Toward a unified description of equilibrium and dynamics of neutron star matter

Omar Benhar

INFN and Department of Physics "Sapienza" Universita di Roma ` I-00185 Roma, Italy

Based on work done in collaboration with A. Carbone, A. Cipollone, G. De Rosi, C. Losa, and A. Lovato

> Workshop on Dense Matter Physics INT, Seattle, July 14 - 18 , 2014

> > K ロ K K @ K K B K K B K (B B

 299

Motivation & Outline

- \star The validity of the models of neutron star matter must be gauged beyond their ability to predict acceptable values of *M* & *R*
- ? Need a *unified* approach providing a *consistent* description of
	- \triangleright EOS
	- \triangleright transport properties
	- \triangleright neutrino interactions
	- \triangleright supefulid gap
	- \triangleright ...
- \star The paradigm of nuclear many-body theory
	- . *ab initio* approach
	- \triangleright effective interaction approach
	- \triangleright bridging the gap: effective interactions from the *ab inito* approach
- Summary & Outlook

4 0 8 4

The paradigm of nuclear many-body theory

 \star Nuclear matter is described as a collection of pointlike protons and neutrons interacting through the hamiltonian

$$
H = \sum_{i} \frac{p_i^2}{2m} + \sum_{j>i} \mathbf{v}_{ij} + \sum_{k>j>i} \mathbf{V}_{ijk}
$$

★ It has long been realized^{*} that the independent particle – or mean field –
approximation, which amounts to replacing approximation, which amounts to replacing

$$
\sum_{j>i} \mathbf{v}_{ij} + \sum_{k>j>i} \mathbf{V}_{ijk} \rightarrow \sum_i U_i ,
$$

fails to take into account the effects of nucleon-nucleon correlations, which are known to play an important role in determining nuclear structure and dynamics.

∗ "The limitation of any independent particle model lies in its inability to encompass the correlation between the positions and spins of the various particles in the system" [Blatt $\&$ Weiskopf (AD 1952)]. QQ **≮ロト ⊀ 何 ト ⊀ ヨ ト**

The *ab initio* many-body approach

- \star The potentials are determined by a fit to the properties of the *exactly solvable* two- and three-nucleon systems
	- \triangleright \triangler scattering data: the ANL v_{18} model, as an example

$$
\mathbf{v}_{ij} = \sum_{p=1,18} \mathbf{v}_p(r_{ij}) O_{ij}^p
$$

$$
O_{ij}^{p} = [\mathbf{1}, (\sigma_i \cdot \sigma_j), S_{ij}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^2, \mathbf{L}^2(\sigma_i \cdot \sigma_j), (\mathbf{L} \cdot \mathbf{S})^2] \otimes [\mathbf{1}, (\tau_i \cdot \tau_j)],
$$

$$
[1, (\sigma_i \cdot \sigma_j), S_{ij}] \otimes T_{ij} , (\tau_{zi} + \tau_{ij})
$$

 \triangleright The three-nucleon potential is determined fitting the properties of the three-nucleon system

$$
V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{\rm R}
$$

- \star Proton-neutron differential
x-section at $E_{cm} = 100 \text{ MeV}$
- \star Energy level of light nuclei from Green's Function Monte Carlo

Nuclear matter EOS (no adjustable parameters involved)

- \star Binding energy per particle of isospin-symmetric nuclear matter (SNM)
- \star Binding energy per particle of pure neutron matter (PNM)

4 D F

 QQ

The efective interaction approach

 \star The bare potential is replaced with an *efective* potential, suitable for use within the framework of perturbation theory in the Fermi gas basis. The Skyrme potential, as an example

$$
v_{ij}^{\text{eff}} = \delta(\mathbf{r}_i - \mathbf{r}_j)t(\mathbf{k}, \mathbf{k}')
$$

$$
\mathbf{k} = \frac{i}{2}(\overrightarrow{\mathbf{V}}_1 - \overrightarrow{\mathbf{V}}_2), \quad \mathbf{k}' = \frac{i}{2}(\overleftarrow{\mathbf{V}}_1 - \overleftarrow{\mathbf{V}}_2)
$$

- \star The above definition can be generalized to include spin-dependence. The parameters involved are adjusted in such a way as to reproduce selected nuclear properties, as well as the equilibrium properties of isospin symmetric nuclear matter.
- \star The ground state expectation value of the hamiltonian can be written in the form of a *energy-density functional*

$$
\langle H \rangle = \langle \sum_{i} \frac{p_i^2}{2m} + \sum_{j>i} v_{ij}^{\text{eff}} \rangle = \mathcal{E}(\rho_p, \rho_n)
$$

Results of the effective interaction approach

- \star Equation of state (EOS) of SNM and PNM computed using different Skyrme- and Gogny-type effective interactions, compared to the variational results obtained from the Argonne-Urbana hamiltonians.
- \star The effective interactions, while being capable to provide a reasonable description of the EOS, are limited by the approximations involved in their definition, lacking a direct connection to the underlying nuclear interactions. QQ

Omar Benhar (INFN, Roma) **[INT, Seattle](#page-0-0) July 16, 2014** 8/31

- \star In the *ab initio* approach the uncertainty associated with the dynamical model is decoupled from the approximations involved in many-body calculations
- \star Once the nuclear hamiltonian is determined, *in principle* its eigenstates can be obtained from the solution of the Schrödinger equation

 $H \vert n \rangle = E_n \vert n \rangle$

- \star Calculation of nuclear observables do not involve any additional parameters
- \star The Schrödinger equation can only be solved for nuclei with mass number $A \le 12$. Approximations are required for larger A, as well as for uniform nuclear matter in the $A \rightarrow \infty$ limit.

 209

Correlated Basis Function (CBF) formalism

 \star The eigenstates of the nuclear hamiltonian are approximated by the set of correlated states, obtained from the eigenstates of the Fermi Gas (FG) model

$$
|n\rangle = \frac{F|n_{FG}\rangle}{\langle n_{FG}|F^{\dagger}F|n_{FG}\rangle^{1/2}} = \frac{1}{\sqrt{N_n}} F|n_{FG}\rangle \quad , \quad F = S \prod_{j>i} f_{ij}
$$

 \star the structure of the two-nucleon correlation operator reflects the complexity of nuclear dynamics

$$
f_{ij} = \sum_p f_p(r_{ij}) O_{ij}^p
$$

 \star the operators O_{ij}^n are the same as those entering the definition of the NN notential potential

 2040

Cluster expansion and FHNC equations

 \star The ground state expectation value of the hamiltonian is written as a sum of contributions associated with subsystems (clusters) consisisting of an increasing number of particles

$$
\langle H \rangle = \frac{\langle 0 | H | 0 \rangle}{\langle 0 | 0 \rangle} = E_{FG} + \sum_{n \ge 2} (\Delta E)_n
$$

- \star The relevant terms of the cluster expansion can be summed up at all orders solving a set of integral equations known as Fermi Hyper-Netted Chain (FHNC) equations
- \star the shapes of the $f_p(r_{ij})$ are determined form the minimization of the ground-state expectation value of the hamiltonian

$$
E_0 \ge \min_F \frac{\langle 0_{FG} | F^\dagger H F | 0_{FG} \rangle}{\langle 0_{FG} | 0_{FG} \rangle}
$$

Alternative approach: the CBF effective interaction

 \star Within CBF, the effective interaction is defined through

$$
\langle H \rangle = \frac{\langle 0|F^{\dagger}(T+V)F|0\rangle}{\langle 0|F^{\dagger}F|0\rangle} = \langle 0_{FG}|T+V_{\text{eff}}|0_{FG}\rangle
$$

 \star At two-body cluster level

$$
V_{\text{eff}} = \sum_{j>i} v_{\text{eff}}(ij)
$$

$$
v_{\text{eff}}(ij) = f_{ij}^{\dagger} \left[-\frac{1}{m} (\nabla^2 f_{ij}) - \frac{2}{m} (\nabla f_{ij}) \cdot \nabla + v_{ij} f_{ij} \right]
$$

 \star Three-nucleon interactions can be taken into account extending the definition to include three-body cluster contributions

Omar Benhar (INFN, Roma) **[INT, Seattle](#page-0-0) July 16, 2014** 12/31

CBF effective interaction at SNM equilibrium density

EOS of PNM obtained using the CBF effective interaction

 \leftarrow

 290

 \star Landau-Abrikosov-Khalaktnikov formalism: Boltzman equation

$$
\frac{\partial n}{\partial t} + \frac{\partial n}{\partial \mathbf{r}} \frac{\partial \epsilon}{\partial \mathbf{p}} - \frac{\partial n}{\partial \mathbf{p}} \frac{\partial \epsilon}{\partial \mathbf{r}} = I(n)
$$

$$
n = n_0 + \delta n \qquad , \qquad n_0 = \{1 + \exp[\beta(\epsilon - \mu)]\}^{-1}
$$

 \star The collision integral $I(n)$ depends on the probability of the *in medium NN* scattering process

$$
W = \frac{16\pi^2}{m^{\star 2}} \left(\frac{d\sigma}{d\Omega}\right)
$$

 \star The description of transport properties require dynamical models providing an accurate description of NN scattering in the nuclear medium, constrained by the available data in the zero-density limit

Shear Viscosity of pure neutron matter

 \star Abrikosov-Khalatnikov (AK) estimate of the shear viscosity in the low-temperature limit

$$
\eta_{AK} = \frac{1}{5} \rho m^{\star} v_F^2 \tau \frac{2}{\pi^2 (1 - \lambda_\eta)}
$$

 \star Quasiparticle lifetime

$$
\tau T^2 = \frac{8\pi^4}{m^{*3}} \frac{1}{\langle W \rangle} ,
$$

 \star Angle-averaged collision probability

$$
\langle W \rangle = \int \frac{d\Omega}{2\pi} \frac{W(\theta, \phi)}{\cos(\theta/2)} , \quad \lambda_{\eta} = \frac{\langle W[1 - 3\sin^4(\theta/2)\sin^2\phi]}{\langle W \rangle}
$$

4 D F

In medium neutron-neutron cross section

 \star From Fermi's golden rule

Single particle spectrum and effective mass

 \star Calculations carried out within the Hartree-Fock approximation using the CBF effective interaction

$$
e(k) = \frac{k^2}{2m} + \sum_{\mathbf{k'}} \langle \mathbf{k}\mathbf{k'} | v_{\text{eff}} | \mathbf{k}\mathbf{k'} \rangle_a , \frac{1}{m^*} = \frac{1}{k} \frac{de(k)}{dk}
$$

 \star Density dependence of ηT^2 n pure neutron matter

 \star Note: the SLya effective interaction, adjusted to reproduce the the microscopic EOS, predicts $\eta T^2 \sim 6 \times 10^{13}$ g cm⁻¹ s⁻¹ MeV² at nuclear matter equilibrium density to be compared with the result obtained from matter equilibrium density, to be compared with the result obtained from the CBF effective interaction $\eta T^2 \sim 1.4 \times 10^{15}$ g cm⁻¹ s⁻¹ MeV².

Thermal conductivity of pure neutron matter

 \star The transport coefficients computed using the CBF effective interaction is remarkably close to the result obtained within the G-matrix approach using the same bare NN potential. Note: three-body interactions are not taken into account.

Neutrino interactions in nuclear matter

 \star Neutral current interactions in neutron matter

$$
J_Z^{\mu} = \sum_i J_i^{\mu} , j_i^{\mu} = \overline{\psi}_{n_i} \gamma^{\mu} (1 - C_A \gamma^5) \psi_{n_i}
$$

 \star In the non relativistic limit

$$
J_Z^0 \to \hat{O}_{\mathbf{q}}^o = \sum_i e^{i\mathbf{q} \cdot \mathbf{r}_i} \quad , \quad \mathbf{J}_Z \to \hat{O}_{\mathbf{q}}^o = \sum_i e^{i\mathbf{q} \cdot \mathbf{r}_i} \sigma_i
$$

 \star Neutrino scattering rate and response functions

$$
W(\mathbf{q},\omega) = \frac{G_F^2}{4\pi^2} \left[(1 + \cos\theta) S^{\rho}(\mathbf{q},\omega) + \frac{C_A^2}{3} (3 - \cos\theta) S^{\sigma}(\mathbf{q},\omega) \right],
$$

$$
S^{\rho}(\mathbf{q},\omega) = \frac{1}{N} \sum_{n} |\langle n|\hat{O}_{\mathbf{q}}^{\rho}|0\rangle|^{2} \delta(\omega + E_{0} - E_{n}) \quad , \quad S^{\sigma}(\mathbf{q},\omega) = \sum_{\alpha} S_{\alpha\alpha}^{\sigma}(\mathbf{q},\omega)
$$

$$
S_{\alpha\beta}^{\sigma}(\mathbf{q},\omega) = \frac{1}{N} \sum_{n} \langle n|\hat{O}_{\mathbf{q}}^{\sigma_{\alpha}}|0\rangle\langle 0|\hat{O}_{\mathbf{q}}^{\sigma_{\beta}}|n\rangle\delta(\omega + E_{0} - E_{n})
$$

 \curvearrowright

Density and spin responses of pure neutron matter

 \star The target response tensor

$$
W_A^{\mu\nu} = \sum_n \langle 0|J_Z^{\mu\dagger}|n\rangle \langle n|J_Z^{\nu}|0\rangle \delta(\omega + E_0 - E_n)
$$

must be computed using correlated initial and final states, which amounts to compute the transition matrix element of the *e*ff*ective operator*

$$
\widetilde{J}_A^{\mu} = \frac{1}{\sqrt{\mathcal{N}_0 \mathcal{N}_n}} F^{\dagger} J_A^{\mu} F
$$

between FG states |*n*)

 \star In the one particle-one hole sector

$$
|n\rangle = \frac{1}{\sqrt{N_{ph}}} F|ph\rangle \quad , \quad \langle n|J_A^{\nu}|0\rangle \to (ph|\widetilde{J}_A^{\mu}|0\rangle)
$$

Including long range correlations

 \star Allow for propagation of the particle-hole pair, giving rise to the excitation of collective modes. Replace

$$
|n\rangle \rightarrow \sum_{i=1}^{N} C_i |p_i h_i)
$$

 \star The energy of the state $|n\rangle$ and the coefficients C_i are obtained diagonalizing the $N \times N$ hamiltonian matrix

$$
H_{ij} = (E_0 + e_{p_i} - e_{h_i})\delta_{ij} + (h_i p_i | v_{\text{eff}} | h_j p_j)
$$

with the CBF effective interaction and the Hartree-Fock spectrum

$$
e_k = \frac{k^2}{2m} + \sum_{\mathbf{k}'} \langle \mathbf{k} \mathbf{k}' | v_{\text{eff}} | \mathbf{k} \mathbf{k}' \rangle_a
$$

- \star Landau theory of normal Fermi liquids can also be employed to obtain the density and spin responses of pure neutron matter
- \star the value of the Landau parameters can be obtained from the quasiparticle interaction, which can be in turn expressed in terms of matrix elements of the effective interaction

$$
f_{\sigma\sigma'\mathbf{p}\mathbf{p}'} = f_{\mathbf{p}\mathbf{p}'} + g_{\mathbf{p}\mathbf{p}'}(\sigma \cdot \sigma') + f_{\mathbf{p}\mathbf{p}'} S_{12}(\mathbf{p} - \mathbf{p}')
$$

= $\langle \mathbf{p}\sigma \mathbf{p}'\sigma' | v_{\text{eff}} | \mathbf{p}\sigma \mathbf{p}'\sigma' \rangle - \langle \mathbf{p}\sigma \mathbf{p}'\sigma' | v_{\text{eff}} | \mathbf{p}'\sigma' \mathbf{p}\sigma \rangle$

 \star this formalism can be easily extended to non zero temperatures, in the range $T \ll T_F$

Charged current interactions at low-momentum transfer

 \star Fermi (density, left) and Gamow-Teller (spin, right) contributions to the response of pure neutron matter at nuclear matter equilibrium density $(\rho_0 = 0.16 \text{ fm}^{-3})$ and momentum transfer $|\mathbf{q}| = 0.1 \text{ fm}^{-1}$

 \star the collective mode is only excited in the spin channel

4 D F

Neutrino mean free path in neutron matter at $\rho = \rho_0$

4 D F

 209

Responses and Neutrino mean free path from Landau theory

 \star Dependence on momentum transfer at $\rho = \rho_0$

 \leftarrow

- \star Mean free path of a non degenerate neutrino in neutron matter
	- \triangleright Left: density-dependence at $k_0 = 1$ MeV and $T = 0$
	- \triangleright Right: energy dependence at $ρ = 0.16$ fm⁻³ and $T = 0, 2$ MeV

 \star Density and temperature dependence of the mean free path of a non degenerate neutrino at $k_0 = 1$ MeV and $\rho = 0.16$ fm⁻³

 \leftarrow

 QQ

Neutron pairing in the ${}^{1}S_{0}$ channel

 \star Gap equation

- \star Resolving the degeneracy associated with models of the EOS providing similar values of neutron stars' mass and radius will require the study of different properties
- \star This analysis will in turn require the development of *novel approaches*, allowing for a *consistent* description based on a *unified dynamical model*
- ? ^Effective interactions *obtained from realistic nuclear hamiltonians* provide a powerful tool to carry out calculations of a number of different quantities, ranging from the EOS to single particle properties and in medium scattering probabilities
- \star The model dependence associated with the many-body approach employed to obtain the effective interaction apperas to be remarkably weak

∢ □ ▶ ∢ nP