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Motivation & Outline

? The validity of the models of neutron star matter must be gauged beyond
their ability to predict acceptable values of M & R

? Need a unified approach providing a consistent description of

. EOS

. transport properties

. neutrino interactions

. supefulid gap

. . . .

? The paradigm of nuclear many-body theory

. ab initio approach

. effective interaction approach

. bridging the gap: effective interactions from the ab inito approach

? Summary & Outlook
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The paradigm of nuclear many-body theory

? Nuclear matter is described as a collection of pointlike protons and
neutrons interacting through the hamiltonian

H =
∑

i

p2
i

2m
+

∑
j>i

vij +
∑
k>j>i

Vijk

? It has long been realized∗ that the independent particle – or mean field –
approximation, which amounts to replacing∑

j>i

vij +
∑
k>j>i

Vijk →
∑

i

Ui ,

fails to take into account the effects of nucleon-nucleon correlations,
which are known to play an important role in determining nuclear
structure and dynamics.

∗“The limitation of any independent particle model lies in its inability to encompass the
correlation between the positions and spins of the various particles in the system” [Blatt &
Weiskopf (AD 1952)].
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The ab initio many-body approach

? The potentials are determined by a fit to the properties of the exactly
solvable two- and three-nucleon systems

. vij strongly constrained by deuteron properties and nucleon-nucleon (NN)
scattering data: the ANL v18 model, as an example

vij =
∑

p=1,18

vp(rij)O
p
ij

Op
ij = [11, (σi · σj), Sij,L · S,L2,L2(σi · σj), (L · S)2] ⊗ [11, (τi · τj)] ,

[1, (σi · σj), Sij] ⊗ Tij , (τzi + τzj)

. The three-nucleon potential is determined fitting the properties of the
three-nucleon system

Vijk = V2π
ijk + VR

ijk
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Results of the ab initio approach

? Proton-neutron differential
x-section at Ecm = 100 MeV ? Energy level of light nuclei from

Green’s Function Monte CarloAb-initio few-nucleon calculation 
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Nuclear matter EOS (no adjustable parameters involved)

? Binding energy per particle of
isospin-symmetric nuclear matter
(SNM)
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? Binding energy per particle of
pure neutron matter (PNM)
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The efective interaction approach

? The bare potential is replaced with an efective potential, suitable for use
within the framework of perturbation theory in the Fermi gas basis. The
Skyrme potential, as an example

veff
ij = δ(ri − rj)t(k,k′)

k =
i
2

(
−→
∇1 −

−→
∇2) , k′ =

i
2

(
←−
∇1 −

←−
∇2)

? The above definition can be generalized to include spin-dependence. The
parameters involved are adjusted in such a way as to reproduce selected
nuclear properties, as well as the equilibrium properties of isospin
symmetric nuclear matter.

? The ground state expectation value of the hamiltonian can be written in
the form of a energy-density functional

〈H〉 = 〈
∑

i

p2
i

2m
+

∑
j>i

veff
ij 〉 = E(ρp, ρn)

.
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Results of the effective interaction approach

? Equation of state (EOS) of SNM and PNM computed using different
Skyrme- and Gogny-type effective interactions, compared to the
variational results obtained from the Argonne-Urbana hamiltonians.

? The effective interactions, while being capable to provide a reasonable
description of the EOS, are limited by the approximations involved in
their definition, lacking a direct connection to the underlying nuclear
interactions.
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Ab initio effective interaction

? In the ab initio approach the uncertainty associated with the dynamical
model is decoupled from the approximations involved in many-body
calculations

? Once the nuclear hamiltonian is determined, in principle its eigenstates
can be obtained from the solution of the Schrödinger equation

H |n〉 = En |n〉

? Calculation of nuclear observables do not involve any additional
parameters

? The Schrödinger equation can only be solved for nuclei with mass
number A ≤ 12. Approximations are required for larger A, as well as for
uniform nuclear matter in the A→ ∞ limit.
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Correlated Basis Function (CBF) formalism

? The eigenstates of the nuclear hamiltonian are approximated by the set of
correlated states, obtained from the eigenstates of the Fermi Gas (FG)
model

|n〉 =
F|nFG〉

〈nFG|F†F|nFG〉
1/2 =

1
√
Nn

F |nFG〉 , F = S
∏
j>i

fij

? the structure of the two-nucleon correlation operator reflects the
complexity of nuclear dynamics

fij =
∑

p

fp(rij)O
p
ij

? the operators On
ij are the same as those entering the definition of the NN

potential
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Cluster expansion and FHNC equations

? The ground state expectation value of the hamiltonian is written as a sum
of contributions associated with subsystems (clusters) consisisting of an
increasing number of particles

〈H〉 =
〈0|H|0〉
〈0|0〉

= EFG +
∑
n≥2

(∆E)n

? The relevant terms of the cluster expansion can be summed up at all
orders solving a set of integral equations known as Fermi Hyper-Netted
Chain (FHNC) equations

? the shapes of the fp(rij) are determined form the minimization of the
ground-state expectation value of the hamiltonian

E0 ≥ min
F

〈0FG|F†HF|0FG〉

〈0FG|0FG〉
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Alternative approach: the CBF effective interaction

? Within CBF, the effective interaction is defined through

〈H〉 =
〈0|F†(T + V)F|0〉
〈0|F†F|0〉

= 〈0FG|T + Veff |0FG〉

? At two-body cluster level

Veff =
∑
j>i

veff(ij)

veff(ij) = f †ij

[
−

1
m

(∇2fij) −
2
m

(∇fij) · ∇ + vijfij

]

? Three-nucleon interactions can be taken into account extending the
definition to include three-body cluster contributions
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CBF effective interaction at SNM equilibrium density
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EOS of PNM obtained using the CBF effective interaction
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Transport properties

? Landau-Abrikosov-Khalaktnikov formalism: Boltzman equation

∂n
∂t

+
∂n
∂r

∂ε

∂p
−
∂n
∂p

∂ε

∂r
= I(n)

n = n0 + δn , n0 = {1 + exp[β(ε − µ)]}−1

? The collision integral I(n) depends on the probability of the in medium
NN scattering process

W =
16π2

m?2

(
dσ
dΩ

)

? The description of transport properties require dynamical models
providing an accurate description of NN scattering in the nuclear
medium, constrained by the available data in the zero-density limit
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Shear Viscosity of pure neutron matter

? Abrikosov-Khalatnikov (AK) estimate of the shear viscosity in the
low-temperature limit

ηAK =
1
5
ρm?v2

Fτ
2

π2(1 − λη)

? Quasiparticle lifetime

τT2 =
8π4

m∗3
1
〈W〉

,

? Angle-averaged collision probability

〈W〉 =

∫
dΩ

2π
W(θ, φ)

cos (θ/2)
, λη =

〈W[1 − 3 sin4 (θ/2) sin2 φ]〉
〈W〉
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In medium neutron-neutron cross section

? From Fermi’s golden rule

W(p,p′) = 2π
∣∣∣v̂eff(p − p′)

∣∣∣2 ρ(p′)

dσ
dΩp′

=
m?2

16π2

∣∣∣v̂eff(p − p′)
∣∣∣2
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Single particle spectrum and effective mass

? Calculations carried out within the Hartree-Fock approximation using
the CBF effective interaction

e(k) =
k2

2m
+

∑
k′
〈kk′|veff |kk′〉a ,

1
m?

=
1
k

de(k)
dk
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? Density dependence of ηT2 n pure neutron matter

? Note: the SLya effective interaction, adjusted to reproduce the the
microscopic EOS, predicts ηT2 ∼ 6 × 1013 g cm−1 s−1 MeV2 at nuclear
matter equilibrium density, to be compared with the result obtained from
the CBF effective interaction ηT2 ∼ 1.4 × 1015 g cm−1 s−1 MeV2 .

Omar Benhar (INFN, Roma) INT, Seattle July 16, 2014 19 / 31



Thermal conductivity of pure neutron matter

? The transport coefficients computed using the CBF effective interaction
is remarkably close to the result obtained within the G-matrix approach
using the same bare NN potential. Note: three-body interactions are not
taken into account.
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Neutrino interactions in nuclear matter

? Neutral current interactions in neutron matter

JµZ =
∑

i

jµi , jµi = ψni
γµ(1 − CAγ

5)ψni

? In the non relativistic limit

J0
Z → Ôρ

q =
∑

i

eiq·ri , JZ → Ôσq =
∑

i

eiq·riσi

? Neutrino scattering rate and response functions

W(q, ω) =
G2

F

4π2

(1 + cos θ)Sρ(q, ω) +
C2

A

3
(3 − cos θ)Sσ(q, ω)

 ,
Sρ(q, ω) =

1
N

∑
n

|〈n|Ôρ
q|0〉|

2δ(ω + E0 − En) , Sσ(q, ω) =
∑
α

Sσαα(q, ω)

Sσαβ(q, ω) =
1
N

∑
n

〈n|Ôσα
q |0〉〈0|Ô

σβ
q |n〉δ(ω + E0 − En)
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Density and spin responses of pure neutron matter

? The target response tensor

Wµν
A =

∑
n

〈0|JµZ
†
|n〉〈n|JνZ |0〉δ(ω + E0 − En)

must be computed using correlated initial and final states, which amounts
to compute the transition matrix element of the effective operator

J̃µA =
1

√
N0Nn

F†JµAF

between FG states |n)

? In the one particle-one hole sector

|n〉 =
1√
Nph

F|ph) , 〈n|JνA|0〉 → (ph|J̃µA|0)
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Including long range correlations

? Allow for propagation of the particle-hole pair, giving rise to the
excitation of collective modes. Replace

|n〉 →
N∑

i=1

Ci |pihi)

? The energy of the state |n〉 and the coefficients Ci are obtained
diagonalizing the N × N hamiltonian matrix

Hij = (E0 + epi − ehi)δij + (hipi|veff |hjpj)

with the CBF effective interaction and the Hartree-Fock spectrum

ek =
k2

2m
+

∑
k′
〈kk′|veff |kk′〉a
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Alternative approach: Landau theory

? Landau theory of normal Fermi liquids can also be employed to obtain
the density and spin responses of pure neutron matter

? the value of the Landau parameters can be obtained from the
quasiparticle interaction, which can be in turn expressed in terms of
matrix elements of the effective interaction

fσσ′pp′ = fpp′ + gpp′(σ · σ′) + fpp′S12(p − p′)
= 〈pσ p′σ′|veff |pσ p′σ′〉 − 〈pσ p′σ′|veff |p′σ′ pσ〉

? this formalism can be easily extended to non zero temperatures, in the
range T << TF
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Charged current interactions at low-momentum transfer

? Fermi (density, left) and Gamow-Teller (spin, right) contributions to the
response of pure neutron matter at nuclear matter equilibrium density
(ρ0 = 0.16 fm−3) and momentum transfer |q| = 0.1 fm−1
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? the collective mode is only excited in the spin channel
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Neutrino mean free path in neutron matter at ρ = ρ0
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Responses and Neutrino mean free path from Landau theory

? Dependence on momentum transfer at ρ = ρ0
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? Mean free path of a non degenerate neutrino in neutron matter

. Left: density-dependence at k0 = 1 MeV and T = 0

. Right: energy dependence at ρ = 0.16 fm−3 and T = 0, 2 MeV
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? Density and temperature dependence of the mean free path of a non
degenerate neutrino at k0 = 1 MeV and ρ = 0.16 fm−3
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Neutron pairing in the 1S0 channel

? Gap equation

∆(k) = −
1
π

∫
k′2dk′

v(k, k′)∆(k′)[
(e(k′) − µ)2 + ∆2(k′)

]1/2

v(k, k′) =

∫
r2drj0(kr)veff(r)j0(k′r)

Omar Benhar (INFN, Roma) INT, Seattle July 16, 2014 30 / 31



Summary & Outlook

? Resolving the degeneracy associated with models of the EOS providing
similar values of neutron stars’ mass and radius will require the study of
different properties

? This analysis will in turn require the development of novel approaches,
allowing for a consistent description based on a unified dynamical model

? Effective interactions obtained from realistic nuclear hamiltonians
provide a powerful tool to carry out calculations of a number of different
quantities, ranging from the EOS to single particle properties and in
medium scattering probabilities

? The model dependence associated with the many-body approach
employed to obtain the effective interaction apperas to be remarkably
weak
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