Combining ab initio calculations and EFT for loosely bounded systems: ${}^{7}\text{Li}(n,\gamma){}^{8}\text{Li}$ and ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$

Xilin Zhang (Ohio University)

INT "Universality in few-body systems" Program, University of Washington, Seattle, WA, April 22, 2014

X. Z, K. M. Nollett and D. R. Phillips, arXiv:1311.6822 (PRC.89.024613) ; 1401.4482 [PRC(R)]

• Motivations

- Motivations
- A toy model: spinless nucleon and core

- Motivations
- A toy model: spinless nucleon and core
- Li7 capture: spins, core excitation, leading order (LO) results
- Be7 capture: nonperturbative Coulomb, LO results

- Motivations
- A toy model: spinless nucleon and core
- Li7 capture: spins, core excitation, leading order (LO) results
- Be7 capture: nonperturbative Coulomb, LO results
- Outlook: Next-to-LO

Motivations

- •Astrophysics: solar neutrino flux; solar model;...
- •Neutrino mixing parameters

Solar neutrino generation

Solar neutrino generation

W. C. Haxton et.al., arXiv:1208.5723

SENSITIVITY OF r-PROCESS NUCLEOSYNTHESIS TO LIGHT-ELEMENT NUCLEAR REACTIONS

TAKAHIRO SASAQUI¹ AND T. KAJINO

National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588; and Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; sasaqui@th.nao.ac.jp

G. J. MATHEWS AND K. OTSUKI²

Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556

MOST IMPORTANT 8 LIGHT-MASS NUCLEAR REACTIONS, ADOPTED "STANDARD" THERMONUCLEAR REACTION RATES $\lambda_i(0)$, and Uncertainties

No.	Reaction	$N_{ m Av}\langle\sigma v angle$	$1 \sigma^{a}$	Referenceb
(1)	$\alpha(\alpha n, \gamma)^{9}$ Be	$N_{\rm Av}^2 \langle \alpha \alpha n \rangle = 2.43 \times 10^9 T_9^{-2/3} \exp[-13.490 T_9^{-1/3} - (T_9/0.15)^2](1 + 74.5T_9)$	±35%	1
		$+6.09 \times 10^5 T_9^{-3/2} \exp(-1.054/T_9) (1-58.80T_9-1.794 \times 10^4 T_9^2)$		
(2)	$\alpha(t, \alpha)^{7}$ is	$+2.969 \times 10^{\circ} T_{9}^{3} - 1.535 \times 10^{\circ} T_{9}^{4} + 2.610 \times 10^{\circ} T_{9}^{3})$ $2.022 \times 10^{5} T^{-2/3} \exp\left(-8.09 (T^{1/3})(1.0 + 0.0516 T^{1/3} + 0.0229 T^{2/3})\right)$	+20%	2
(2)	$\alpha(l,\gamma)$ ^{-L1}	$+8.28 \times 10^{-3}T_9 - 3.28 \times 10^{-04}T_9^{4/3} - 3.01 \times 10^{-04}T_9^{5/3})$	±3070	2
	\frown	$+5.109 \times 10^5 T_{9*}^{5/6} T_9^{-3/2} \exp(-8.068/T_{9*}^{1/3})$		
(3)	$^{7}\mathrm{Li}(n, \gamma)^{8}\mathrm{Li}$	$4.90 \times 10^3 + 9.96 \times 10^3 T_9^{-3/2} \exp(-2.62/T_9)$	$\pm 35\%$	3

Li7 capture is used to constrain models of Be7 capture.

Motivations

- •Astrophysics: solar neutrino flux; solar model;...
- •Neutrino mixing parameters

Motivations

- •Astrophysics: solar neutrino flux; solar model;...
- •Neutrino mixing parameters
- •EFT: a simple picture; systematic expansion
- (Lagrangian); uncertainty estimate
- •Parameters: ab initio bound state information
- •Ab initio reaction calculation

A toy model

Gross features: p-wave

Gross features: p-wave

Gross features: p-wave

Gross features: s-wave

Parameter	Channel	Value	Assigned scaling
$a_{({}^{5}S_{2})}$	S-wave, $S = 2$	-3.63(5) fm	$1/\gamma$
$a_{({}^{3}S_{1})}$	S-wave, $S = 1$	0.87(7) fm	$1/\Lambda$

 $\Lambda \sim 100 \text{ MeV}$ $\gamma = 57.8 \text{ MeV}$

L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A 312, 81 (1983)

Gross features: s-wave

Parameter	Channel	Value	Assigned scaling
$(a_{(5S_2)})$	S-wave, $S = 2$	-3.63(5) fm	$1/\gamma$
$a_{(^{3}S_{1})}$	S-wave, $S = 1$	0.87(7) fm	$1/\Lambda$

 $\Lambda \sim 100 \text{ MeV}$ $\gamma = 57.8 \text{ MeV}$

Large s-wave scattering length

L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A 312, 81 (1983)

$$\mathcal{L}_{0} = n^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\mathrm{n}}} \right) n + c^{\dagger} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\mathrm{c}}} \right) c$$
$$\mathcal{L}_{S} = \left(g c^{\dagger} n^{\dagger} c n \right) \qquad g(\mu) = \frac{2\pi}{M_{\mathrm{R}} \left(2\mu - \frac{1}{a_{0}} \right)}$$

P. F. Bedaque, H.-W. Hammer and U. van Kolck, PLB 569, 159 (2003)

$$\mathcal{L}_P = \pi^{\dagger i} \left(i \partial_t + \frac{\nabla^2}{2M_{\rm nc}} + \Delta \right) \pi_i + h \pi^{\dagger i} n i \left(V_n - V_c \right)_i c + \text{C.C.}$$

 $\mathcal{L}_P = \pi^{\dagger i} \left(i \partial_t + \frac{\nabla^2}{2M_{\rm nc}} + \Delta \right) \pi_i + h \pi^{\dagger i} n i \left(V_n - V_c \right)_i c + \text{C.C.} .$

$$\langle p'|T(E)|p\rangle = \frac{h^2}{M_{\rm R}^2} \left(p' \cdot p\right) \ D(E,0) = \frac{6\pi}{M_{\rm R}} \frac{p' \cdot p}{a_1^{-1} - \frac{1}{2}r_1k^2 + ik^3}$$

Two parameters: Delta and h (or a1 and r1)

$$\langle \mathbf{r}' | \frac{1}{E - H} | \mathbf{r} \rangle = \langle \mathbf{r}' | \frac{1}{E - H_0} + \frac{1}{E - H_0} T \frac{1}{E - H_0} | \mathbf{r} \rangle$$
Asymptotic
$$\stackrel{E \to -B}{\longrightarrow} C^2 \times \sum_{j} \frac{\phi_j(\mathbf{r}') \phi_j^*(\mathbf{r})}{E + B} . \qquad ($$
normalization
$$coefficient (ANC) \qquad \qquad \phi_j(\mathbf{r}) = \left(1 + \frac{1}{\gamma r}\right) Y_{1j}(\hat{r}) \frac{e^{-\gamma r}}{r}$$

$$C = \sqrt{\frac{-2\gamma^{2}}{r_{1} + 3\gamma}}$$

$$\frac{1}{a_{1}} + \frac{1}{2}r_{1}\gamma^{2} + \gamma^{3} = 0$$
 a_{1} and r_{1} (or *h* and Δ)

$$C = \sqrt{\frac{-2\gamma^2}{r_1 + 3\gamma}}$$

$$\frac{1}{a_1} + \frac{1}{2}r_1\gamma^2 + \gamma^3 = 0$$
 a_1 and r_1 (or h and Δ)

K. M. Nollett and R. B. Wiringa, PRC 83, 041001 (2011)

$$\mathcal{M} \sim ie_c h \sqrt{Z} \left[\frac{\epsilon^*(\lambda) \cdot V_c}{p_c^0 - \omega - \frac{(\boldsymbol{p}_c - \boldsymbol{k})^2}{2M_c} + i\epsilon} \left(\frac{p_c}{M_R} - \frac{\boldsymbol{k}}{M_c} \right)_j + (1 + X(p_c; \gamma, a_0)) \frac{\epsilon^*(\lambda)_j}{M_c} \right]$$

$$X(p_c;\gamma,a) \equiv \frac{(-)i}{a^{-1} + ip_c} \left[p_c - \frac{2}{3}i\frac{\gamma^3 - ip_c^3}{\gamma^2 + p_c^2} \right]$$

$$\mathcal{M} \sim ie_{c}h\sqrt{Z} \left[\frac{\epsilon^{*}(\lambda) \cdot V_{c}}{p_{c}^{0} - \omega - \frac{(p_{c} - k)^{2}}{2M_{c}} + i\epsilon} \left(\frac{p_{c}}{M_{\mathrm{R}}} - \frac{k}{M_{c}} \right)_{j} + (1 + X(p_{c};\gamma,a_{0})) \frac{\epsilon^{*}(\lambda)_{j}}{M_{c}} \right]$$
$$C \qquad X(p_{c};\gamma,a) \equiv \underbrace{(-)i}_{a^{-1} + ip_{c}} \left[p_{c} - \frac{2}{3} \underbrace{\gamma^{3} - ip_{c}^{3}}{\gamma^{2} + p_{c}^{2}} \right]$$

$$\mathcal{M} \sim ie h\sqrt{Z} \begin{bmatrix} \frac{\epsilon^*(\lambda) \cdot V_c}{p_c^0 - \omega - \frac{(p_c - k)^2}{2M_c} + i\epsilon} \left(\frac{p_c}{M_R} - \frac{k}{M_c}\right)_j + (1 + X(p_c; \gamma, a_0)) \frac{\epsilon^*(\lambda)_j}{M_c} \end{bmatrix}$$

$$C \qquad X(p_c; \gamma, a) \equiv \underbrace{(-)i}_{a^{-1} + ip_c} \left[p_c - \frac{2}{3} \underbrace{\frac{\gamma^3 - ip_c^3}{\gamma^2 + p_c^2}} \right]$$

$$a \sim \frac{1}{\gamma} \Rightarrow X \sim 1, \quad a \sim \frac{1}{\Lambda} \Rightarrow X \sim \frac{\gamma}{\Lambda}$$

⁷Li $(n, \gamma)^8$ Li

G. Rupak and R. Higa, Phys. Rev. Lett. 106, 222501 (2011)

Scales, spins, core excitations $\Lambda \approx 100 - 300 \text{ MeV}$

Momentum scale	Definition	Value
γ	$\sqrt{2M_RB_{8_{\mathrm{Li}}}}$	$57.8~{\rm MeV}$
γ^*	$\sqrt{2M_R(B_{8_{\mathrm{Li}}}+E^*)}$	$65.1~{\rm MeV}$
γ_{Δ}	$\sqrt{2M_RE^*}$	$30.0 { m MeV}$
$\tilde{\gamma}$	$\sqrt{2M_RB_{^8\mathrm{Li}*}}$	$41.6~{\rm MeV}$
$ ilde{\gamma}^*$	$\sqrt{2M_R(B_{^8\mathrm{Li}^*} + E^*)}$	$51.3 { m MeV}$

Parameter	Channel	Value	Assigned scaling
$a_{({}^{5}S_{2})}$	S-wave, $S = 2$	-3.63(5) fm	$1/\gamma$
$a_{({}^{3}S_{1})}$	S-wave, $S = 1$	0.87(7) fm	$1/\Lambda$
r	P-wave, $J = 2$	$-1.43(2) \text{ fm}^{-1}$	Λ
$ ilde{r}$	P-wave, $J = 1$	$-1.86(6) \text{ fm}^{-1}$	Λ

4/22/2014 L. Koester, K. Knopf, and W. Waschkowski, Z. Phys. A 312, 81 (1983)

$$\begin{split} \mathcal{L}_{0} &= n^{\dagger\sigma} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\rm n}} \right) n_{\sigma} + c^{\dagger a} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\rm c}} \right) c_{a} \\ &+ d^{\dagger\delta} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\rm c}} \right) d_{\delta} + \pi^{\dagger\alpha} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\rm nc}} + \Delta \right) \pi_{\alpha} \\ &+ \tilde{\pi}^{\dagger i} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\rm nc}} + \tilde{\Delta} \right) \tilde{\pi}_{i} \;, \end{split}$$

$$\begin{split} \mathcal{L}_{0} &= n^{\dagger\sigma} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\rm n}} \right) n_{\sigma} + c^{\dagger a} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\rm c}} \right) c_{a} \\ &+ d^{\dagger\delta} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\rm c}} \right) d_{\delta} + \pi^{\dagger\alpha} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\rm nc}} + \Delta \right) \pi_{\alpha} \\ &+ \tilde{\pi}^{\dagger i} \left(i\partial_{t} + \frac{\nabla^{2}}{2M_{\rm nc}} + \tilde{\Delta} \right) \tilde{\pi}_{i} \;, \end{split}$$

$$\begin{split} \mathcal{L}_{S} = & \underbrace{g_{(^{3}S_{1})}}_{c^{\dagger a'}} c^{\dagger a'} n^{\dagger \sigma'} T_{a'\sigma'}^{i} T_{i}^{a\sigma} c_{a} n_{\sigma} \\ & + g_{(^{5}S_{2})} c^{\dagger a'} n^{\dagger \sigma'} T_{a'\sigma'}^{\alpha} T_{\alpha}^{a\sigma} c_{a} n_{\sigma} \\ & + g_{(^{3}S_{1}^{*})} d^{\dagger \delta} n^{\dagger \sigma'} T_{\delta \sigma'}^{i} T_{i}^{a\sigma} c_{a} n_{\sigma} + \text{C.C.} , \end{split}$$

$$\begin{split} \mathcal{L}_{0} &= n^{\dagger\sigma} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\mathrm{n}}} \right) n_{\sigma} + c^{\dagger a} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\mathrm{c}}} \right) c_{a} \\ &+ d^{\dagger\delta} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\mathrm{c}}} \right) d_{\delta} + \pi^{\dagger\alpha} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\mathrm{nc}}} + \Delta \right) \pi_{\alpha} \\ &+ \tilde{\pi}^{\dagger i} \left(i\partial_{t} + \frac{\bigtriangledown^{2}}{2M_{\mathrm{nc}}} + \tilde{\Delta} \right) \tilde{\pi}_{i} \;, \end{split}$$

$$\mathcal{L}_{S} = \underbrace{g_{(^{3}S_{1})}}_{e^{\dagger a'}} c^{\dagger a'} n^{\dagger \sigma'} T_{a'\sigma'}^{i} T_{i}^{a\sigma} c_{a} n_{\sigma} \qquad \mathcal{L}_{P,gs} = \underbrace{h_{(^{3}P_{2})}}_{e^{\dagger \alpha}} \pi^{\dagger \alpha} T_{\alpha}^{ij} T_{i}^{\sigma a} n_{\sigma} i (V_{n} - V_{c})_{j} c_{a} \\ + g_{(^{5}S_{2})} c^{\dagger a'} n^{\dagger \sigma'} T_{a'\sigma'}^{\alpha} T_{\alpha}^{a\sigma} c_{a} n_{\sigma} \qquad + h_{(^{5}P_{2})} \pi^{\dagger \alpha} T_{\alpha}^{\beta j} T_{\beta}^{\sigma a} n_{\sigma} i (V_{n} - V_{c})_{j} c_{a} \\ + g_{(^{3}S_{1}^{*})} d^{\dagger \delta} n^{\dagger \sigma'} T_{\delta \sigma'}^{i} T_{i}^{a\sigma} c_{a} n_{\sigma} + \text{C.C.} \qquad + h_{(^{3}P_{2}^{*})} \pi^{\dagger \alpha} T_{\alpha}^{jk} T_{k}^{\delta \sigma} n_{\sigma} i (V_{n} - V_{c^{*}})_{j} d_{\delta} + \text{C.C.} ,$$

$$\begin{split} \mathcal{L}_{P,es} = & \tilde{h}_{(^{3}P_{1})} \tilde{\pi}^{\dagger k} T_{k}^{\,ij} T_{i}^{\,\sigma a} n_{\sigma} i \left(V_{n} - V_{c}\right)_{j} c_{a} \\ & + \tilde{h}_{(^{5}P_{1})} \tilde{\pi}^{\dagger k} T_{k}^{\,\beta j} T_{\beta}^{\,\sigma a} n_{\sigma} i \left(V_{n} - V_{c}\right)_{j} c_{a} \\ & + \tilde{h}_{(^{1}P_{1}^{*})} \tilde{\pi}^{\dagger k} T_{k}^{\,0j} T_{0}^{\,\sigma \delta} n_{\sigma} i \left(V_{n} - V_{c^{*}}\right)_{j} d_{\delta} \\ & + \tilde{h}_{(^{3}P_{1}^{*})} \tilde{\pi}^{\dagger k} T_{k}^{\,ij} T_{i}^{\,\sigma \delta} n_{\sigma} i \left(V_{n} - V_{c^{*}}\right)_{j} d_{\delta} + \text{C.C.} \end{split}$$

P-wave

P-wave

P-wave

P-wave

4 parameters: 3 h + 1 Delta, or 3 C + gamma

	$C_{(^{3}P_{2})}$	$C_{({}^{5}P_{2})}$	$C_{(^{3}P_{2}^{*})}$
Nollett	-0.283(12)	-0.591(12)	-0.384(6)
	-0.284(23)	-0.593(23)	

K. M. Nollett and R. B. Wiringa, PRC 83, 041001 (2011)

L. Trache, et.al., Phys. Rev. C 67, 062801(R) (2003)

P-wave

K. M. Nollett and R. B. Wiringa, PRC 83, 041001 (2011)

L. Trache, et.al., Phys. Rev. C 67, 062801(R) (2003)

$$\begin{aligned} \text{Initial total spin Si=2} \\ \mathcal{M} &= ie_{c}h_{(^{5}P_{2})}\sqrt{8Z^{\text{LO}}M_{\text{n}}M_{\text{c}}M_{\text{n}}}} \underbrace{\left(\overline{\mathcal{T}_{\beta}^{\sigma a}T_{\alpha}^{\beta j}} \right)}_{p_{c}^{0}-\omega - \frac{(p_{c}-k)^{2}}{2M_{c}} + i\epsilon} \left(\frac{p_{c}}{M_{\text{R}}} - \frac{k}{M_{c}} \right)_{j} + \left(1 + X(p_{c};\gamma,a_{(^{5}S_{2})}) \right) \frac{\epsilon^{*}(\lambda)_{j}}{M_{c}}}{M_{c}} \end{aligned} \\ X(p_{c};\gamma,a) &\equiv \frac{(-)i}{a^{-1} + ip_{c}} \left[p_{c} - \frac{2}{3}i\frac{\gamma^{3} - ip_{c}^{3}}{\gamma^{2} + p_{c}^{2}} \right] \qquad a \sim \frac{1}{\gamma} \Longrightarrow X \sim 1, \quad a \sim \frac{1}{\Lambda} \Longrightarrow X \sim \frac{\gamma}{\Lambda} \end{aligned}$$

 γ

Λ

Λ

$$\begin{split} \sum_{\sigma,a}^{\alpha,\lambda} |\mathcal{M}|^2 &= \frac{5}{3} 64\pi \alpha Z_c^2 \frac{3\pi}{\gamma^2} \frac{M_n^2}{M_R} \left(C_{(^5P_2)}^{\text{LO}} \right)^2 \left[|1 + X(p_c;\gamma,a_{(^5S_2)})|^2 - \frac{2p_c^2 \sin^2 \theta}{p_c^2 + \gamma^2} \left(\frac{\gamma^2}{p_c^2 + \gamma^2} + \text{Re} \left\{ X(p_c;\gamma,a_{(^5S_2)}) \right\} \right) \right] \\ &+ \frac{5}{3} 64\pi \alpha Z_c^2 \frac{3\pi}{\gamma^2} \frac{M_n^2}{M_R} \left(C_{(^3P_2)}^{\text{LO}} \right)^2 \left[1 - \frac{p_c^2 \sin^2 \theta}{p_c^2 + \gamma^2} \frac{2\gamma^2}{p_c^2 + \gamma^2} \right] \end{split}$$

$$X(p_{c};\gamma,a) \equiv \frac{(-)i}{a^{-1} + ip_{c}} \left[p_{c} - \frac{2}{3}i\frac{\gamma^{3} - ip_{c}^{3}}{\gamma^{2} + p_{c}^{2}} \right]$$

$$\begin{split} \sum_{\sigma,a}^{\alpha,\lambda} |\mathcal{M}|^2 &= \frac{5}{3} 64\pi \alpha Z_c^2 \frac{3\pi}{\gamma^2} \frac{M_n^2}{M_R} \left(C_{(^5P_2)}^{\text{LO}} \right)^2 \left[|1 + X(p_c;\gamma,a_{(^5S_2)})|^2 - \frac{2p_c^2 \sin^2 \theta}{p_c^2 + \gamma^2} \left(\frac{\gamma^2}{p_c^2 + \gamma^2} + \text{Re} \left\{ X(p_c;\gamma,a_{(^5S_2)}) \right\} \right) \right] \\ &+ \frac{5}{3} 64\pi \alpha Z_c^2 \frac{3\pi}{\gamma^2} \frac{M_n^2}{M_R} \left(C_{(^3P_2)}^{\text{LO}} \right)^2 \left[1 - \frac{p_c^2 \sin^2 \theta}{p_c^2 + \gamma^2} \frac{2\gamma^2}{p_c^2 + \gamma^2} \right] \end{split}$$

$$X(p_{c};\gamma,a) \equiv \frac{(-)i}{a^{-1} + ip_{c}} \left[p_{c} - \frac{2}{3}i\frac{\gamma^{3} - ip_{c}^{3}}{\gamma^{2} + p_{c}^{2}} \right]$$

$$\sum_{i,f} |\mathcal{M}|^2 = 64\pi \alpha Z_c^2 \frac{3\pi}{\tilde{\gamma}^2} \frac{M_n^2}{M_R} \left\{ \left(\tilde{C}_{(^{3}P_1)}^{\text{LO}} \right)^2 \left[1 - \frac{p_c^2 \sin^2 \theta}{p_c^2 + \tilde{\gamma}^2} \left(\frac{2\tilde{\gamma}^2}{p_c^2 + \tilde{\gamma}^2} \right) \right] + \left(\tilde{C}_{(^{5}P_1)}^{\text{LO}} \right)^2 \left[|1 + X(p_c; \tilde{\gamma}, a_{(^{5}S_2)})|^2 - \frac{2p_c^2 \sin^2 \theta}{p_c^2 + \tilde{\gamma}^2} \left(\frac{\tilde{\gamma}^2}{p_c^2 + \tilde{\gamma}^2} + \operatorname{Re} \left\{ X(p_c; \tilde{\gamma}, a_{(^{5}S_2)}) \right\} \right) \right] \right\}$$

N. K. Timofeyuk *et.al., PRL* 91, 232501 (2003); D. Howell *et.al., PRC* 88, 025804 (2013); D. Gul'ko *et.al., SJNP* 6, 477 (1968); E. Lynn *et.al., PRC* 44, 764 (1991); Y. Nagai *et. al., PRC* 71, 055803 (2005); J. C. Blackmon *et. al., PRC* 54, 383 (1996); J. E. Lynn *et. al., PRC* 44, 764 (1991); M. Heil *et.al., Astro. J.* 507, 997 (1998); W. L. Imhof *et.al., PR* 114, 1037 (1959). 4/22/2014

LO results on Li7(n,gamma)Li8(Li8*)

$$\frac{\sigma[(S_i = 1) \to 2^+]}{\sigma[(S_i = 2) \to 2^+]} = \frac{\left(C_{(^3P_2)}^{\text{LO}}\right)^2}{\left(C_{(^5P_2)}^{\text{LO}}\right)^2 (1 - \frac{2}{3}\gamma a_{(^5S_2)})^2}$$
$$\frac{\sigma[(S_i = 2) \to 2^+]}{\sigma(\to 2^+)} = 0.93(2) \ [>0.86]$$

A. D. Gul'ko, S. S. Trostin, and A. Hudoklin, *Sov. J. Nucl. Phys.* 6, 477 (1968);
J. E. Lynn, E. T. Jurney, and S. Raman, *Phys. Rev. C* 44, 764 (1991);
Y. Nagai et. al., *Phys. Rev. C* 71, 055803 (2005).

LO results on Li7(n,gamma)Li8(Li8*)

$$\frac{\sigma[(S_i = 1) \to 2^+]}{\sigma[(S_i = 2) \to 2^+]} = \frac{\left(C_{(^3P_2)}^{\text{LO}}\right)^2}{\left(C_{(^5P_2)}^{\text{LO}}\right)^2 \left(1 - \frac{2}{3}\gamma a_{(^5S_2)}\right)^2}$$

$$\frac{\sigma[(S_i = 2) \to 2^+]}{\sigma(\to 2^+)} = 0.93(2) \ [>0.86]$$

$$\frac{\sigma[(S_i = 2) \to 1^+]}{\sigma(\to 1^+)} = 0.65(6) \text{ or } 0.75(7),$$

A. D. Gul'ko, S. S. Trostin, and A. Hudoklin, *Sov. J. Nucl. Phys.* 6, 477 (1968);
J. E. Lynn, E. T. Jurney, and S. Raman, *Phys. Rev. C* 44, 764 (1991);
Y. Nagai et. al., *Phys. Rev. C* 71, 055803 (2005).

4/22/2014

LO results on Li7(n,gamma)Li8(Li8*)

$$\frac{\sigma[(S_i = 1) \to 2^+]}{\sigma[(S_i = 2) \to 2^+]} = \frac{\left(C_{(^3P_2)}^{\text{LO}}\right)^2}{\left(C_{(^5P_2)}^{\text{LO}}\right)^2 \left(1 - \frac{2}{3}\gamma a_{(^5S_2)}\right)^2}$$

$$\frac{\sigma[(S_i = 2) \to 2^+]}{\sigma(\to 2^+)} = 0.93(2) \ [>0.86]$$

$$\frac{\sigma[(S_i = 2) \to 1^+]}{\sigma(\to 1^+)} = 0.65(6) \text{ or } 0.75(7),$$

$$\frac{\sigma(\to 1^+)}{\sigma(\to 2^+)} = \frac{3}{5} \frac{\left(\tilde{C}_{(^{3}P_{1})}^{\text{LO}}\right)^2 + \left(\tilde{C}_{(^{5}P_{1})}^{\text{LO}}\right)^2 |1 - \frac{2}{3}a_{(^{5}S_{2})}\tilde{\gamma}|^2}{\left(C_{(^{3}P_{2})}^{\text{LO}}\right)^2 + \left(C_{(^{5}P_{2})}^{\text{LO}}\right)^2 |1 - \frac{2}{3}a_{(^{5}S_{2})}\gamma|^2}{\sigma} \\ \stackrel{\sigma(\to 2^+)}{\sigma} = 0.88(4) \qquad [0.89(1)]$$

A. D. Gul'ko, S. S. Trostin, and A. Hudoklin, *Sov. J. Nucl. Phys.* 6, 477 (1968);
J. E. Lynn, E. T. Jurney, and S. Raman, *Phys. Rev. C* 44, 764 (1991);
Y. Nagai et. al., *Phys. Rev. C* 71, 055803 (2005).

⁷Be(p, γ)⁸B

- It is considered as isospin mirror of Li7 capture on the nucleon level
- From EFT/core+proton picture, they are quite different due to strong Coulomb effect

⁷Be(p, γ)⁸B

- It is considered as isospin mirror of Li7 capture on the nucleon level
- From EFT/core+proton picture, they are quite different due to strong Coulomb effect

E. Ryberg, C. Forssén, H.-W. Hammer and L. Platter, PRC 89, 014325 (2014)

Nonperturbative Coulomb effect

$$k_C \equiv Q_c Q_n \alpha_{EM} M_R$$
 $\eta \equiv \frac{k_C}{k} \sim 1$ Sommerfeld para.
Nonperturbative Coulomb effect

$$k_{C} \equiv Q_{c}Q_{n}\alpha_{EM}M_{R} \qquad \eta \equiv \frac{k_{C}}{k} \sim 1 \quad \text{Sommerfeld para.}$$

$$\frac{1}{E - H_{0} - V_{c} - V_{s}} = \frac{1}{E - H_{0} - V_{c}} + \frac{1}{E - H_{0} - V_{c}}V_{s}\frac{1}{E - H_{0} - V_{c}} + \dots$$

Nonperturbative Coulomb effect

$$k_C \equiv Q_c Q_n \alpha_{EM} M_R \qquad \eta \equiv \frac{k_C}{k} \sim 1 \quad \text{Sommerfeld para.}$$

$$\frac{1}{E - H_0 - V_c - V_s} = \frac{1}{E - H_0 - V_c} + \frac{1}{E - H_0 - V_c} V_s \frac{1}{E - H_0 - V_c} + \dots$$

Nonperturbative Coulomb effect

$$k_{C} \equiv Q_{c}Q_{n}\alpha_{EM}M_{R} \qquad \eta \equiv \frac{k_{C}}{k} \sim 1 \quad Sommerfeld \ para.$$

$$\frac{1}{E - H_{0} - V_{c} - V_{s}} = \frac{1}{E - H_{0} - V_{c}} + \frac{1}{E - H_{0} - V_{c}}V_{s}\frac{1}{E - H_{0} - V_{c}} + \dots$$

$$\chi_{\boldsymbol{k}}^{(\pm)}(\boldsymbol{r}) = e^{-\frac{\pi}{2}\eta} e^{i\boldsymbol{k}\boldsymbol{r}} \Gamma(1\pm i\eta) M(\mp i\eta, 1; \pm ikr - i\boldsymbol{k}\boldsymbol{r})$$

Kummer function

$$\chi_{\mathbf{k}}^{(\pm)*}(r=0)\chi_{\mathbf{k}}^{(\pm)}(r=0) = \frac{2\pi\eta}{e^{2\pi\eta}-1} = C_{\eta,0}^2$$

$$\chi_{\mathbf{k}}^{(\mp)*}(r=0)\chi_{\mathbf{k}}^{(\pm)}(r=0) = C_{\eta,0}^2 e^{\pm 2i\sigma_0}$$

Coulomb barrier, and phase

$$C_{\eta,l} = \frac{2^l e^{-\frac{\pi}{2}\eta} |\Gamma(l+1+i\eta)|}{\Gamma(2l+2)} \qquad e^{2i\sigma_l} \equiv \frac{\Gamma(l+1+i\eta)}{\Gamma(l+1-i\eta)}$$

$$\begin{aligned} \langle \chi_{p'}^{(-)} | T_{cs}(E) | \chi_{p}^{(+)} \rangle &= (-) \frac{2\pi}{M_{\rm R}} \frac{\chi_{p'}^{(-)*}(0) \chi_{p}^{(+)}(0)}{-a_{0}^{-1} - 2k_{C} H(\eta)} \\ & \to (-) \frac{2\pi}{M_{\rm R}} \frac{C_{\eta,0}^{2} e^{2i\sigma_{0}}}{-a_{0}^{-1} - 2k_{C} H(\eta)} \\ C_{\eta,0}^{2} k(\cot \delta_{0} - i) &= -\frac{1}{a_{0}} + \dots - 2k_{C} H(\eta) \qquad H(\eta) = \psi(i\eta) + 1/(2i\eta) - \ln(i\eta) \end{aligned}$$

$$\begin{aligned} \langle \chi_{p'}^{(-)} | T_{cs}(E) | \chi_{p}^{(+)} \rangle &= (-) \frac{2\pi}{M_{\rm R}} \frac{\chi_{p'}^{(-)*}(0) \chi_{p}^{(+)}(0)}{-a_0^{-1} - 2k_C H(\eta)} \\ &\to (-) \frac{2\pi}{M_{\rm R}} \frac{C_{\eta,0}^2 e^{2i\sigma_0}}{-a_0^{-1} - 2k_C H(\eta)} \end{aligned}$$

X. Kong and F. Ravndal, NPA 665, 137 (2000). R. Higa, H. -W.Hammer and U. van Kolck, NPA 809, 171 (2008).

 $C_{\eta,0}^{2}k(\cot \delta_{0}-i) = -\frac{1}{a_{0}} + \dots - 2k_{C}H(\eta) \qquad H(\eta) = \psi(i\eta) + 1/(2i\eta) - \ln(i\eta)$

$$\begin{aligned} \langle \chi_{\boldsymbol{p}'}^{(-)} | T_{cs}(E) | \chi_{\boldsymbol{p}}^{(+)} \rangle &= (-) \frac{2\pi}{M_{\mathrm{R}}} \frac{\chi_{\boldsymbol{p}'}^{(-)*}(0) \chi_{\boldsymbol{p}}^{(+)}(0)}{-a_0^{-1} - 2k_C H(\eta)} \\ &\to (-) \frac{2\pi}{M_{\mathrm{R}}} \frac{C_{\eta,0}^2 e^{2i\sigma_0}}{-a_0^{-1} - 2k_C H(\eta)} \end{aligned}$$

X. Kong and F. Ravndal, NPA 665, 137 (2000). R. Higa, H. -W.Hammer and U. van Kolck, NPA 809, 171 (2008).

 $C_{\eta,0}^2 k(\cot \delta_0 - i) = -\frac{1}{a_0} + \dots - 2k_C H(\eta) \qquad H(\eta) = \psi(i\eta) + 1/(2i\eta) - \ln(i\eta)$

$$\begin{aligned} \langle \chi_{\boldsymbol{p}'}^{(-)} | T_{cs}(E) | \chi_{\boldsymbol{p}}^{(+)} \rangle &= (-) \frac{6\pi}{M_{\mathrm{R}}} \frac{\partial \chi_{\boldsymbol{p}'}^{(-)*}(0) \partial \chi_{\boldsymbol{p}}^{(+)}(0)}{-\frac{1}{a_{1}} + \frac{r_{1}}{2}k^{2} - k^{2}(1+\eta^{2})2k_{C}H(\eta)} \\ & \rightarrow (-) \frac{6\pi}{M_{\mathrm{R}}} \frac{k^{2}C_{\eta,1}^{2}e^{2i\sigma_{1}}}{-\frac{1}{a_{1}} + \frac{r_{1}}{2}k^{2} - k^{2}(1+\eta^{2})2k_{C}H(\eta)} \\ C_{\eta,1}^{2}k^{3}(\cot\delta_{1}-i) &= -\frac{1}{a_{1}} + \frac{r_{1}}{2}k^{2} + \dots - k^{2}(1+\eta^{2})2k_{C}H(\eta) \end{aligned}$$

1.1

$$\langle \chi_{\mathbf{p}'}^{(-)} | T_{cs}(E) | \chi_{\mathbf{p}}^{(+)} \rangle = (-) \frac{2\pi}{M_{\mathrm{R}}} \frac{\chi_{\mathbf{p}'}^{(-)*}(0) \chi_{\mathbf{p}}^{(+)}(0)}{-a_0^{-1} - 2k_C H(\eta)} \rightarrow (-) \frac{2\pi}{M_{\mathrm{R}}} \frac{C_{\eta,0}^2 e^{2i\sigma_0}}{-a_0^{-1} - 2k_C H(\eta)}$$

One parameter: g (or a0)

 $C_{\eta,0}^{2}k(\cot \delta_{0}-i) = -\frac{1}{a_{0}} + \dots - 2k_{C}H(\eta) \qquad H(\eta) = \psi(i\eta) + 1/(2i\eta) - \ln(i\eta)$

$$\begin{aligned} \langle \chi_{p'}^{(-)} | T_{cs}(E) | \chi_{p}^{(+)} \rangle &= (-) \frac{6\pi}{M_{\rm R}} \frac{\partial \chi_{p'}^{(-)*}(0) \partial \chi_{p}^{(+)}(0)}{-\frac{1}{a_1} + \frac{r_1}{2}k^2 - k^2(1+\eta^2)2k_C H(\eta)} \\ & \to (-) \frac{6\pi}{M_{\rm R}} \frac{k^2 C_{\eta,1}^2 e^{2i\sigma_1}}{-\frac{1}{a_1} + \frac{r_1}{2}k^2 - k^2(1+\eta^2)2k_C H(\eta)} \\ C_{\eta,1}^2 k^3 (\cot \delta_1 - i) &= -\frac{1}{a_1} + \frac{r_1}{2}k^2 + \dots - k^2(1+\eta^2)2k_C H(\eta) \end{aligned}$$

Two parameters: Delta and h (or a1 and r1)

Scales, spins, core excitations

4/22/2014

Repeat

Re

IS Be7 + p: ${}^{3}S_{1}$, ${}^{5}S_{2}$, D IS Be7^{*} + p: ${}^{1}S_{0}^{*}$, ${}^{3}S_{1}^{*}$

FS(2⁺) Be7 + p:
$${}^{3}P_{2}$$
, ${}^{5}P_{2}$
FS(2⁺) Be7^{*} + p: ${}^{3}P_{2}^{*}$

P-wave

P-wave

P-wave

$$\frac{C_Y^2}{h_Y^2 \gamma^2 \Gamma^2 (2 + k_C/\gamma)} = \frac{C_{(^3P_2^*)}^2}{h_{(^3P_2^*)}^2 \gamma^{*2} \Gamma^2 (2 + k_C/\gamma^*)} = \frac{Z}{3\pi}$$
$$Y = {}^3P_2 \text{ and } {}^5P_2$$

4 parameters: 3 h + 1 Delta, or 3 C + gamma

$$S(E) = \frac{e^{2\pi\eta}}{e^{2\pi\eta} - 1} \frac{Z_{eff}^2}{M_R^2} \frac{\pi}{24} \omega k_C \left(\gamma^2 + k^2\right)^2 \frac{5}{3} \times \left[C_{(^3P_2)}^{\text{LO} \ 2} \left(|S(^3S_1)|^2 + 2|\mathcal{D}|^2 \right) + C_{(^5P_2)}^{\text{LO} \ 2} \left(|S(^5S_2)|^2 + 2|\mathcal{D}|^2 \right) \right]$$

Radiative captures: LO

$$P_{c} \stackrel{a}{\longrightarrow} \stackrel{k}{\longrightarrow} \stackrel{\lambda}{\longrightarrow} \stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\longrightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow} \stackrel{\mu}{\rightarrow$$

$$S(E) = \frac{e^{2\pi\eta}}{e^{2\pi\eta} - 1} \frac{Z_{eff}^2}{M_R^2} \frac{\pi}{24} \omega k_C \left(\gamma^2 + k^2\right)^2 \frac{5}{3} \times \left[C_{(^3P_2)}^{\text{LO} - 2} \left(|S(^3S_1)|^2 + 2|\mathcal{D}|^2 \right) + C_{(^5P_2)}^{\text{LO} - 2} \left(|S(^5S_2)|^2 + 2|\mathcal{D}|^2 \right) \right]$$

$$S(X) \equiv \int_0^{+\infty} dr W_{-\eta_B, \frac{3}{2}} (2\gamma r) r \left[\frac{C_{\eta,0}G_0(k, r)}{-a_{(X)}^{-1} - 2k_C H(\eta)} + \frac{F_0(k, r)}{C_{\eta,0}k} \frac{-a_{(X)}^{-1} - 2k_C \text{Re}\left[H(\eta)\right]}{-a_{(X)}^{-1} - 2k_C H(\eta)} \right]$$

$$\mathcal{D} \equiv \int_0^{+\infty} dr W_{-\eta_B,\frac{3}{2}}(2\gamma r) r \frac{F_2(k,r)}{C_{\eta,0}k}$$

Radiative captures: LO

$$P_{c} \stackrel{a}{\rightarrow} \stackrel{k}{\leftarrow} \stackrel{\lambda}{\rightarrow} \stackrel{}{\rightarrow} \stackrel{}}{\rightarrow} \stackrel{}{\rightarrow} \stackrel{}}{\rightarrow} \rightarrow} \stackrel{}}{\rightarrow} \rightarrow} \stackrel{}}{$$

$$\begin{split} S(E) &= \frac{e^{2\pi\eta}}{e^{2\pi\eta} - 1} \frac{Z_{eff}^2}{M_{\rm R}^2} \frac{\pi}{24} \omega k_C \left(\gamma^2 + k^2\right)^2 \frac{5}{3} \times \\ & \left[C_{(^3P_2)}^{\rm LO}{}^2 \left(\mid \mathcal{S}(^3S_1) \mid^2 + 2 \mid \mathcal{D} \mid^2 \right) + C_{(^5P_2)}^{\rm LO}{}^2 \left(\mid \mathcal{S}(^5S_2) \mid^2 + 2 \mid \mathcal{D} \mid^2 \right) \right] \\ \mathcal{S}(X) &\equiv \int_{0}^{+\infty} dr W_{-\eta_B, \frac{3}{2}} (2\gamma r) r \left[\frac{C_{\eta,0} G_0(k, r)}{-a_{(X)}^{-1} - 2k_C H(\eta)} + \frac{F_0(k, r)}{C_{\eta,0} k} \frac{-a_{(X)}^{-1} - 2k_C {\rm Re} \left[H(\eta) \right]}{-a_{(X)}^{-1} - 2k_C H(\eta)} \right] \\ \mathcal{D} &\equiv \int_{0}^{+\infty} dr W_{-\eta_B, \frac{3}{2}} (2\gamma r) r \frac{F_2(k, r)}{C_{\eta,0} k} & \begin{array}{c} Coulomb \\ wavefunc. \end{array} \right. \begin{array}{c} F \to j \\ G \to n \\ W \to h \end{array} \end{split}$$

LO results on Be7(p,gamma)B8

	$C_{(^{3}P_{2})}$	$C_{({}^{5}P_{2})}$	$a_{(^{3}S_{1})}$	$a_{({}^{5}S_{2})}$
Nollett	-0.315(19)	-0.662(19)		
Navratil	-0.294	-0.650	-5.2	-15.3
Tabacaru	0.294(45)	0.615(45)		
Angulo			25(9)	-7(3)
				ノ

 $C_{({}^{3}P_{2}^{*})} = -0.3485(51)$

89

P. Navratil, R. Roth and S. Quaglioni, *Phys. Lett. B* 704, 379 (2011);
C. Angulo *et. al., Nucl. Phys. A* 716, 211 (2003);
G. Tabacaru, *et. al., Phys. Rev. C* 73, 025808 (2006)

4/22/2014

LO results on Be7(p,gamma)B8

P. Navratil, R. Roth and S. Quaglioni, Phys. Lett. B 704, 379 (2011)

90

LO results on Be7(p,gamma)B8

P. Navratil, R. Roth and S. Quaglioni, Phys. Lett. B 704, 379 (2011)

LO results on Be7(p,gamma)B8

LO results on Be7(p,gamma)B8

 $S(E) = S(0)(1 + d_1E + d_2E^2)$ Fit to 0<E<50 keV

L. T. Baby, et. al., [ISOLDE Collaboration], Phys. Rev.Lett. 90, 022501 (2003);
F. Hammache, et. al., Phys. Rev. Lett. 86, 3985 (2001);
F. Strieder, et. al., Nucl. Phys. A 696, 219 (2001);
B. W. Filippone, et. al., Phys. Rev. C 28, 2222 (1983);
A. R. Junghans, et. al., Phys. Rev. C 68, 065803 (2003);
A. R. Junghans, et. al., Phys. Rev. C 81, 012801 (2010).

LO results on Be7(p,gamma)B8

 $S(E) = S(0)(1 + d_1E + d_2E^2)$ Fit to 0<E<50 keV

	$S(0)~({\rm eV}~{\rm b})$	$S_{(^{3}S_{1})}(0)$	$d_1({\rm MeV}^{-1})$	$d_2 \ ({\rm MeV}^{-2})$
No+A	18.2 ± 1.2	3.1 ± 0.4	-1.62	10.3
Na	17.8	3.0	-1.26	10.8
T+A	15.7 ± 2.7	2.7 ± 0.8	-1.62	10.3
	20.8 ± 1.6		-1.5 ± 0.1	6.5 ± 2.0

E. G. Adelberger, et al., Rev. Mod. Phys. 83, 195 (2011)

L. T. Baby, et. al., [ISOLDE Collaboration], Phys. Rev.Lett. 90, 022501 (2003);

F. Hammache, et. al., Phys. Rev. Lett. 86, 3985 (2001);

F. Strieder, et. al., Nucl. Phys. A 696, 219 (2001);

B. W. Filippone, et. al., Phys. Rev. C 28, 2222 (1983);

A. R. Junghans, et. al., Phys. Rev. C 68, 065803 (2003);

A. R. Junghans, et. al., Phys. Rev. C 81, 012801 (2010).

Summary

- EFT + ab initio works as expected at LO
- LO needs s-wave scattering length, p-wave ANCs, and binding momentum
- The p-wave is a coupled-channel problem
- For Be7 capture, improving s-wave measurement is important for extrapolating data to stellar energies.

Improve the initial state multiple scattering

Improve the initial state multiple scattering

Improve the initial state multiple scattering

Improve the final state interaction

Improve the initial state multiple scattering

Improve the final state interaction

Existence of threshold

Improve the initial state multiple scattering

Improve the final state interaction

Improve the short distance contribution

• Need to fix higher order couplings, i.e., need more "observables".

- Need to fix higher order couplings, i.e., need more "observables".
- Extract from *direct* ab initio calculations (short distance)?

- Need to fix higher order couplings, i.e., need more "observables".
- Extract from *direct* ab initio calculations (short distance)?
- Change the boundary conditions and the background fields?

- Need to fix higher order couplings, i.e., need more "observables".
- Extract from *direct* ab initio calculations (short distance)?
- Change the boundary conditions and the background fields?
- •Use data directly?

backup

• Capture cross section

$$\sigma(E) = \frac{S(E)}{E} \exp[-2\pi\eta(E)],$$

- 20 keV ~ fb
- 1MeV~mb

S-wave in EFT

$$T = \frac{2\pi}{M_{\rm R}} \frac{1}{-k \cot \delta_0 + ik}$$
Effective range expansion: $-k \cot \delta_0 = \frac{1}{a_0} - \frac{1}{2}r_0k^2 + \dots$
 $= \frac{2\pi}{M_{\rm R}}a_0 \left[1 - ia_0k + \left(\frac{a_0r_0}{2} - a_0^2\right)k^2 + \dots\right] \frac{\text{Natural}}{a_0 \sim \frac{1}{\Lambda} \text{ and } r_0 \sim \frac{1}{\Lambda}}$

T

S-wave in EFT

$$T = \frac{2\pi}{M_{\rm R}} \frac{1}{-k \cot \delta_0 + ik}$$
Effective range expansion: $-k \cot \delta_0 = \frac{1}{a_0} - \frac{1}{2}r_0k^2 + \dots$

$$T = \frac{2\pi}{M_{\rm R}}a_0 \left[1 - ia_0k + \left(\frac{a_0r_0}{2} - a_0^2\right)k^2 + \dots\right] \frac{\text{Natural}}{a_0 \sim \frac{1}{\Lambda} \text{ and } r_0 \sim \frac{1}{\Lambda}}$$

$$T = \frac{2\pi}{M_{\rm R}} \frac{1}{a_0^{-1} + ik} \left(1 + \frac{r_0k^2}{2} \frac{1}{a_0^{-1} + ik} + \dots\right) \frac{\text{Unnatural}}{a_0 \sim \frac{1}{\Lambda} \text{ but } r_0 \sim \frac{1}{\Lambda}}$$

 $\mathcal{M}_{j} = (-i)C_{\eta,0}C_{(^{3}P_{2})}^{\text{LO}}\frac{Z_{eff}}{M_{\text{R}}}\frac{2\pi}{\sqrt{3}}\left(\gamma^{2} + k^{2}\right)\left[e^{i\sigma_{0}}\epsilon_{j}^{*}Y_{00}(\hat{p})\mathcal{S}(^{3}S_{1}) + e^{i\sigma_{2}}\epsilon_{k}^{*}\sqrt{2}T_{j}^{\ ka}Y_{2a}(\hat{p})\mathcal{D}\right]$

Radiative captures: LO

$$P_{c} \xrightarrow{a}_{p_{n} \sigma} \xrightarrow{k_{\lambda}} \xrightarrow{p_{n} \sigma} \xrightarrow{p_{n} \sigma}$$

 $\langle \pi^{\alpha} | L_{EM} | \chi_{p}^{(+)}, \delta, a \rangle \equiv T_{i}^{\delta a} T_{\alpha}^{ij} \mathcal{M}_{j}$ Initial total spin Si=1

$$\mathcal{M}_{j} = (-i)C_{\eta,0}C_{(^{3}P_{2})}^{\mathrm{LO}}\frac{Z_{eff}}{M_{\mathrm{R}}}\frac{2\pi}{\sqrt{3}}\left(\gamma^{2} + k^{2}\right)\left[e^{i\sigma_{0}}\epsilon_{j}^{*}Y_{00}(\hat{p})\mathcal{S}(^{3}S_{1}) + e^{i\sigma_{2}}\epsilon_{k}^{*}\sqrt{2}T_{j}^{\ ka}Y_{2a}(\hat{p})\mathcal{D}\right]$$

$$\mathcal{S}(X) \equiv \int_{0}^{+\infty} dr W_{-\eta_{B},\frac{3}{2}}(2\gamma r) r \left[\frac{C_{\eta,0}G_{0}(k,r)}{-a_{(X)}^{-1} - 2k_{C}H(\eta)} + \frac{F_{0}(k,r)}{C_{\eta,0}k} \frac{-a_{(X)}^{-1} - 2k_{C}\operatorname{Re}\left[H(\eta)\right]}{-a_{(X)}^{-1} - 2k_{C}H(\eta)} \right]$$

$$\mathcal{D} \equiv \int_0^{+\infty} dr W_{-\eta_B,\frac{3}{2}}(2\gamma r) r \frac{F_2(k,r)}{C_{\eta,0}k}$$

Radiative captures: LO

$$P_{c} \xrightarrow{n}_{k} \xrightarrow{k}_{\lambda}$$

 $\langle \pi^{\alpha} | L_{EM} | \chi_{p}^{(+)}, \delta, a \rangle \equiv T_{i}^{\delta a} T_{\alpha}^{ij} \mathcal{M}_{j}$ Initial total spin Si=1

$$\mathcal{M}_{j} = (-i)C_{\eta,0}C_{(^{3}P_{2})}^{\mathrm{LO}}\frac{Z_{eff}}{M_{\mathrm{R}}}\frac{2\pi}{\sqrt{3}}\left(\gamma^{2} + k^{2}\right)\left[e^{i\sigma_{0}}\epsilon_{j}^{*}Y_{00}(\hat{p})\mathcal{S}(^{3}S_{1}) + e^{i\sigma_{2}}\epsilon_{k}^{*}\sqrt{2}T_{j}^{\ ka}Y_{2a}(\hat{p})\mathcal{D}\right]$$

$$\begin{split} \mathcal{S}(X) &\equiv \int_{0}^{+\infty} dr W_{-\eta_{B},\frac{3}{2}}(2\gamma r) r \begin{bmatrix} \frac{C_{\eta,0}G_{0}(k,r)}{-a_{(X)}^{-1}-2k_{C}H(\eta)} + \frac{F_{0}(k,r)}{C_{\eta,0}k} \frac{-a_{(X)}^{-1}-2k_{C}\mathrm{Re}\left[H(\eta)\right]}{-a_{(X)}^{-1}-2k_{C}H(\eta)} \end{bmatrix} \\ \mathcal{D} &\equiv \int_{0}^{+\infty} dr W_{-\eta_{B},\frac{3}{2}}(2\gamma r) r \frac{F_{2}(k,r)}{C_{\eta,0}k} & \begin{array}{c} Coulomb \\ wavefunc. \end{array} & \begin{array}{c} F \rightarrow j \\ G \rightarrow n \\ W \rightarrow h \end{array} \end{split}$$

/ I l

