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Neutron Star Structure

Tolman-Oppenheimer-Volkov equations
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Extremal Properties of Neutron Stars

I The most compact and massive configurations occur when the
low-density equation of state is ”soft” and the high-density equation
of state is ”stiff” (Koranda, Stergioulas & Friedman 1997).
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Extremal Properties of Neutron Stars

The maximum mass configuration is achieved when
xR = 0.2404, wc = 3.034, yc = 2.034, zR = 0.08513.

A useful reference density is the nuclear saturation density
(interior density of normal nuclei):
ρs = 2.7× 1014 g cm−3, ns = 0.16 baryons fm−3, εs = 150 MeV fm−3

I Mmax = 4.1 (εs/ε0)1/2M� (Rhoades & Ruffini 1974)

I MB,max = 5.41 (mBc
2/µo)(εs/ε0)1/2M�

I Rmin = 2.82 GM/c2 = 4.3 (M/M�) km

I µb,max = 2.09 GeV

I εc,max = 3.034 ε0 ' 51 (M�/Mlargest)2 εs
I pc,max = 2.034 ε0 ' 34 (M�/Mlargest)2 εs
I nB,max ' 38 (M�/Mlargest)2 ns
I BEmax = 0.34 M

I Pmin = 0.74 (M�/Msph)1/2(Rsph/10 km)3/2 ms =
0.20 (Msph,max/M�) ms
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Maximum Energy Density in Neutron Stars

p = s(ε− ε0)
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Although simple
average mass of
w.d. companions
is 0.23 M� larger,
weighted average is
0.04 M� smaller

Champion et al. 2008

Demorest et al. 2010

Antoniadis et al. 2013

Romani et al. 2012

vanKerkwijk 2010
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What is the Maximum Mass?

I PSR J1614+2230 (Demorest et al. 2010) 1.97± 0.04 M�
A nearly edge-on system with well-measured Shapiro time
delay

I PSRJ0548+0432 (Antoniadis et al. 2013) 2.01± 0.04 M�
Measured using optical data and theoretical properties of
companion white dwarf

I B1957+20 (van Kerkwijk 2010) 2.4± 0.3 M�
Black widow pulsar with ∼ 0.03 M� companion; large
mass errors due to uncertainties in tidally-distorted shape
of the low-mass companion

I PSR J1311-3430 (Romani et al. 2012) 2.55± 0.50 M�
Another black widow pulsar
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Causality + GR Limits and the Maximum Mass

A lower limit to the
maximum mass sets a
lower limit to the
radius for a given mass.

Similarly, a precise
(M ,R) measurement
sets an upper limit to
the maximum mass.

1.4M� stars must have
R > 8.15M�.

1.4M� strange quark
matter stars (and likely
hybrid quark/hadron
stars) must have
R > 11 km.
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Mass-Radius Diagram and Theoretical Constraints

GR:
R > 2GM/c2

P <∞ :
R > (9/4)GM/c2

causality:
R >∼ 2.9GM/c2

— normal NS
— SQS

— R∞ =
R√

1−2GM/Rc2
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The Radius – Pressure Correlation

Lattimer & Prakash (2001) Lattimer & Lim (2013)
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Nuclear Symmetry Energy

Defined as the difference between energies of pure neutron matter
(x = 0) and symmetric (x = 1/2) nuclear matter.

S(ρ) = E (ρ, x = 0)− E (ρ, x = 1/2)

Expanding around the saturation density
(ρs) and symmetric matter (x = 1/2)

E (ρ, x) = E (ρ, 1/2)+(1−2x)2S2(ρ)+. . .

S2(ρ) = Sv +
L

3

ρ− ρs
ρs

+ . . .

Sv ' 31 MeV, L ' 50 MeV

C. Fuchs, H.H. Wolter, EPJA 30(2006) 5

6

?

symmetry energy

Connections to pure neutron matter:

E (ρs , 0) ≈ Sv + E (ρs , 1/2) ≡ Sv − B, p(ρs , 0) = Lρs/3

Neutron star matter (in beta equilibrium):

∂(E + Ee)

∂x
= 0, p(ρs , xβ) ' Lρs

3
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Nuclear Experimental Constraints
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Nuclear Experimental Constraints

Neutron Skin Thicknesses

rnp = 2ro
3Sv
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rnp,208 = 0.175± 0.020 fm
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Nuclear Experimental Constraints

Flows in
Heavy Ion CollisionsReaction Mechanisms in Heavy Ion Collisions

Coulomb barrier to 
Fermi energies
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Proton and neutron currents

Sensitive to Sym. Energy and 
slope depending on observable

peripheral

Wolter, NuSYM11
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Nuclear Experimental Constraints

Giant Dipole Resonance
Centroids

23.3 MeV< S2(0.1 fm−3) <24.9 MeV

www.tunl.duke.edu
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Nuclear Experimental Constraints

Dipole Polarizabilities

αD = 4m−1

' AR2

20Sv

(
1 + 5

3
SsA

−1/3

Sv

)
Uses data of

Tamii et al. (2011)

αD,208 = 20.1± 0.6 fm2
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Nuclear Experimental Constraints

Isobaric Analog States
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Theoretical Neutron Matter Calculations

H&S: Chiral Lagrangian

GC&R: Quantum Monte Carlo

Sv − L constraints from
Hebeler et al. (2012)
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Theoretical Neutron-Rich Matter Calculations

The usual assumption is that the symmetry energy S(n) is sufficiently
well approximated by the quadratic expression

Esym(n, x) ' S2(n) (1− 2x)2 .

But chiral Lagrangian studies of neutron and neutron-rich matter by
Drischler, Somá & Schwenk (2014) indicate the presence of quartic or
higher contributions

Esym(n, x) ' S2(n) (1− 2x)2 + S4(n) (1− 2x)4 + · · · .

Theoretical results fitted with model energy having possible quartic
parameters α and β:

E (n, x)
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=

3

5
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Fits to Neutron-Rich Matter

β = δ = 0 β = −0.41± 0.31
δ = −0.53± 0.34

Drishler, Somá & Schwenk (2014)

solid: theory

dashed: MC fit (90%)
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Fits to Neutron-Rich Matter

neutron-rich matter
+ nuclear binding energies

neutron-rich
m

atter

binding
energies
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Theoretical Neutron-Rich Matter Calculations

Chiral Lagrangian studies of
neutron and neutron-rich matter
by Drischler, Somá &
Schwenk (2014)

Interpreted by Lattimer (2014)
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Simultaneous Mass/Radius Measurements

I Measurements of flux F∞ = (R∞/D)2 σT 4
eff

and color temperature Tc ∝ λ−1max yield an
apparent angular size (pseudo-BB):

R∞
D

=
R

D

1√
1− 2GM/Rc2

I Observational uncertainties include
distance D, interstellar absorption
NH , atmospheric composition

Best chances for accurate radius measurement:
I Nearby isolated neutron stars with parallax (uncertain atmosphere)
I Quiescent low-mass X-ray binaries (QLMXBs) in globular clusters

(reliable distances, low B H-atmosperes)
I Bursting sources (XRBs) with peak fluxes close to Eddington limit

(where gravity balances radiation pressure)

FEdd =
cGM

κD2

√
1− 2GM/Rc2
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4c ,D,

fc from Ozel et al.

zph = z

Lattimer & Steiner (2013)
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M − R PRE Burst Estimates

FEdd,∞, (R∞/D)2f −4c ,D

from Ozel et al.

zph = 0

Altered uncertainties

for fc ,D

Lattimer & Steiner (2013)
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M − R QLMXB Estimates
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M − R QLMXB Estimates
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Lattimer & Steiner (2013)

P(M,R) from H atmosphere
models of Guillot et al. (2013),
adjusted for alternate NH values
of Dickey & Lockman (1990).

Heinke et al. (2014) found
NGC 6397 probably has a
He atmosphere and ω Cen
has a smaller NH than
Guillot et al. (2013) found.
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Bayesian TOV Inversion

I ε < 0.5ε0: Known crustal EOS

I 0.5ε0 < ε < ε1: EOS
parametrized by K ,K ′,Sv , γ

I Polytropic EOS: ε1 < ε < ε2: n1;
ε > ε2: n2

I EOS parameters K ,K ′,Sv , γ, ε1,
n1, ε2, n2 uniformly distributed

I Mmax ≥ 1.97 M�, causality
enforced

I All 10 stars equally weighted
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Astronomy vs. Astronomy vs. Physics

Ozel et al., PRE bursts zph =
z : R = 9.74± 0.50 km.

Suleimanov et al., long
PRE bursts: R1.4

>∼13.9 km

Guillot et al. (2013), all
stars have the same radius,
self NH : R = 9.1+1.3

−1.5 km.

Lattimer & Steiner (2013),
TOV, crust EOS, causality,
maximum mass > 2M�,
zph = z , alt NH .

Lattimer & Lim (2013),
nuclear experiments:
29 MeV < Sv < 33 MeV,
40 MeV < L < 65 MeV,
R1.4 = 12.0± 1.4 km. 6 8 10 12 14 16 18
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Can Hyperons Appear in Abundance in Neutron Stars?

Bednarek et al. (2011)

Jiang, Li & Chen (2012)

XH < 0.2

Weissenborn, Chatterjee &
Schaffner-Bielich (2012)

Miyatsu, Yamamumo & Nakazato (2013)
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Hyperon Stars with Small Radii

Jiang, Li & Chen (2012)

f i

0.01

0.1
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More Hyperon Stars

Bednarek, Manka & Pienkos (2013)

Schramm et al. (2013)

Colucci & Sedrakian (2014)

Whittenbury et al. (2013)
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Still More Hyperon Stars

Lopes & Menezes (2013)
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Another Approach – Hadron-Quark Crossover

Masuda, Hatsuda & Takatsuka (2012)

Replace phase transition with ad-hoc crossover (physical justification?)

P(ρ) = PH f−(ρ) + PQ f+(ρ)

f±(ρ) = [1± tanh {(ρ− ρ̄)/Γ)}] /2
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Additional Proposed Radius and Mass Constraints
I Pulse profiles

Hot or cold regions on rotating
neutron stars alter pulse shapes:
NICER and LOFT will enable
timing and spectroscopy of
thermal and non-thermal emissions.
Light curve modeling → M/R;
phase-resolved spectroscopy → R.

I Moment of inertia
Spin-orbit coupling of ultra-
relativistic binary pulsars
(e.g., PSR 0737+3039) vary i and
contribute to ω̇: I ∝ MR2.

I Supernova neutrinos
Millions of neutrinos detected from
a Galactic supernova will measure
BE= mBN −M, < Eν >, τν .

I QPOs from accreting sources
ISCO and crustal oscillations

NASA

Neutron star Interior Composition ExploreR

Large Observatory For x-ray Timing

ESA/NASA
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Constraints from Observations of Gravitational Radiation

Mergers:
Chirp mass M = (M1M2)3/5M−1/5 and
tidal deformability λ ∝ R5 (Love number)
are potentially measurable during inspiral.

λ̄ ≡ λM−5 is related to Ī ≡ IM−3 by an
EOS-independent relation (Yagi & Yunes
2013). Both λ̄ and Ī are also related to
M/R in a relatively EOS-independent way
(Lattimer & Lim 2013).

I Neutron star - neutron star: Mcrit for
prompt black hole formation, fpeak

depends on R.

I Black hole - neutron star:
ftidal disruption depends on R, a,MBH.
Disc mass depends on a/MBH and on
MNSMBHR

−2.

Rotating neutron stars: r-modes
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Conclusions

I Nuclear experiments set reasonably tight constraints on symmetry
energy parameters and the symmetry energy behavior near the
nuclear saturation density.

I Theoretical calculations of pure neutron matter predict very similar
symmetry constraints.

I These constraints predict neutron star radii R1.4 in the range
12.0± 1.4 km.

I Combined astronomical observations of photospheric radius
expansion X-ray bursts and quiescent sources in globular clusters
suggest R1.4 ∼ 12.1± 0.6 km.

I The nearby isolated neutron star RX J1856-3754 appears to have a
radius near 12 km, assuming a solid surface with thin H atmosphere
(Ho et al. 2007).

I The observation of a 1.97 M� neutron star, together with the radius
constraints, implies the EOS above the saturation density is relatively
stiff; abundance of hyperons or any phase transition must be small.
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Consistency with Neutron Matter and Heavy-Ion Collisions
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