X(^{24}Mg)=0.01, X(^{25}Mg)=0.02 URCA Cooling: e-capture (i) ^{A}Z + e⁻ $\rightarrow ^{A}(Z-1)$ + ν

Beta-decay (*ii*) ${}^{A}(Z-1) \rightarrow {}^{A}Z + e^{-} + \bar{\nu}$

URCA pairs: ${}^{27}\text{Al} \leftrightarrow {}^{27}\text{Mg}; {}^{25}\text{Mg} \leftrightarrow {}^{25}\text{Na}; {}^{23}\text{Na} \leftrightarrow {}^{23}\text{Ne}$

URCA Cooling → Higher Ignition Density

(Jones, Hirschi, Nomoto+13)

Ne-O shell burning (n-rich S, Si) & e-capture (n-rich Ne, Na) → Contraction

Final Fates of Stars:

 $M < 8 M_{\odot} \rightarrow Electron-Degenerate Core \rightarrow White Dwarf$

 $M = 8 - 8.8 M_{\odot} \rightarrow Mass Loss \rightarrow O+Ne White Dwarf$ Electron Capture (EC) Supernova M~8.8-9.5 M_• **Ne-O flame → does not reach the center** formation of a degenerate O+Ne core **EC Supernova** $M \sim 9.5 - 11 M_{\odot}$ **Ne-O flame** reaches the center (?) formation of an Fe core

 $M > 11 M_{\odot} \rightarrow central Ne-burn \rightarrow Fe Core \rightarrow NS or BH$

Presupernova density profiles

9M_☉ Star Neutrino Heating → Weak Explosion

Steep Density Gradient $\Rightarrow E_{exp} = 1 \times 10^{50} \text{ erg}$ $M_{ei} = 0.011 M_{\odot}$

→ Super-AGB star's H-He-rich Envelope (~0.5 - 5M_☉) Planetary Nebula-like

Nucleosynthesis Constraints

(Hoffman+ 08, Wanajo+09,11,13)

t_թ [ms] Kitaura, Janka, & Hillebrandt (2006)

2D explosion model of Electron Capture (EC) SN (9M_o star)

(B. Müller & H.-T. Janka 2011)

Yields from EC-SNe (relative to solar)

Neutron Star Masses

log (density)

Neutron star-forming supernovae

- 1) Magnetar-forming supernovae
 - GRB (XRF)-supernovae ?
- 2) Electron capture supernovae
- 3) Accretion induced collapse (AIC) of white dwarfs

AIC & Explosion of ONeMg WD

Close Binary: ONeMg WD + Companion Accretion \rightarrow M(WD) \rightarrow M(Chandra) \rightarrow Electron Capture Supernova

Shock Breakout of AIC: X-ray, UV Transients

(Tolstov et al. 14)

AIC vs. NS merger

Neutron star-forming supernovae

- 1) Magnetar-forming supernovae
 - GRB (XRF)-supernovae ?
- 2) Electron capture supernovae
- 3) Accretion induced collapse (AIC) of white dwarfs

4) Close Binary Evolution → Double NSs