Neutron Star - Black Hole Mergers

- Status of numerical simulations
 - Merger results from binary parameters
 - Post-Merger evolution
- SpEC Code
 - Overview
 - Neutrinos and B-fields Future plans and current issues

PARAMETER SPACE

- Wider parameter space than NS-NS binaries
 - Arbitrary BH spin
 - M_{BH} ~ 5-10 M_{sun}?
 - Choice of equation of state
 - M_{NS} ~ 1-3 M_{sun}
 - Eccentricity? NS spin?
- ... but generally simpler mergers

Kreidberg et. al 2012

NS-NS NS-NS

4

- Reliably produce disks & outflows
- Known to exist, probably more frequent
- Larger tidal effects on GW

Hotokezaka et al (2013)

- Cleaner environment
- Massive ejecta / disks
- Kelvin-Helmholtz less important?
- Observed farther away

EXISTING GR-HYDRO SIMULATIONS

EQUATION OF STATE

- For GW / Disruption : Γ=2 ideal gas (SpEC, UIUC), piecewise polytropes (Kyoto)
- Finite temperature EoS: HShen, LS220 (SpEC)
- New EoS compatible with current nuclear theory / astrophysical constraints
 - FSU1, SFHo available, but not used yet
 - Hebeler et al. 2013 (cold equilibrium)

MAGNETIC FIELDS

- Chawla *et al* 2010 : q=5, B=10¹²G
 - Negligible effect of B-field pre-merger
- Etienne *et al* 2011,2012: q=3, B=10¹⁶⁻¹⁷G (tilted)
 - GW effect for large B-fields
 - Post-merger field nearly fully toroidal
 - Too expensive to resolve MRI for aligned spins
- Paschalidis et al 2013: force-free evolutions

7

NEUTRINOS

- Deaton et al 2013, Foucart et al 2014
 - Leakage scheme, with LS220 EoS

• and that's it for GR-Hydro simulations (but a lot more done without GR)

8

NUMERICAL RESULTS

MERGER OUTCOMES

MERGER OUTCOME

Approximate disruption condition from NR simulations:

$$C_{\rm NS} \lesssim \left(2 + 2.14q^{2/3} \frac{R_{\rm ISCO}}{6M_{\rm BH}}\right)^{-1}$$

11

Foucart 2012, Stone *et al* (2012)

Friday, July 11, 2014

DYNAMICAL OUTFLOWS

- Large outflows if NS disrupts
 - $M_{ej} \sim 0.01 0.25 M_{sun}!$
 - Cold, low Y_e -> strong rprocess
- Asymmetric ejection
 - Large kicks v~100-800 km/s
 - Effect on color/magnitude of kilonova?

Deaton *et al* (2013), Foucart *et al* (2013,2014), Hotokezaka *et al* (2013) Kyutoku *et al* (2013), Lovelace *et al* (2013), Tanaka *et al* (2013)

Friday, July 11, 2014

DISK EVOLUTION

- Initial disk properties (for q~5-7)
- Rapidly evolve to quasi-equilibrium state (in ~10-20ms), at least without MHD...
- Misalignment β < 10° for realistic masses, rapid disk alignment expected
- Instabilities observed in the most massive disks, M_{disk} > 0.2 M_{sun}

DISK EVOLUTION

14

- Importance of neutrino cooling
 - Disk remains compact
 - T ~ 2-3 MeV after ~20ms
 - Non-monotonous Ye evolution
 - High $L_v \sim 10^{53}$ erg/s
- Early evolution affected by fallback
- Late evolution: need MRI

COMPOSITION EVOLUTION

15

- Y_e evolution ~equilibrium Y_e
- Variations < disk asymmetries
- Mild differences for massive / optically thick disks

Friday, July 11, 2014

DISK EVOLUTION

- Post-merger B-field mostly toroidal
- Resolving MRI for realistic field strength very costly
- Outflows seen after seeding a poloidal field post-merger
- Can we grow a coherent poloidal field?

Etienne et al (2012)

DISK EVOLUTION

- Long-term evolution: 2D codes (e.g. Lee et al. 2009, Fernandez & Metzger 2013)
 - Models for viscosity, neutrinos, recombination
 - Late time outflow Moutflow ~ 0.1 Mdisk
 - For BH-NS: M_{outflow} << M_{ejecta}, with similar Y_e
 - Could be important for NS-NS

Fernandez &

Friday, July 11, 2014

GRAVITATIONAL WAVES

- Equation of state effects *probably* too hard to detect for realistic M_{BH}
 - Tidal effects smaller than in NS-NS
 - NS disruption at 1-2 kHz

Friday, July 11, 2014

GRAVITATIONAL WAVES

- Can be used to test analytical waveforms
 - Need high order methods (Radice et al. 2013)
 - Potential to resolve tidal effects at <10%
 - Need to improve error estimates

Friday, July 11, 2014

ECCENTRIC BINARIES

- Rates very controversial
- Currently only detectable through burst searches

21

- Richer results than circular binaries
 - Massive ejecta / disks
 - Stable mass transfers
 - Mode excitation

ECCENTRIC BINARIES

• Numerical simulations (East et al 2012)

GR-HYDRO IN SPEC

SPEC-HYDRO

- Caltech: R. Haas, J. Lippuner, C. Ott, L. Roberts,
 B. Szilagyi, M. Scheel
- CITA: F. Foucart, E. O'Connor, I. MacDonald, H. Pfeiffer, N. Tacik
- Cornell: A. Bohn, K. Henriksson, L. Kidder, C. Muhlberger, S. Teukolsky
- Fullerton: G. Lovelace
- WSU: W. Brege, B. Deaton, M. Duez, F. Nouri
- ... and many more for BH-BH simulations

SPEC METHODS: GR

- Pseudo-spectral methods
 - Spectral AMR
 - Exponential convergence
 - BH excision
- Generalized harmonic formalism
- Comoving grid, complex control system

Foucart et al 2013

Hemberger et al 2012

SPEC METHODS: HYDRO

- Finite volume
 - WENO5 + HLL
 - MHD / Leakage
 - Nuclear EoS
 - FMR
- Finite difference
 - MP5 + Roe / LF
- Communication GR <-> Hydro grid ; Regrids

SPEC: VACUUM

- Spectral code allows efficient computation of high accuracy, long waveforms
 - Usually comes at the cost of less robust numerical methods
- Catalog of 179 waveforms publicly available (Mroue *et al* 2013)
- Still working on extending parameter space coverage
 - Precessing binaries
 - Larger mass ratios
 - Extreme spins

GR-HYDRO ÁCCURACY

- GW phase: typically ~1-2 rad with FV methods (for ~10 orbits)
- BH properties : ~1% relative error
- Matter : 10-50% error
- Neutrino luminosity: order of magnitude
- Sometimes difficult to assess: non monotonous error, complexity of two-grid method

Friday, July 11, 2014

SPEC METHODS: OPACITY

- Optical depth:
 - I. Approximate T_v
 - 2. Compute crosssections using guess for potentials $\mu(T_v)$
 - 3. Compute T_v from line integrals on coarse grid
 - 4. Iterate until T_v converges

Or: Replace (3) by method from Neilsen *et al* 2014

DEVELOPMENT: NEUTRINOS

- Current direction: moment formalism
 - Evolve E, Fi for each species
 - Grey scheme or energy dependent?
 - Problematic time step & treatment of highvelocity regions
 - Closure relation? M1 known to fail for crossing beams...
- Otherwise, Monte Carlo?
- What is the effect of the atmosphere?

POST-PROCESSING: NEUTRINO ANNIHILATION

- Neutrinos deposit energy in low-density region above disk
 - Estimates of ~a few % of total luminosity
 - Could be $Q_v \sim 10^{51}$ erg/s after merger!
- Should impact jet formation
 - Baryon loading from e⁺-e⁻ creation?
 - Helps power the outflows?
- Not handled by leakage, M1...

POST-PROCESSING: NEUTRINO ANNIHILATION

- Post-process with Monte-Carlo integration
 - Use ray-tracing from neutrinosphere (developed for event horizon finder)
 - Estimate annihilation rate
 - Newtonian results (Setiawan et al 2006):

40

SPEC METHODS: B-FIELDS

- So far, ideal MHD
- Evolve either B-field or vector potential using constrained transport
 - Can also evolve potential at cell center (but requires dissipation)
- Used to study low T/W instability (Muhlberger et al 2014), NS-BH inspirals, Accretion disk

ISSUES: B-FIELDS

- Dual grid methods not adapted to MHD techniques
 - Interpolation, close outer boundary
- Influence of excision
- Boundary condition on vector potential
- And of course, the usual resolution issues...

POST-PROCESSING: R-PROCESS

- Use tracer particles to get history of ejecta
- SPH continuation of GR-Hydro simulations?
 - Need fixed metric SPH code
 - Can then follow ejecta over long timescales
- Post-processing with nuclear reaction network