

Advanced LIGO Status

M. Landry for the LIGO Scientific Collaboration LIGO Hanford Observatory/Caltech BNS INT – University of Washington 30 June 2014 LIGO-G1400727-v1

LIGO Astrophysical Sources of Gravitational Waves

<u>Coalescing</u> <u>Compact Binary</u> <u>Systems</u>: Neutron Star-NS, Black Hole-NS, BH-BH

- Strong emitters, well-modeled,
- (effectively) transient

Credit: Chandra X-ray Observatory

Asymmetric Core Collapse Supernovae

- Weak emitters, not well-modeled ('bursts'), transient

- Also: cosmic strings, SGRs, pulsar glitches

Cosmic Gravitationalwave Background

- Residue of the Big Bang

- Long duration, stochastic background

Landry – BNS INT 30 Jun 2014 - G1400727-v1

<u>Spinning neutron</u> <u>stars</u>

- (nearly) monotonic waveform

- Long duration

Audio credit: E. Thrane, CIT

Frequency-Time Characteristics of GW Sources

Landry - BNS INT 30 Jun 2014 - G1400727-v1

LIGO Laboratory: two Observatories, Caltech and MIT campuses

LIGO Scientific Collaboration

• 900+ members, 80+ institutions, 17 countries

5

LIGO time line

Advanced LIGO

- Power recycled Fabry-Perot Michelson with Signal recycling (increase sensitivity, add tunability)
- Active seismic isolation, quadruple pendulum suspensions (seismic noise wall moves from 40Hz to 10Hz)
- DC readout, Output Mode Cleaner (better use of photons)
- ~20x higher input power (lower shot noise)
- 40 kg test masses (smaller motion due to photon pressure fluctuations)
- Larger test mass surfaces, lowmechanical -loss optical coatings (decreased mid-band thermal noise)
- Fused Silica Suspension (decreased lowfrequency thermal noise)

Landry – BNS INT 30 Jun 2014 - G1400727-v1

Phases in installation

Landry – BNS INT 30 Jun 2014 - G1400727-v1

- 14 unique fabricated parts
- 68 fabricated parts total
- 165 total including machined parts and hardware

Test mass suspension From Initial LIGO

- 188 unique fabricated parts
- 1569 fabricated parts total
- 3575 total including machined parts and hardware

Test mass suspension From Advanced LIGO

Landry – BNS INT 30 Jun 2014 - G1400727-v1

Installation progression

- Advanced LIGO installation start : Oct 20, 2010
- Livingston Observatory was the pathfinder
 - » Natural progression from laser, to input optics, to corner test masses, output and finally, arms
- Hanford Observatory had more complicated path
 - » 4km instrument was frozen for ~6mo, then a squeezed light experiment run for ~1 year
 - » 2km instrument deinstalled
 - » LIGO India evolved
 - » Deinstalled the 4km machine and commenced installation
- Philosophy : get to testing as quickly as possible

LIGO Livingston Install

Pre-stabilized laser

- Frequency noise measured at • Livingston
- 3 W input to IMC
- noise between 10 and 100 Hz is already better; expect to meet spec without difficulty

Landry - BNS INT 30 Jun 2014 - G1400727-v1

1

HAM installations

• For LIGO smaller chambers ("HAMs"), we install the seismic isolation platform into the chamber, and then populate it in situ

LLO HAM installation

LIGO Livingston input mode cleaner

Livingston DRMI

- Dual-recycled Michelson Interferometer ('DRMI')
 - » Power recycled Michelson locked on DC readout, calibrated

Landry – BNS INT 30 Jun 2014 - G1400727-v1

BSC installations

• For LIGO large chambers ("BSCs"), we assemble a cartridge in a given hall, and then crane it into the vacuum envelope

Hanford single-arm integration

- New lock acquisition strategy developed for Advanced LIGO
 - Arm Length Stabilization system controls each arm cavity, putting them offresonance
 - The 3 vertex lengths are controlled using robust RF signals
 - Arm cavities are brought into resonance in a controlled fashion
- Therefore, commissioned single 4km arm

Arm length stabilization

Landry – BNS INT 30 Jun 2014 - G1400727-v1

Hanford HIFO-Y

• Half-Interferometer ('HIFO')-Y arm

- Green light demonstrated to allow a continuous controlled positioning of cavity
- » Fluctuations of the HIFO-Y length ~5 Hz RMS (meets noise requirement of 8Hz)
- May require acoustic mitigation (in-air periscopes in corner and table motion) and modified suspension control filters for known mechanical modes

LIGO What's left to align? Everything is in the vacuum envelope*

LIGO Livingston

LIGO Hanford

* Almost.

Landry - BNS INT 30 Jun 2014 - G1400727-v1

Full locking at Livingston

Science

Rates paper: Class. Quant. Grav, 27 (2010) 173001

Binary neutron stars

- Initial LIGO reach: 15Mpc; rate ~ 1/50yrs
- Advanced LIGO ~ 200Mpc
- 'Realistic' rate ~ 40 events/yr

IFO	Source ^a	$\dot{N}_{ m low}~{ m yr}^{-1}$	$\dot{N}_{\rm re} \ { m yr}^{-1}$	$\dot{N}_{ m high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} \ { m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH–BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			<0.001 ^b	0.01 ^c
	IMBH-IMBH			10 ^{-4 d}	10 ^{-3 e}
ν,	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300 ^c
	IMBH-IMBH			0.1 ^d	1 ^e

Table 5. Detection rates for compact binary coalescence sources.

Current guess for sensitivity evolution, observation

Summary

- Advanced LIGO installation is drawing to a close, and rapid progress is being made towards 2hr lock
- We expect to make first science run with the second generation detectors in 2015 and 2016, runs which may produce detections
- We will press onward with sensitivity improvements to design sensitivity
- We expect gravitational waves will be detected in the coming few years

Light at the end of a tunnel

Tours of LIGO Hanford Observatory

Saturday July 12th Saturday July 26th

michael.landry@ligo.org

Some things you'll see

Some things I hope you won't see...

How many more miles?

About 320km east of Seattle, or about a 3 hour drive

