Probes of the Supernova Engine

Chris Fryer (LANL) for LANL Multi-Messenger team, LANL light-curve team, NuGrid collaboration

- \triangleright Direct Probes of the SN Engine
- Neutrinos
- Gravitational Waves
- **▶ Indirect Probes**
- Progenitors
- Light Curves
- Ejecta Remnants
- Compact Remnants
- Nucleosynthetic Yields

Supernova 1987A

Neutrino-Driven Supernova Mechanism

Temperature and Density of the Core Becomes so High that: Iron dissociates into alpha particles Electrons capture onto protons Velocity (c) **Velocity (c) Core collapses nearly at freefall!** 0.05 Velocity (c) **Velocity (c)** -0.05 -0.1 -0.15 10 100 **Radius (km)**

Neutrinos

- Neutrinos probe the structure of the core and the behavior of matter at nuclear densities (e.g. Roberts et al. 2012, Reddy et al. 2012).
- With modern detectors, a **Galactic** supernova could be used to probe neutrino physics such as neutrino oscillations.

Gravitational

• One of the uncertainties limiting what we can learn from neutrinos is the core rotation.

• Gravitational Waves are direct probes of this rotation.

Gravitational Waves

- For a sufficiently strong signal, we could even probe the nature of the convection.
- Unfortunately, even with the next generation of detectors, such detailed neutrino and gravitational wave signals are limited to Galactic (or local group) supernovae.

Indirect Probes

- With indirect probes, we will have to use theory to connect the observations to the physics we want to study.
- With these tests, errors can multiply. Need to constrain the initial conditions and include multiple diagnostics to minimize the errors.

Observing the Progenitor

- Thanks primarily to the HST archive, we now have a growing list of supernovae whose pre-explosion progenitor has been observed.
- However, even with observations, the errors can still be large.
- Better theory is needed to take advantage of this data.

Smartt 2009 + Fryer et al. 2014

Shell Burning

• Shell burning can be explosive (Smith & Arnett 2013, Arnett et al. 2014, Herwig et al. 2014). This will alter the core masses as well as the circumstellar medium.

Stellar Models Key

• New mixing algorithms may burn helium (through more dynamic shell burning), increasing the Ic/Ib ratio (Frey et al. 2013)

Binaries and mass loss

- Binary searches in clusters suggest that >50% of massive stars are in close binaries (Kobulnicky et al. 2012, Sana et al. 2012).
- Mass transfer, Common envelope will affect circumstellar media and, in some cases, stellar structure.
- The strength and asymmetries in wind mass loss has also changed over the last decade.
- All these, mixing, winds, binary effects, can dramatically alter the light curves and we have a lot of work to understand these effects.

• First Pass, an expanding sphere:

 $L = 4\pi r^2 \sigma T^4$

- If we assume adiabatic expansion:
- $S \propto aT^3/\rho \rightarrow T \propto S^{1/3}M^{1/3}r^{-1}$ $\to L \propto r^{-2} M^{4/3} S^{1/3}$
	- What is missing?
		- \triangleright Entropy at photosphere is not constant: Transport, 56Ni decay, shock heating.
		- \triangleright Photosphere doesn't expand with ejecta. Is a photosphere even well-defined?

Supernova Light Curves

Applying Early Light-Curve Models

Litvinova and Nadezhin (1985) derived relations for ejecta mass (m), radius (r) and explosion energy (E) as a function of V magnitude, time since explosion (t) and photospheric velocity (v) based on their simulations:

 \bullet lg(E(foe)) = 0.135 V + 2.34lg(t) +3.13lg(v) -4.205

- \bullet lg(M(solar)) = 0.234 V + 2.91lg(t) + 1.96lg(v) -1.829
- •Lg(R(solar)) = $-0.572V 1.07lg(t) 2.74lg(v) 3.350$

SN	t_{0} $(JD - 2,400,000)$	ι_{p} $(ID-2,400,000)$	V_p	v_p $(\pm 300 \,\rm km\,s^{-1})$	Energy $(\times 10^{51}$ ergs)	Ejected Mass (M_{\odot})	Initial Radius (R_{\odot})
1969L 1973R 1986L 1988A 1989L 1990E 1991G 1992H 1992am 1992ba 1999cr 1999em	40550.5(5) 42008.5(15) 46707.9(4) 47163.0(7) 47650.0(15) 47932.6(5) 48280.0(5) 48661.0(10) 48778.1(11) 48883.2(5) 51221.5(10) 51474.0(3)	40660.0(7) 42119.0(7) 46813.0(7) 47305.0(35) 47790.7(7) 48063.9(10) 48403.0(7) 48777.5(10) 48951.1(29) 49015.3(7) 51347.5(10) 51598.0(5)	13.34(06) 14.61(05) 14.64(05) 15.04(05) 15.68(05) 16.00(20) 15.61(07) 15.07(04) 18.78(05) 15.56(05) 18.50(05) 14.02(05)	4562 4823 4037 3537 2800 4552 3030 5084 5097 2954 3858 3290	$2.3^{+0.7}_{-0.6}$ 2.7^{+} $1.3_{-0.5}^{+0.5}$ 2.2^{+} $1.2^{+0.6}_{-0.5}$ 3.4^{+1} $1.3_{-0.9}^{+0.9}$ 3.1 $5.5^{+3.0}_{-2.1}$ $1.3_{-0.2}^{+0.5}$ $1.9^{+0.8}$ $1.2^{+0.8}_{-0.8}$	$28 + 11$ 31^{+16}_{-12} 17^{+} 50^{+46}_{-20} $41 + 22$ $48 + 22$ 41^{+1} 32^{+} 56^{+40}_{-24} 42+ 32^{+14} 27^+	204^{+150}_{-89} 197^{+} $417 + 304$ 138 $136 + 118$ 162^{+148}_{-0} 70^{+7} 261 586^{+} $96+$ 224^{+136}_{-21} 249^{+1}
1999gi	51474.0(3)	51645.0(5)	14.98(05)	3168	$1.5^{+0.7}_{-0.5}$	$43 + 24$	81^{+110}_{-51}

TABLE 3 **OBSERVED AND PHYSICAL PARAMETERS FOR TYPE II SUPERNOVAE**

Hamuy (2003) fits with this formulae predict extremely high masses (too high to be believed).

Difficulties in Modeling Supernovae

- Initial Conditions
- \triangleright Progenitor structure, circumstellar medium (progenitor mass ejections), explosion energy, explosion asymmetry
- Radiation Transport
- \triangleright Simplifications in solving the Boltzmann Equation
- Opacities: number of levels, LTE vs. NLTE, steady state approximations
- \triangleright Ion/electron coupling
- Radiation Hydrodynamics
- 1T, 2T, 3T (radiation/matter decupling)
- \triangleright Hydrodynamic shocks and radiation
- \triangleright Radiation effects on hydrodynamics

Streaming and Removal Term

Radiation Transport

1 *c* ∂I ∂t $+\Omega \bullet \nabla I + (\sigma_a + \sigma_s)I =$

Scattering Term

Source Term

- •Average over angle:
	- First moment: diffusion
	- Second moment: Variable Eddington Factor
- •Average over Energy Group: Gray (Rosseland, Planck)
- •Remove time dependent term
- •Ignore Spatial Terms

Accurate Opacities critical: the kilanova example

• The presence of heavy elements at such cold temperatures requires the calculation of near-neutral ions with many ($>$ 50) bound electrons.

• Furthermore, the presence of the 4f4 subshell (lanthanides) requires the seniority quantum number to properly account for the angular momentum coupling when calculating the fine-structure levels (extra code development was required to obtain atomic structure)

• Just 25 configurations leads to 27,000 levels and 300,000,000 lines.

Radiation Hydrodynamics in Shock Breakout

• Even when the radiation is trapped, it can lead the shock – the shock position moves faster than Sedov solution would predict. • After breakout, the radiation begins to decouple from the material.

In most core-collapse supernovae, shocks are more important than ⁵⁶Ni in powering the light curve.

Testing our codes: Physics experiments of Shock Breakout

- The Univ. of Michigan CRASH center developed an experiment to test shock breakout.
- This experiment demonstrated many of the difficulties with modeling shock breakout: radiation pre-heat, turbulence,

….

Density in **Crash** experiment (Cassio Calculations): Fatenejad et al.

Opacity Experiments

- **Early results** showed good agreement with iron measurements, but the most recent iron experiments do not agree with state-ofthe-art atomic physics.
- Kurucz results have trouble getting agreement with the atomic physics community.

FIG. 1. The sample composition for (a) an $Fe+Mg$ sample and (b) an Al+Fe+Mg sample and their synthetic transmission spectra under 10% gradient with the average T_e and n_e of 195 eV and 8×10^{22} cm⁻³. Layer numbers correspond to the subscript i in Eqs. (1) and (2) .

Nagayama et al. 2012

Ejecta Remnants – Probing Low Mode **Convection**

• In most simulations, low mode convection driven by Rayleigh-Taylor or advectiveacoustic instabilities seem to dominate the flows.

• Although this has dominated the focus of theorists for nearly 20 years, until recently, we had no evidence of such flows.

NuSTAR has provided a new window in the supernova mechanism Greffenstette et al. 2014

• The mass distribution of compact remnants (black holes, neutron stars) depends on the nature of the explosion engine. For example, the delay in the engine: 100ms vs. 1s can have a big effect on the long-term masses.

Compact Remnants

mass to decrease with increasing mass.

40

Compact Remnants

•The masses of compact remnants can be measured in binary systems (e.g. binary pulsar systems and X-ray binaries) and these observations are producing a growing list of masses.

• Advanced LIGO could dramatically increase these mass estimates

Distribution of BNS Masses

Remnant Masses

By combining

- population synthesis
- merger models
- EOS understanding

we can predict fractions of HMNS, direct BHs, and systems which collapse to a BH after a given time.

If we can distinguish between these events, we ultimately will have a nice probe of the maximum NS mass. Preliminary results argue that we are quite sensitive (but stay tuned).

Probing the Supernova Engine

- Direct probes (neutrinos, gravitational waves) can both probe the supernova engine and nuclear physics. Their drawback is that we need a local group SN for these probes to be effective.
- Indirect probes must be coupled to theory and theoretical uncertainties must be considered in interpreting results.
- BNS mergers are probes of both the lower (determined by progenitor/core-collapse calculations) and maximum (EOS) neutron star masses.