Tests of nuclear properties with astronomical observations of neutron stars

Wynn Ho

University of Southampton, UK

Nils Andersson – University of Southampton, UK *Nathalie Degenaar –* University of Michigan, USA *Khaled Elshamouty –* University of Alberta, Canada *Cristobal Espinoza –* Pontificia Universidad Catolica de Chile, Chile *Kostas Glampedakis –* Universidad de Murcia, Spain *Bryn Haskell –* University of Melbourne, Australia *Craig Heinke –* University of Alberta, Canada *Ian Jones -* University of Southampton, UK *Alexander Potekhin –* Ioffe Physical Technical Institute, Russia **Dmitry Yakovlev - Ioffe Physical Technical Institute, Russia**

Institute for Nuclear Theory – 17 July 2014

Outline

- Four examples of testing of nuclear physics with neutron stars
- 1) EOS from qLMXBs in globular clusters (Heinke, WH+, arXiv:1406.1497)
- 2) EOS and superfluidity/superconductivity from Cassiopeia A NS (WH+, in preparation)
- 3) EOS and superfluidity from pulsar glitches (Andersson, WH+, 2012)
- 4) Gravitational wave-induced r-modes (WH+, 2011; Haskell, WH+, 2012; Andersson, WH+, 2014)

Credit: HEASARC

EOS from Neutron Star Surface Radiation

Neutron star radii from quiescent low-mass X-ray binaries (qLMXBs) in globular clusters

- qLMXBs in globular clusters
	- o binary star system with NS accreting from low-mass companion, thus X-ray bright
	- \circ globular cluster mini-galaxy orbiting Milky Way with well-determined distance
	- o spectral fit depends on *R*/*d*
- Radius constraints using five qLMXB in GC

 \circ Guillot+ (2013): $R = 9.1_{-1.5}$ ^{+1.3} km \triangleright NGC 6397: $R \approx 6.6 \pm 1.2$ km $\geqslant \omega$ Cen: $R \approx 20.1 \pm 7.3$ km \triangleright other three: $R \sim 10\pm 3$ km exclude NGC 6397: *R* = 10.7-1.4 +1.7 km

∘ Lattimer & Steiner (2014): $R \approx 12\pm 1$ km

Neutron star radii from qLMXBs in globular clusters

Heinke, WH+, arXiv:1406.1497

• NGC 6397

- o *Hubble* observations place upper limit on hydrogen on companion
	- \Rightarrow possible helium white dwarf
	- **NS has helium surface (?)**

 \circ Guillot+ (2013): $R = 9.1_{-1.5}$ ^{+1.3} km \triangleright NGC 6397: $R \approx 6.6 \pm 1.2$ km $\geqslant \omega$ Cen: $R \approx 20.1 \pm 7.3$ km \triangleright other three: $R \sim 10\pm 3$ km exclude NGC 6397: *R* = 10.7-1.4 +1.7 km

 \circ Lattimer & Steiner (2014): $R \approx 12\pm 1$ km

and APR and BSk EOSs

- Mass and radius from X-ray spectrum o redshift – *M/R*
	- \circ brightness R^2
	- o surface gravity *M/R*²
- Neutron star cooling
	- o detailed EOS info (eg particle abundances)
	- o superfluid & superconducting gap energies
- Detailed constraints from using specific EOS
	- o APR (A18+δv+UIX*) M_{dU} > 1.96 M_{sun}

 \circ BSk20

 \circ BSk21 – $M_{\text{dU}} > 1.59 M_{\text{sun}}$ (BSk: Potekhin, Chamel+ 2013)

- o medium modified (Blaschke+ 2012; 2013)
- o rotation-induced transition (Negreiros+ 2013)
- \circ pasta and symmetry energy (Newton+ 2013)
- o quark transition (Noda+ 2013; Sedrakian 2013)
- o Joule heating (Bonanno+2014)
- o detector/SNR (Posselt+ 2013)

Cassiopeia A neutron star and APR and BSk EOSs

- Mass and radius from X-ray spectrum o redshift – *M/R*
	- o brightness *R*²
	- o surface gravity *M/R*²
- Neutron star cooling
	- \circ detailed EOS info (eg particle abundances)
	- o superfluid & superconducting gap energies
- Detailed constraints from using specific EOS
	- o APR (A18+δv+UIX*) M_{dU} > 1.96 M_{sun}
	- \circ BSk20
	- 0 BSk21 $M_{\text{dU}} > 1.59 M_{\text{sun}}$ (BSk: Potekhin, Chamel+ 2013)

Superfluid and Superconductor Gap Energies

Preliminary Conclusions

Andersson, WH+, PRL, 109, 241103 (2012); see also Chamel (2013) Pulsar Glitches: The Crust is Not Enough

The Crust is Not Enough

Andersson, WH+, PRL, 109, 241103 (2012)

- Superfluid entrainment increases neutron effective mass (Chamel 2005; 2012)
- Glitches need mom of inertia reservoir 4-8% e.g., Vela: 7%
- NS models provide < 8%
- Possible solutions:
	- o stiff EOS and low NS mass
	- o crust superfluid extends into core
	- o core superfluid
	- o crust EOS and superfluid effective mass (see talk tomorrow by Chamel)
	- o crust may be enough: extremely stiff EOS (Piekarewicz, Horowitz+ 2014; Steiner, Gandolfi+ 2014)

The Crust is Not Enough

Andersson, WH+, PRL, 109, 241103 (2012)

- Superfluid entrainment increases neutron effective mass (Chamel 2005; 2012)
- Glitches need mom of inertia reservoir 4-8% e.g., Vela: 7%
- NS models provide < 8%
- Possible solutions:
	- o stiff EOS and low NS mass
	- o crust superfluid extends into core
	- o core superfluid
	- o crust EOS and superfluid effective mass (see talk tomorrow by Chamel)
	- o crust may be enough: extremely stiff EOS (Piekarewicz, Horowitz+ 2014; Steiner, Gandolfi+ 2014)

R-mode oscillations and X-ray detection(?)

• Fluid oscillations in rotating stars with quadrupolar (corotating) frequency

 $v = (2/3) \times \Omega_{\rm c}$

• Observed in XTE J1751-305 (& 4U 1636-536) (Strohmayer & Mahmoodifar 2014)

 $v = 0.5727597 \times \Omega_s$ for J1751-305 $v = 0.56454 \times \Omega_s$ for 4U 1636-536 if r-mode

- Andersson, WH+, MNRAS, 442, 1786 (2014):
	- o Relativistic corrections to mode frequency
	- ^o Observed oscillation amplitude and spin evolution inconsistent with r-mode theory for XTE J1751-305

R-mode instability and emission of gravitational waves

- Fluid oscillations in rotating stars
- Generically unstable (Andersson 1998; Friedman & Morsink 1998):
	- ^o GW emission drives r-mode growth
	- ^o Viscosity damps r-mode
	- \triangleright shear viscosity at low temperature
	- \triangleright bulk viscosity at high temperature
	- o R-mode (in)stability criterion

$$
t_{\rm gw} \left(v_{\rm s} \right) = t_{\rm visc} \left(v_{\rm s} \right) / T
$$

Physics of r-mode instability

WH+, PRL, 107, 101101 (2011); Haskell, WH+, MNRAS, 424, 93 (2012)

- Instability window for GWs is uncertain
- GW sources counter to expectations
- Rich physics arena ^o core temperature estimates:
	- \triangleright envelope composition
	- \triangleright thermal conductivity (e.g., Page & Reddy 2013)
	- neutrino emission (e.g., Schatz, Steiner+ 2014)
	- o window shape:
		- \triangleright crust-core transition/elasticity
		- \triangleright superfluidity (critical temperature, hyperons, mutual friction)
		- EOS (strange matter, quarks)
		- \triangleright magnetic field (damping and strength)

 (Hz)

 \triangleright non-linearity and saturation

Summary

- Neutron stars are unique astronomical tool for nuclear physics (EOS, sf/sc gaps, transport)
	- ^o quiescent low-mass X-ray binaries
	- \circ Cas A X-ray spectra and cooling
	- ^o radio pulsar glitches
	- ^o r-modes and gravitational waves
- Request for astrophysically-useful parameterization of nuclear properties
- **By studying the big and far, we can understand the small and near.**

