## Signatures of Binary Neutron Star Mergers











#### In Collaboration with

(b)



Rodrigo Fernandez, Eliot Quataert, Geoff Bower, Dan Kasen (UC Berkeley) Edo Berger, Wen-Fai Fong (Harvard), Tony Piro, Dan Perley (Caltech) Almudena Arcones, Gabriel Martinez-Pinedo (GSI/TU Darmstadt)

Institute for Nuclear Theory Colloquium, U Washington, July 21, 2014

## Binary Neutron Star Mergers

#### **Gravitational Waves**

 $-\frac{1}{P}\frac{dP}{dt} = \frac{48}{5}\frac{G^3}{c^5}\frac{M^2}{a^4}$ 



#### **Hulse-Taylor Pulsar**



## 10 Known Galactic NS-NS Binaries

(Lorimer 2008)

|                                                                                                                                                                                      | J0737-3039                                        | J1518+4904                                         | B1534+12                                                                 | J1756 - 2251                                  | J1811-1736                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|
| P [ms]                                                                                                                                                                               | 22.7/2770                                         | 40.9                                               | 37.9                                                                     | 28.5                                          | 104.2                                          |
| $P_{\rm b}$ [d]                                                                                                                                                                      | 0.102                                             | 8.6                                                | 0.4                                                                      | 0.32                                          | 18.8                                           |
| e                                                                                                                                                                                    | 0.088                                             | 0.25                                               | 0.27                                                                     | 0.18                                          | 0.83                                           |
| $\log_{10}(\tau_{ m c}/[{ m yr}])$                                                                                                                                                   | 8.3/7.7                                           | 10.3                                               | 8.4                                                                      | 8.6                                           | 9.0                                            |
| $\log_{10}(\tau_{\rm g}/[{ m yr}])$                                                                                                                                                  | 7.9                                               | 12.4                                               | 9.4                                                                      | 10.2                                          | 13.0                                           |
| Masses measured?                                                                                                                                                                     | Yes                                               | No                                                 | Yes                                                                      | Yes                                           | Yes                                            |
|                                                                                                                                                                                      |                                                   | -                                                  |                                                                          |                                               |                                                |
|                                                                                                                                                                                      | B1820-11                                          | J1829+2456                                         | J1906+0746                                                               | B1913+16                                      | B2127+11C                                      |
| P [ms]                                                                                                                                                                               | B1820-11<br>279.8                                 | J1829+2456<br>41.0                                 | J1906+0746<br>144.1                                                      | B1913+16<br>59.0                              | B2127+11C<br>30.5                              |
| P [ms]<br>$P_{\rm b}$ [d]                                                                                                                                                            | B1820-11<br>279.8<br>357.8                        | J1829+2456<br>41.0<br>1.18                         | J1906+0746<br>144.1<br>0.17                                              | B1913+16<br>59.0<br>0.3                       | B2127+11C<br>30.5<br>0.3                       |
| $\begin{array}{c} P \ [\mathrm{ms}] \\ P_{\mathrm{b}} \ [\mathrm{d}] \\ e \end{array}$                                                                                               | B1820-11<br>279.8<br>357.8<br>0.79                | J1829+2456<br>41.0<br>1.18<br>0.14                 | J1906+0746<br>144.1<br>0.17<br>0.085                                     | B1913+16<br>59.0<br>0.3<br>0.62               | B2127+11C<br>30.5<br>0.3<br>0.68               |
| P [ms]<br>$P_{b} [d]$<br>e<br>$\log_{10}(	au_{c}/[yr])$                                                                                                                              | B1820-11<br>279.8<br>357.8<br>0.79<br>6.5         | J1829+2456<br>41.0<br>1.18<br>0.14<br>10.1         | $\begin{array}{c} J1906{+}0746\\ 144.1\\ 0.17\\ 0.085\\ 5.1 \end{array}$ | B1913+16<br>59.0<br>0.3<br>0.62<br>8.0        | B2127+11C<br>30.5<br>0.3<br>0.68<br>8.0        |
| $\begin{array}{c} P \; [\mathrm{ms}] \\ P_{\mathrm{b}} \; [\mathrm{d}] \\ e \\ \log_{10}(\tau_{\mathrm{c}}/[\mathrm{yr}]) \\ \log_{10}(\tau_{\mathrm{g}}/[\mathrm{yr}]) \end{array}$ | B1820-11<br>279.8<br>357.8<br>0.79<br>6.5<br>15.8 | J1829+2456<br>41.0<br>1.18<br>0.14<br>10.1<br>10.8 | J1906+0746<br>144.1<br>0.17<br>0.085<br>5.1<br>8.5                       | B1913+16<br>59.0<br>0.3<br>0.62<br>8.0<br>8.5 | B2127+11C<br>30.5<br>0.3<br>0.68<br>8.0<br>8.3 |

 $\sim 10^{-5} - 10^{-4} \text{ yr}^{-1}$ Ņ merge

(e.g., Kalogera et al. 2004, Belczynski et al. 2002)

## Gravitational Wave Sources

"Advanced" LIGO / Virgo Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr<sup>-1</sup>



LIGO (North America)



Inspiral Merger Ringdown

#### Sky Error Regions ~ 10-100 deg<sup>2</sup>



### Gamma-Rays



BAT FOV ~ 15% XRT slews in ~min



## Optical ("Now")

Palomar Transient Factory (PTF): new 7.8 deg<sup>2</sup> camera on the Palomar 48 inch Schmidt telescope

Soon: ZTF



l (ultimately 4) l.8 m mirrors w/ Gigapixel Cameras

THE DARK ENERGY SURVEY

#### Radio



## **Optical (Future)**

Large Synoptic Survey Telescope (LSST)



~All sky m<sub>AB</sub><24.5 every ~3 d - Online >~2020

## Neutron Star Binary Mergers

#### "Advanced" LIGO/Virgo (>2016)

Range ~ 200-500 Mpc Detection Rate ~ 1-100 yr<sup>-1</sup>



#### LIGO (North America)



NS NS NS

Sky Error Regions ~ 10-100 deg<sup>2</sup>  $\Rightarrow$  ~ 10<sup>3</sup>-10<sup>4</sup> galaxies



## Origin of R-Process Nuclei

## Core Collapse Supernovae or NS Binary Mergers?

| Galactic r-process rate:                                           |
|--------------------------------------------------------------------|
| $\dot{M}_{A>130} \sim 5 \times 10^{-7} M_{\odot} \mathrm{yr}^{-1}$ |
| (Qian 2000)                                                        |

| н  |       |    |    | Big | Bang | 9    |    |    |        |       |    |    |    |    |    |    | He |
|----|-------|----|----|-----|------|------|----|----|--------|-------|----|----|----|----|----|----|----|
| Li | Be    |    |    | Sup | erno | vae  |    | Sn | nall S | Stars |    | в  | С  | N  | 0  | F  | Ne |
| Na | Mg    |    |    | Lar | ge S | tars |    | Co | smic   | Ray   | /s | AI | Si | Р  | S  | CI | Ar |
| к  | Ca    | Sc | Ti | V   | Cr   | Mn   | Fe | Co | Ni     | Cu    | Zn | Ga | Ge | As | Se | Br | Kr |
| Rb | Sr    | Y  | Zr | Nb  | Мо   | Тс   | Ru | Rh | Pd     | Ag    | Cd | In | Sn | Sb | Те | 1  | Xe |
| Cs | Ba    |    | Hf | Та  | W    | Re   | Os | lr | Pt     | Au    | Hg | ТІ | Pb | Bi | Po | At | Rn |
| Fr | -r Ra |    |    |     |      |      |    |    |        |       |    |    |    |    |    |    |    |
|    |       | 1  | La | Ce  | Pr   | Nd   | Pm | Sm | Eu     | Gd    | Tb | Dy | Ho | Er | Tm | Yb | Lu |
|    |       | `` | Ac | Th  | Pa   | U    | Np | Pu | Am     | Cm    | Bk | Cf | Es | Fm | Md | No | Lr |

#### 1.0 CS 22892-052 data SS r-process abundances Snedan, Cowan & Gallino 2008 0.5 SS s-process abundances 0 -0.5 log € -1.0 Eu Au - 1.5 Tm Th - 2.0 U Ŧ -2.5 <sup>L</sup> 50 60 80 90 70 Atomic number

fraction of r-process contributed by NS Mergers:

$$f_R \sim \left(\frac{\dot{N}_{\text{merge}}}{10^{-4} \,\text{yr}^{-1}}\right) \left(\frac{\overline{M}_{\text{ej}}}{10^{-2} \,M_{\odot}}\right)$$

## Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Kyoto)

## Electromagnetic Counterparts of NS-NS/NS-BH Mergers



## Electromagnetic Counterparts of NS-NS/NS-BH Mergers



## Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Tokyo U)

## Remnant Accretion Disk

(e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Faber et al. 2006; Chawla et al. 2010; Duez et al. 2010; Foucart 2012; Deaton et al. 2013)



- Disk Mass ~0.01 0.1 M<sub>☉</sub> & Size ~ 10-100 km
- Hot (T > MeV) & Dense ( $\rho \sim 10^8 10^{12} \text{ g cm}^{-3}$ )
- Neutrino Cooled: ( $\tau_v \sim 0.01-100$ )
- Equilibrium  $e^+ + n \rightarrow \overline{v}_e + p$  VS.  $e^- + p \rightarrow v_e + n \Rightarrow Y_e \sim 0.1$

Accretion Rate  $\dot{M} \sim 10^{-2} - 10 M_{\odot} \text{ s}^{-1}$ 

$$t_{\rm visc} \sim 0.1 \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{1/2} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{R_d}{100 \text{ km}}\right)^{3/2} \left(\frac{H/R}{0.5}\right)^{-2} \text{ s}$$

Short GRB Engine?

## Relativistic Jets and Short GRBs









#### Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z<sub>avg</sub>~2-3)



#### Supernova Connection GRB 030329 ⇔ SN 2003dh





Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z<sub>avg</sub>~2-3)



#### Supernova Connection GRB 030329 ⇔ SN 2003dh







## Short GRBs are Rare in the LIGO Volume



Detectable fraction by all sky γ-ray telescope

$$f_{\gamma} \sim 3.4 \times \frac{\theta_j^2}{2} \sim 0.07 \left(\frac{\theta_j}{0.2}\right)^2$$

## Electromagnetic Counterparts of NS-NS/NS-BH Mergers





## Neutron-Rich Ejecta

#### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013)

#### **Full GR / Simple EOS / Circular**

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

#### **Newtonian / Realistic EOS / Eccentric**

| Model                            | M <sub>ej</sub>       | (10⁻³ M | <sub>⊙</sub> ) |
|----------------------------------|-----------------------|---------|----------------|
| APR4-130160 1.8                  | BH                    | 2.0     |                |
| APR4-140150 1.8                  | BH                    | 0.6     |                |
| APR4-145145 1.8                  | BH                    | 0.1     |                |
| APR4-130150 1.8                  | HMNS→BH               | 12      |                |
| APR4-140140 1.8                  | HMNS→BH               | 14      |                |
| APR4-120150 1.6                  | HMNS                  | 9       |                |
| APR4-120150 1.8                  | HMNS                  | 8       |                |
| APR4-120150 2.0                  | HMNS                  | 7.5     | I              |
| APR4-125145 1.8                  | HMNS                  | 7       | Q              |
| APR4-130140 1.8                  | HMNS                  | 8       | ਰ              |
| APR4-135135 1.6                  | HMNS                  | 11      | 天              |
| APR4-135135 1.8                  | HMNS                  | 7       | Ð.             |
| APR4-135135 2.0                  | HMNS                  | 5       | N              |
| APR4-120140 1.8                  | HMNS                  | 3       | ₩              |
| APR4-125135 1.8                  | HMNS                  | 5       | <u>a</u>       |
| APR4-130130 1.8                  | HMNS                  | 2       | Ф              |
| ALF2-140140 1.8                  | HMNS→BH               | 2.5     | Ť              |
| ALF2-120150 1.8                  | HMNS                  | 5.5     | b              |
| ALF2-125145 1.8                  | HMNS                  | 3       |                |
| ALF2-130140 1.8                  | $HMNS \rightarrow BH$ | 1.5     | N              |
| ALF2-135135 1.8                  | $HMNS \rightarrow BH$ | 2.5     | Ó              |
| ALF2-130130 1.8                  | HMNS                  | 2       |                |
| H4-130150 1.8                    | $HMNS \rightarrow BH$ | 3       | 00             |
| H4-140140 1.8                    | $HMNS \rightarrow BH$ | 0.3     |                |
| H4-120150 1.6                    | HMNS                  | 4.5     |                |
| H4-120150 1.8                    | HMNS                  | 3.5     |                |
| H4-120150 2.0                    | HMNS                  | 4       |                |
| H4-125145 1.8                    | HMNS                  | 2       |                |
| H4-130140 1.8                    | HMNS                  | 0.7     |                |
| H4-135135 1.6                    | HMNS→BH               | 0.7     |                |
| H4-135135 1.8                    | HMNS→BH               | 0.5     |                |
| H4-135135 2.0                    | HMNS                  | 0.4     |                |
| H4-120140 1.8                    | HMINS                 | 2.5     |                |
| H4-125135 1.8                    | HMNS                  | 0.6     |                |
| 14-130130 1.8<br>ME1 140140 1.2  | HMINS                 | 0.3     |                |
| MS1-140140 1.8                   | MINS                  | 0.0     |                |
| MS1-120100 1.8<br>MS1 105145 1.9 | MIND                  | 3.3     |                |
| MG1 120140 1.8                   | MNG                   | 1.0     |                |
| MG1 195195 1 9                   | MNG                   | 1.5     |                |
| MS1-100100 1.8                   | MNS                   | 1.0     |                |
| M31-190190 1.9                   | IVIINO -              | 1.0     |                |



## Neutron-Rich Ejecta

### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013)

#### Full GR / Simple EOS / Circular

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

#### Newtonian / Realistic EOS / Eccentric

| moue        | <i>,</i> | l''ej                 | (10 ° 10 | ⊙)      |
|-------------|----------|-----------------------|----------|---------|
| APR4-130160 | 1.8      | BH                    | 2.0      |         |
| APR4-140150 | 1.8      | BH                    | 0.6      |         |
| APR4-145145 | 1.8      | BH                    | 0.1      |         |
| APR4-130150 | 1.8      | HMNS→BH               | 12       |         |
| APR4-140140 | 1.8      | $HMNS \rightarrow BH$ | 14       |         |
| APR4-120150 | 1.6      | HMNS                  | 9        |         |
| APR4-120150 | 1.8      | HMNS                  | 8        |         |
| APR4-120150 | 2.0      | HMNS                  | 7.5      | エ       |
| APR4-125145 | 1.8      | HMNS                  | 7        | Q       |
| APR4-130140 | 1.8      | HMNS                  | 8        | 5       |
| APR4-135135 | 1.6      | HMNS                  | 11       | ž       |
| APR4-135135 | 1.8      | HMNS                  | 7        | ወ       |
| APR4-135135 | 2.0      | HMNS                  | 5        |         |
| APR4-120140 | 1.8      | HMNS                  | 3        | ž       |
| APR4-125135 | 1.8      | HMNS                  | 5        | لە<br>ھ |
| APR4-130130 | 1.8      | HMNS                  | 2        | ო       |
| ALF2-140140 | 1.8      | HMNS→BH               | 2.5      | Ä       |
| ALF2-120150 | 1.8      | HMNS                  | 5.5      | മ       |
| ALF2-125145 | 1.8      | HMNS                  | 3        |         |
| ALF2-130140 | 1.8      | $HMNS \rightarrow BH$ | 1.5      | N       |
| ALF2-135135 | 1.8      | $HMNS \rightarrow BH$ | 2.5      |         |
| ALF2-130130 | 1.8      | HMNS                  | 2        |         |
| H4-130150   | 1.8      | $HMNS \rightarrow BH$ | 3        | ι<br>υ  |
| H4-140140   | 1.8      | $HMNS \rightarrow BH$ | 0.3      |         |
| H4-120150   | 1.6      | HMNS                  | 4.5      |         |
| H4-120150   | 1.8      | HMNS                  | 3.5      |         |
| H4-120150   | 2.0      | HMNS                  | 4        |         |
| H4-125145   | 1.8      | HMNS                  | 2        |         |
| H4-130140   | 1.8      | HMNS                  | 0.7      |         |
| H4-135135   | 1.6      | $HMNS \rightarrow BH$ | 0.7      |         |
| H4-135135   | 1.8      | HMNS→BH               | 0.5      |         |
| H4-135135   | 2.0      | HMNS                  | 0.4      |         |
| H4-120140   | 1.8      | HMNS                  | 2.5      |         |
| H4-125135   | 1.8      | HMNS                  | 0.6      |         |
| H4-130130   | 1.8      | HMNS                  | 0.3      |         |
| MS1-140140  | 1.8      | MNS                   | 0.6      |         |
| MS1-120150  | 1.8      | MNS                   | 3.5      |         |
| MS1-125145  | 1.8      | MNS                   | 1.5      |         |
| MS1-130140  | 1.8      | MNS                   | 0.6      |         |
| MS1-135135  | 1.8      | MNS                   | 1.5      |         |
| MS1-130130  | 1.8      | MNS                   | 1.5      |         |

Modal

M (10-3 M)

## **Disk Outflows**

#### **Neutrino-Powered (Early)**

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09)

#### **Recombination-Powered (Late)**



(e.g. Beloborodov 08; BDM+08, 09; Lee+09; Fernandez & BDM 13)

$$M_{ei} = f_w M_d \sim 10^{-3} - 10^{-2} (f_w / 0.1) M_{\odot}$$



**R-Process Network** (neutron captures, photo-dissociations,  $\alpha$ - and  $\beta$ -decays, fission)

## Final Abundance Distribution



## Radioactive Heating of Merger Ejecta

(BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011; Korobkin et al. 2012; Bauswein et al. 2013)



Dominant β-Decays at t ~ 1 day:  $^{132,134,135}$  I,  $^{128,129}$ Sb, $^{129}$ Te, $^{135}$ Xe Relatively insensitive to details (Y<sub>e</sub>, expansion history, NSE or not)

How Supernovae Shine (Arnett 1982; Li & Paczynski 1998)  
spherical ejecta - mass M, velocity v, thermal energy E = f Mc<sup>2</sup>, & opacity k  

$$R = v t \qquad \rho = \frac{M}{4\pi/_3 R^3}$$

$$\tau \sim \kappa \rho R \qquad t_{diff} \sim \tau \frac{R}{c}$$
Peak (t = t<sub>diff</sub>)  $\Rightarrow \qquad t_{peak} \sim 2 \operatorname{weeks} \left(\frac{v}{10^4} \operatorname{km s^{-1}}\right)^{-1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{1/2}$ 

$$L_{peak} \sim \frac{E(t_{peak})}{t_{peak}} \sim 10^{43} \operatorname{ergs s^{-1}} \left(\frac{f}{10^{-5}}\right) \left(\frac{v}{10^4} \operatorname{km s^{-1}}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{-1/2}$$

#### Type la Supernova:

v ~10<sup>4</sup> km s<sup>-1</sup>, M<sub>ej</sub> ~ M<sub>☉</sub>, f<sub>Ni→Co</sub> ~ 10<sup>-5</sup> ⇒ t<sub>peak</sub> ~ week, L ~ 10<sup>43</sup> erg s<sup>-1</sup> **NS Merger:** v ~ 0.1 c, M<sub>ej</sub> ~ 10<sup>-2</sup> M<sub>☉</sub>, f ~ 3×10<sup>-6</sup> ⇒ t<sub>peak</sub>~ 1 day, L ~ 10<sup>42</sup> erg s<sup>-1</sup>

How Supernovae Shine (Arnett 1982; Li & Paczynski 1998)  
spherical ejecta - mass M, velocity v, thermal energy E = f Mc<sup>2</sup>, & opacity k  

$$R = v t \qquad \rho = \frac{M}{4\pi/3R^3}$$

$$\tau \sim \kappa\rho R \qquad t_{diff} \sim \tau R/c$$
Peak (t = t<sub>diff</sub>)  $\Rightarrow \qquad t_{peak} \sim 2 \text{ weeks } \left(\frac{V}{10^4 \text{ km s}^{-1}}\right)^{-1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{1/2}$ 

$$L_{peak} \sim \frac{E(t_{peak})}{t_{peak}} \sim 10^{43} \text{ ergs s}^{-1} \left(\frac{f}{10^{-5}}\right) \left(\frac{V}{10^4 \text{ km s}^{-1}}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2} \left(\frac{\kappa}{\kappa_{Fe}}\right)^{-1/2}$$
Type Ia Supernova:

v ~10<sup>4</sup> km s<sup>-1</sup>, M<sub>ej</sub> ~ M<sub>☉</sub>, f<sub>Ni→Co</sub> ~ 10<sup>-5</sup> ⇒ t<sub>peak</sub> ~ week, L ~ 10<sup>43</sup> erg s<sup>-1</sup> **NS Merger:** v ~ 0.1 c, M<sub>ej</sub> ~ 10<sup>-2</sup> M<sub>☉</sub>, f~ 3×10<sup>-6</sup> ⇒ t<sub>peak</sub>~ 1 day, L ~ 10<sup>42</sup> erg s<sup>-1</sup>

## **Bolometric Luminosity**

#### **Color Evolution**





## High Opacity of the Lanthanides

(Kasen et al. 2013; Tanaka & Hotokezaka 2013)









# Kasen et al. 2013

#### **Bolometric Luminosity**











## EM Counterpart Search following a GW Trigger



⇒ Requires depth J ~ 22-24 and short cadence

#### **Bolometric Luminosity**











#### **Bolometric Luminosity**













## Neutron-Rich Ejecta

### **Dynamical Tidal Tails**

(e.g. Janka et al. 1999; Lee & Kluzniak 1999; Ruffert & Janka 2001; Rosswog et al. 2004; Rosswog 2005; Shibata & Taniguchi 2006; Giacomazzo et al. 2009; Duez et al. 2010; East et al. 2012; Hotokezaka et al. 2013)

#### Full GR / Simple EOS / Circular

$$M_{ej} \sim 10^{-4} - 0.1 \ M_{\odot}$$

$$Y_e = \frac{n_p}{n_p + n_n} < 0.1$$

#### Newtonian / Realistic EOS / Eccentric

| IVIOAE       | )   | IVI <sub>ej</sub>           | (10 <sup>-3</sup> M | <sub>⊙</sub> ) |
|--------------|-----|-----------------------------|---------------------|----------------|
| APR4-130160  | 1.8 | BH                          | 2.0                 |                |
| APR4-140150  | 1.8 | BH                          | 0.6                 |                |
| APR4-145145  | 1.8 | BH                          | 0.1                 |                |
| APR4-130150  | 1.8 | HMNS→BH                     | 12                  |                |
| APR4-140140  | 1.8 | $HMNS \rightarrow BH$       | 14                  |                |
| APR4-120150  | 1.6 | HMNS                        | 9                   |                |
| APR4-120150  | 1.8 | HMNS                        | 8                   |                |
| APR4-120150  | 2.0 | HMNS                        | 7.5                 | I              |
| APR4-125145  | 1.8 | HMNS                        | 7                   | 2              |
| APR4-130140  | 1.8 | HMNS                        | 8                   | 6              |
| APR4-135135  | 1.6 | HMNS                        | 11                  | <u></u>        |
| APR4-135135  | 1.8 | HMNS                        | 7                   | E CD           |
| APR4-135135  | 2.0 | HMNS                        | 5                   | a              |
| APR4-120140  | 1.8 | HMNS                        | 3                   | ⋝              |
| APR4-125135  | 1.8 | HMNS                        | 5                   | മ              |
| APR4-130130  | 1.8 | HMNS                        | 2                   | Ð              |
| ALF2-140140  | 1.8 | HMNS→BH                     | 2.5                 |                |
| ALF2-120150  | 1.8 | HMNS                        | 5.5                 | <u>m</u>       |
| ALF2-125145  | 1.8 | HMNS                        | 3                   |                |
| ALF2-130140  | 1.8 | $HMNS \rightarrow BH$       | 1.5                 |                |
| ALF 2-130130 | 1.0 | $\Pi M NS \rightarrow D\Pi$ | 2.0                 | 5              |
| H4 130150    | 1.0 | HMNS                        | 2                   | C.             |
| H4 140140    | 1.0 | HMNS->BH                    | 03                  |                |
| H4-120150    | 1.0 | HMNS                        | 4.5                 |                |
| H4-120150    | 1.0 | HMNS                        | 3.5                 |                |
| H4-120150    | 2.0 | HMNS                        | 4                   |                |
| H4-125145    | 1.8 | HMNS                        | 2                   |                |
| H4-130140    | 1.8 | HMNS                        | 0.7                 |                |
| H4-135135    | 1.6 | HMNS→BH                     | 0.7                 |                |
| H4-135135    | 1.8 | HMNS→BH                     | 0.5                 |                |
| H4-135135    | 2.0 | HMNS                        | 0.4                 |                |
| H4-120140    | 1.8 | HMNS                        | 2.5                 |                |
| H4-125135    | 1.8 | HMNS                        | 0.6                 |                |
| H4-130130    | 1.8 | HMNS                        | 0.3                 |                |
| MS1-140140   | 1.8 | MNS                         | 0.6                 |                |
| MS1-120150   | 1.8 | MNS                         | 3.5                 |                |
| MS1-125145   | 1.8 | MNS                         | 1.5                 |                |
| MS1-130140   | 1.8 | MNS                         | 0.6                 |                |
| MS1-135135   | 1.8 | MNS                         | 1.5                 |                |
| MS1-130130   | 18  | MNS                         | 15                  |                |

## **Disk Outflows**

#### **Neutrino-Powered (Early)**

(e.g. McLaughlin & Surman 05; Surman+08; BDM+08; Dessart+09)

#### **Recombination-Powered (Late)**





## $M_{ei} = f_w M_d \sim 10^{-3} \cdot 10^{-2} (f_w / 0.1) M_{\odot}$



## Numerical Simulation - Two 1.4 M<sub>o</sub> NSs



Courtesy M. Shibata (Tokyo U)



# Remnant Torus Evolution

(Fernandez & Metzger 2012, 2013)

- P-W potential with  $M_{BH} = 3,10 M_{\odot}$
- hydrodynamic  $\alpha$  viscosity
- NSE recombination  $2n+2p \Rightarrow {}^{4}He$
- run-time  $\Delta t \sim 1000-3000 t_{orb}$
- neutrino self-irradiation: "light bulb"
  + optical depth corrections:





## Delayed Disk Outflows



 $M_{ej} \sim 0.05 M_t V_{ej} \sim 0.1 c$ 

outflow robust

## **Outflow Composition**



## Outflow Composition



Abundance

10<sup>-6</sup> 10<sup>-7</sup> 10<sup>-8</sup> 10<sup>-9</sup> 10<sup>-10</sup>

10<sup>-11</sup> 10<sup>-12</sup>

120

140

160

180

Mass number A

200

220

240







#### AN R-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B

E. BERGER<sup>1</sup>, W. FONG<sup>1</sup>, AND R. CHORNOCK<sup>1</sup>

A 'kilonova' associated with the short-duration γ- ray burst GRB130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe











## Effect of Hypermassive Neutron Star



## Distribution of Ejecta Y<sub>e</sub> for Different Collapse Times





strength of 'blue bump' encodes HMNS lifetime

ejecta mass up to ~10 times higher than prompt BH case

300

 $\infty$ 

## Stable Merger Remnant?

(e.g. BDM+08; Ozel et al. 2010; Bucciantini et al. 2012; Zhang 13; Yu et al. 2013; Giacomazzo & Perna 13; Siegel 2014)

- Requires: low total mass binary, stiff EOS\*, and/or mass loss during merger \*supported by recent discovery of  $2M_{\odot}$  NS by Demorest et al. 2011
- Rotating at centrifugal break-up limit with spin period P ~ 1 ms
- Magnetic field amplified by rotational energy + convection  $\Rightarrow$  "Magnetar" ?



Giacomazzo & Perna 2013

## Short GRBs with Extended Emission



- 1/5 Swift Short Bursts have X-ray Tails
- Rapid Variability ⇒ Ongoing Engine Activity
- Energy up to ~30 times Burst Itself!



BATSE Examples (Norris & Bonnell 2006)





# Radio constraints on stable merger remnants (BDM & Bower 2013)

• Rotational energy

$$E_{\rm rot} = \frac{1}{2}I\Omega^2 \simeq 3 \times 10^{52} {\rm ergs} \left(\frac{P}{1\,{\rm ms}}\right)^{-1}$$

eventually transferred to ISM via relativistic shock  $\Rightarrow$  bright radio emission

- We observed 7 short GRBs with VLA on timescales ~1-3 years after burst
- NO DETECTIONS ⇒ stable remnant disfavored in 2 GRBs with high ISM densities
- Additional JVLA observations now would be much more constraining
- Upcoming radio surveys (e.g. ASKAP) will strongly constrain stable NS merger remnants ⇒ indirectly probes EoS





## Timeline of Binary NS Mergers

| 1. Chirp enters LIGO Bandpass                                                                                                                                                                                                                                                                                                                                                           | t (minus) ~ mins                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2. Last Orbit, Plunge & Dynamical Ejecta                                                                                                                                                                                                                                                                                                                                                | t ~ ms                                               |
| 3. BH Formation                                                                                                                                                                                                                                                                                                                                                                         | ~ ms - ∞                                             |
| 4. Accretion of Remnant Disk, Jet Formation (GRB)                                                                                                                                                                                                                                                                                                                                       | ~ 0.1-1 s                                            |
| 5. He-Recombination + Disk Evaporation                                                                                                                                                                                                                                                                                                                                                  | ~ 0.3-3 s                                            |
| $\Rightarrow$ outflow Y <sub>e</sub> depends on NS collapse time                                                                                                                                                                                                                                                                                                                        |                                                      |
| 6. R-Process in Merger Ejecta                                                                                                                                                                                                                                                                                                                                                           | ~ few s                                              |
| 7. Jet from Magnetar (X-rays)                                                                                                                                                                                                                                                                                                                                                           | ~ min (or longer)                                    |
| 8. Disk Wind Kilonova                                                                                                                                                                                                                                                                                                                                                                   |                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| $\Rightarrow$ prompt BH formation Y <sub>e</sub> < 0.25 (NIR, L ~ 10 <sup>41</sup> erg s <sup>-1</sup> )                                                                                                                                                                                                                                                                                | ~ week                                               |
| ⇒ prompt BH formation $Y_e < 0.25$ (NIR, L ~ 10 <sup>41</sup> erg s <sup>-1</sup> )<br>⇒ delayed BH formation $Y_e > 0.25$ (Optical, L ~ 10 <sup>42</sup> erg s <sup>-1</sup> )                                                                                                                                                                                                         | ∼ week<br>∼ day                                      |
| ⇒ prompt BH formation $Y_e < 0.25$ (NIR, L ~ 10 <sup>41</sup> erg s <sup>-1</sup> )<br>⇒ delayed BH formation $Y_e > 0.25$ (Optical, L ~ 10 <sup>42</sup> erg s <sup>-1</sup> )<br>⇒ stable magnetar (Optical, L ~ 10 <sup>44</sup> erg s <sup>-1</sup> )                                                                                                                               | ∼ week<br>∼ day<br>∼ day                             |
| <ul> <li>⇒ prompt BH formation Y<sub>e</sub> &lt; 0.25 (NIR, L ~ 10<sup>41</sup> erg s<sup>-1</sup>)</li> <li>⇒ delayed BH formation Y<sub>e</sub> &gt; 0.25 (Optical, L ~ 10<sup>42</sup> erg s<sup>-1</sup>)</li> <li>⇒ stable magnetar (Optical, L ~ 10<sup>44</sup> erg s<sup>-1</sup>)</li> <li>9. Tidal Tail Kilonova (IR)</li> </ul>                                             | ~ week<br>~ day<br>~ day<br><b>~ week</b>            |
| <ul> <li>⇒ prompt BH formation Y<sub>e</sub> &lt; 0.25 (NIR, L ~ 10<sup>41</sup> erg s<sup>-1</sup>)</li> <li>⇒ delayed BH formation Y<sub>e</sub> &gt; 0.25 (Optical, L ~ 10<sup>42</sup> erg s<sup>-1</sup>)</li> <li>⇒ stable magnetar (Optical, L ~ 10<sup>44</sup> erg s<sup>-1</sup>)</li> <li>9. Tidal Tail Kilonova (IR)</li> <li>10. Ejecta ISM Interaction (Radio)</li> </ul> | ~ week<br>~ day<br>~ day<br><b>~ week</b><br>~ years |

## Conclusions

• The first direct detection of gravitational waves will likely be a binary NS merger, within the next ~3 years. *Identifying an EM counterpart will be essential to maximize the scientific impact of this discovery.* 

• The most promising isotropic counterpart is an optical/IR transient ("kilonova") powered by the radioactive decay of r-process nuclei.

• The radioactive heating of the ejecta is now well understood, but the photon opacity of r-process ejecta remains uncertain.

• The first kilonova was detected following the gamma-ray burst 130603B last June, confirming the association of mergers with short GRBs.

 Kilonova provide a direct probe of the formation of r-process nuclei, a long standing mysteries in nuclear astrophysics.

• The sensitive dependence of opacity on the ejecta composition (lanthanide fraction) implies that kilonova colors provide a sensitive probe of physical processes at work during the merger, such as the delay until black hole formation.