Exotic pairing states in 2D Fermi gases with Rashba spin-orbit coupling

An interest in few-body physics from a many-body perspective

Wei Zhang Department of Physics Renmin University of China, Beijing

Mar. 20, 2014

Acknowledgements

- RUC
 - Peng Zhang
 - Ren Zhang
- USTC
 - Wei Yi
 - Jing Zhou
 - Fan Wu

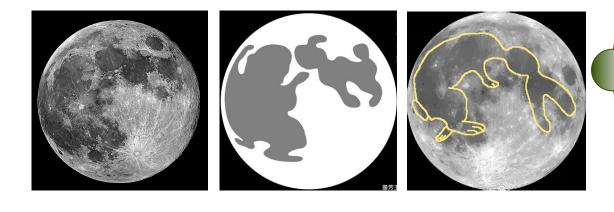
• ¥ ¥ ¥

Outline

- Background
 - Spin-orbit coupling
 - Realization of spin-orbit coupling (1D, ERD)
 - Single particle property
- 2D Fermi gas with Rashba SOC & B-fields
 - Topological superfluid
 - FFLO pairing within a single branch
 - Topological FFLO state
- Few-body physics from a many-body perspective
 - Quasi-2D versus 2D: When and how the 3rd dimension matters?
 - Validity of a contact interaction

Spin-orbit coupling (SOC)

SOC is well observed in nature



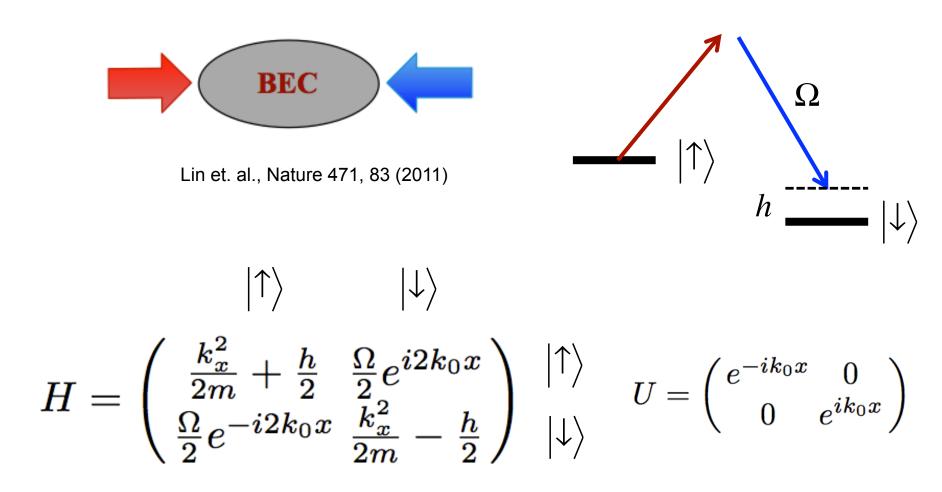
SOC in continuous system

$$H_{\rm SO} = \alpha_x \sigma_x k_x + \alpha_y \sigma_y k_y + \alpha_z \sigma_z k_z$$

$$H_{\rm SO} = \alpha_x \sigma_x k_x + \alpha_y \sigma_y k_y + \alpha_z \sigma_z k_z$$

$\alpha_x = \alpha_y = \alpha_z$	3D isotropic SOC	$lpha ec \sigma \cdot ec k$
$\alpha_x = \alpha_y$ $\alpha_z = 0$	Rashba SOC	$\alpha \left(\sigma_{x} k_{x} + \sigma_{y} k_{y} \right)$
$\alpha_x = -\alpha_y$ $\alpha_z = 0$	Dresselhaus SOC	$\alpha \left(\sigma_{x} k_{x} - \sigma_{y} k_{y} \right)$
$\alpha_{y} = \alpha_{z} = 0$	1D SOC Equal R-D SOC	$\alpha \sigma_{x} k_{x}$

Realization of ERD SOC: NIST-scheme



Realization of ERD SOC: NIST-scheme

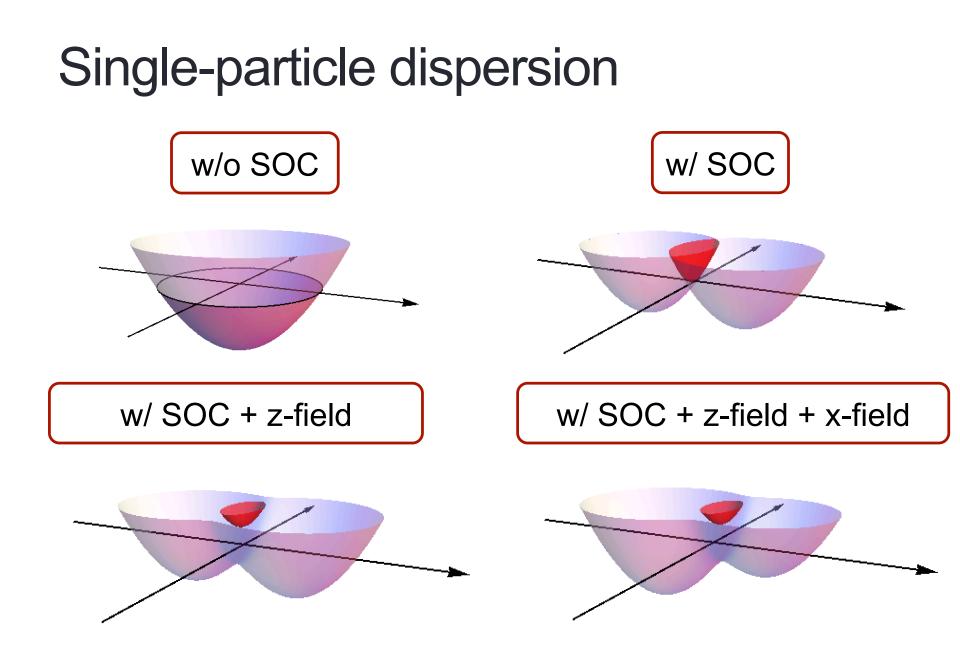
1D (ERD) SOC

$$H_{\rm SO} = UHU^{\dagger} = \begin{pmatrix} \frac{(k_x + k_0)^2}{2m} + \frac{h}{2} & \frac{\Omega}{2} \\ \frac{\Omega}{2} & \frac{(k_x - k_0)^2}{2m} - \frac{h}{2} \end{pmatrix}$$
$$= \frac{1}{2m} (k_x + k_0 \sigma_z)^2 + \frac{\Omega}{2} \sigma_x + \frac{h}{2} \sigma_z.$$

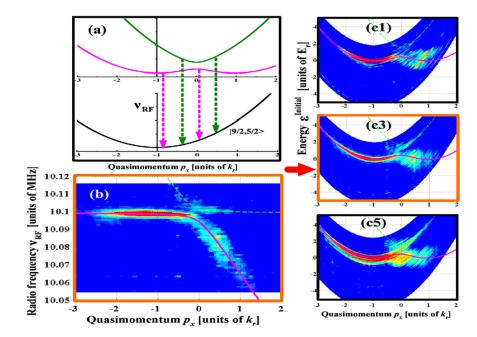
• Spin rotation, x to -z, z to x
$$H_{\rm SO} = \frac{1}{2m} (k_x^2 + k_0^2 + 2\sigma_x k_x) - \frac{\Omega}{2} \sigma_z + \frac{h}{2} \sigma_x$$

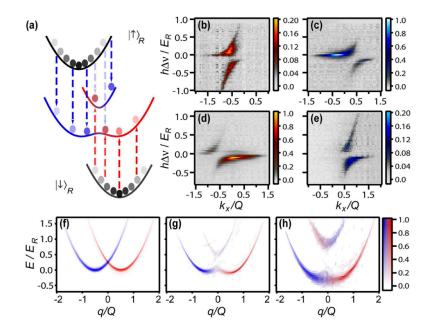
z-field

Rabi Frequency



Implementation in Fermi gases





Shanxi Univerisity, Taiyuan, China Wang *et al.*, PRL 109, 095301 (2012) MIT, Boston, USA Cheuk *et al.*, PRL 109, 095302 (2012)

Rashba SOC

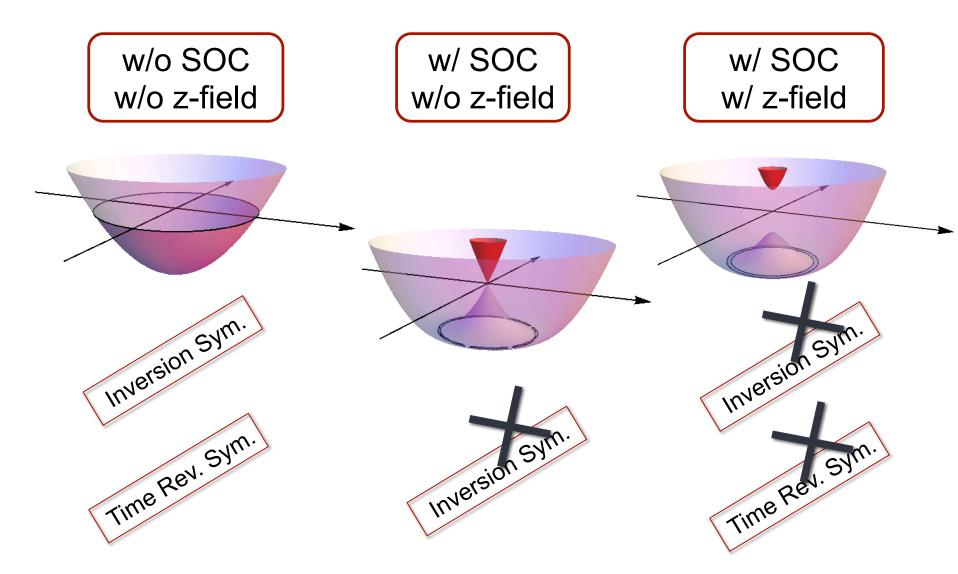
Campbell, Juzeliunas, and Spielman, PRA 84, 025602 (2011) Liu, Law, and Ng, PRL 112, 086401 (2014)

$\alpha_x = \alpha_y = \alpha_z$	3D isotropic SOC	$lpha ec \sigma \cdot ec k$	
$\alpha_x = \alpha_y$ $\alpha_z = 0$	Rashba SOC	$\alpha \left(\sigma_{x} k_{x} + \sigma_{y} k_{y} \right)$	
$\alpha_x = -\alpha_y$ $\alpha_z = 0$	Dresselhaus SOC	$\alpha \left(\sigma_{x} k_{x} - \sigma_{y} k_{y} \right)$	
$\alpha_{y} = \alpha_{z} = 0$	1D SOC Equal R-D SOC	$\alpha \sigma_{x} k_{x}$	

Outline

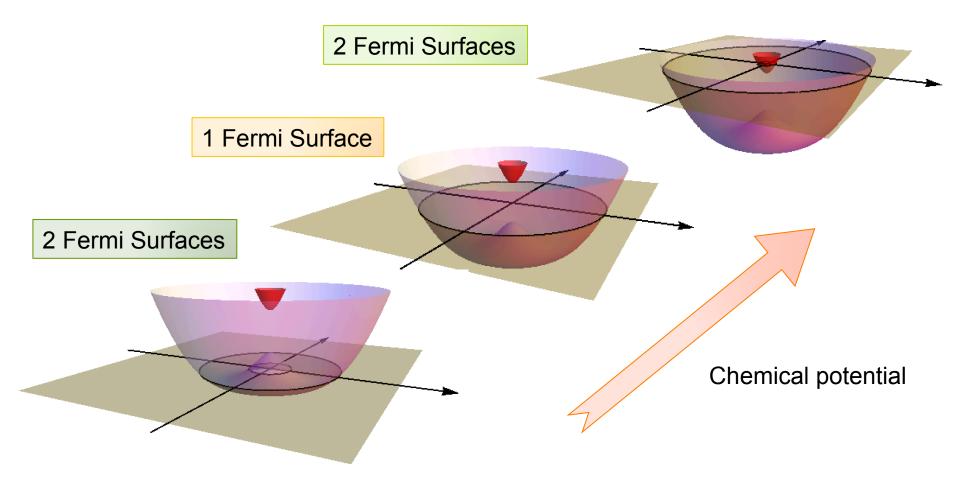
- Background
 - Spin-orbit coupling
 - Realization of spin-orbit coupling (1D, ERD)
 - Single particle property
- 2D Fermi gas with Rashba SOC & B-fields
 - Topological superfluid
 - FFLO pairing within a single branch
 - Topological FFLO state
- Few-body physics from a many-body perspective
 - Quasi-2D versus 2D: When and how the 3rd dimension matters?
 - Validity of a contact interaction

Single-particle dispersion

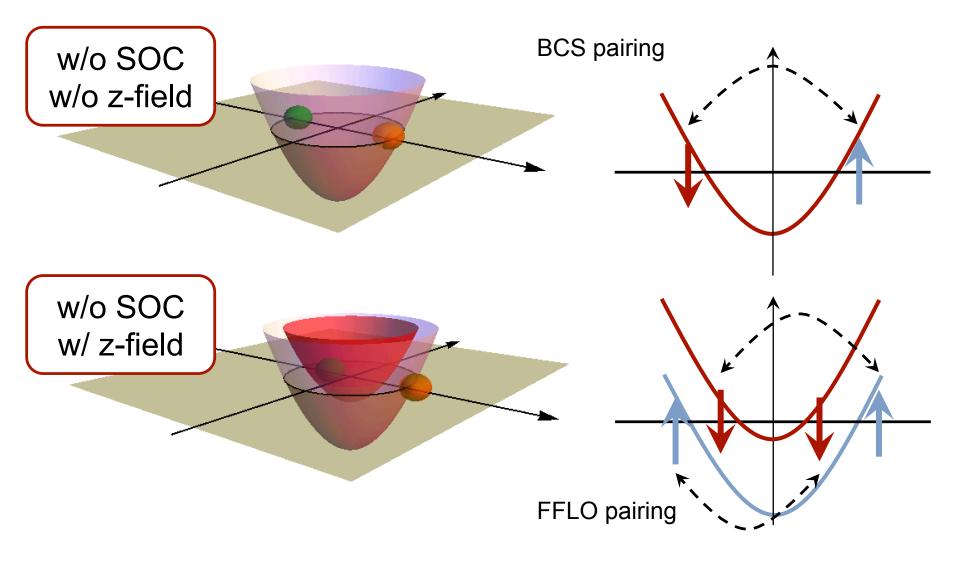


Lifshitz transition

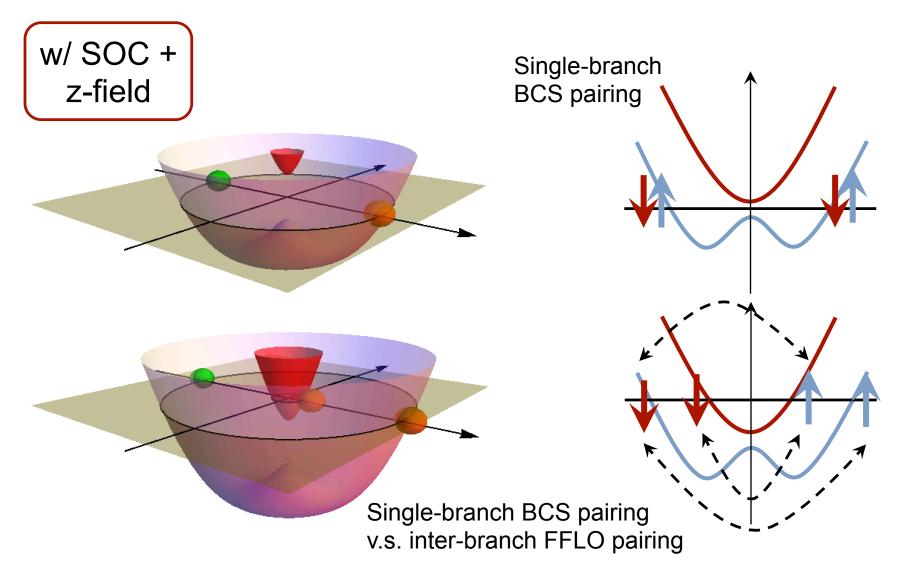
2D Fermi gas with Rashba SOC + z-field



Now we add in the interaction...

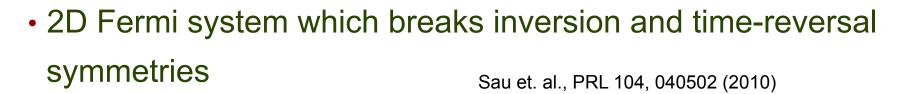


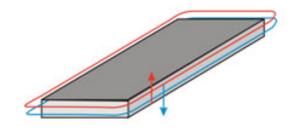
Now we add in the interaction...

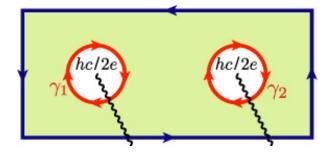


Topological Superfluid (TSF)

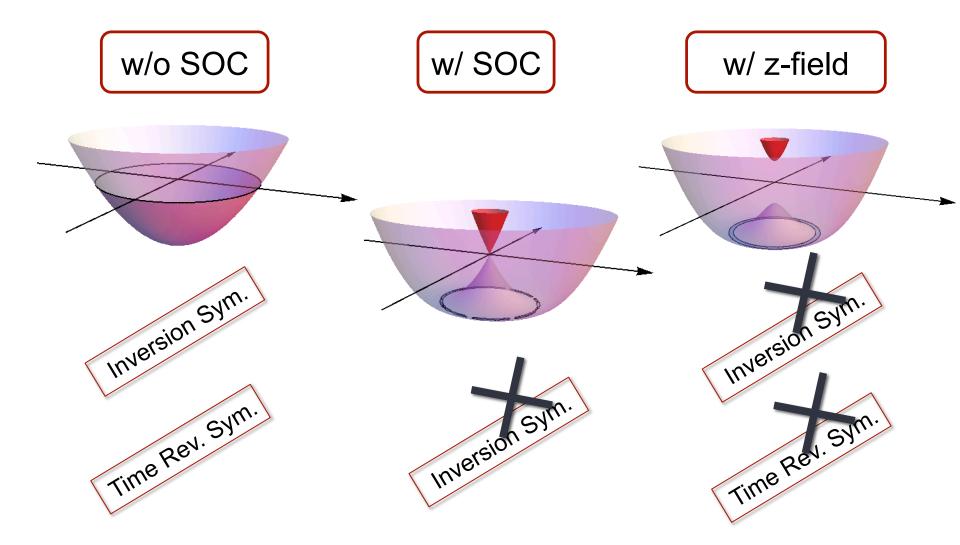
- Fully gapped in the bulk
- Topologically non-trivial properties
 - Not characterized by local order parameters
 - Topologically protected gapless edge modes
- Majorana fermions at vortex cores
 - Fault-tolerant quantum computing







Single-particle dispersion



2D Fermi gas with Rashba SOC & z-field

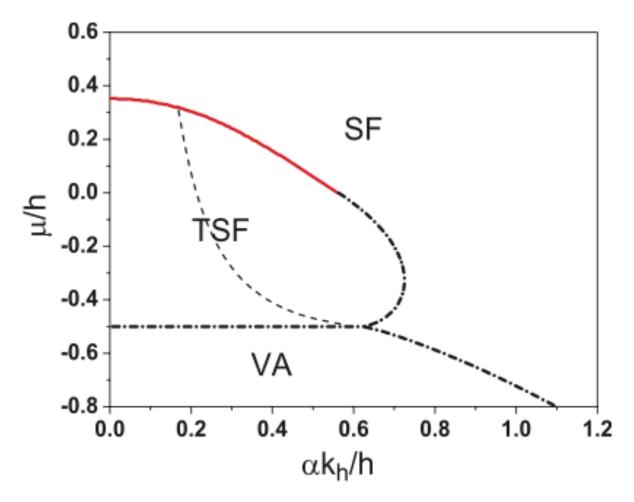
Hamiltonian

$$\begin{aligned} H &- \sum_{\sigma} \mu_{\sigma} N_{\sigma} = H_{0} + H_{\text{soc}} + H_{\text{int}} \\ &= \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu_{\sigma}) a_{\mathbf{k},\sigma}^{\dagger} a_{\mathbf{k},\sigma} + \sum_{\mathbf{k}} \alpha k \left(e^{-i\varphi_{\mathbf{k}}} a_{\mathbf{k},\uparrow}^{\dagger} a_{\mathbf{k},\downarrow} + \text{H.C.} \right) \\ &+ \frac{U}{\mathcal{V}} \sum_{\mathbf{k},\mathbf{k}'} a_{\mathbf{k},\uparrow}^{\dagger} a_{-\mathbf{k},\downarrow}^{\dagger} a_{-\mathbf{k}',\downarrow} a_{\mathbf{k}',\uparrow}, \end{aligned}$$
(1)

Thermodynamic potential

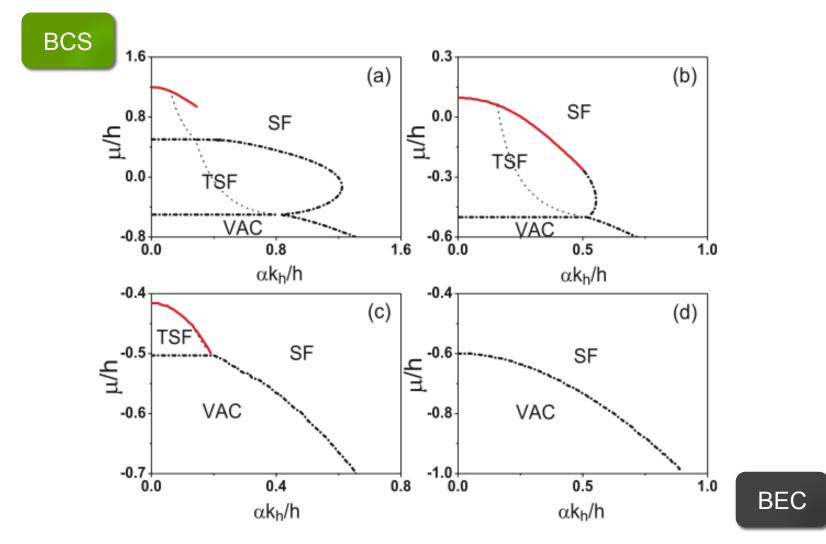
$$\Omega = -\frac{1}{\beta} \ln \operatorname{tr} \left[e^{-\beta (H_m - \sum_{\sigma} \mu_{\sigma} N_{\sigma})} \right] \Big|_{T \to 0}$$
$$= \frac{1}{2} \sum_{\mathbf{k}, \lambda = \pm} \left(\xi_{\lambda} - E_{\mathbf{k}, \lambda} \right) - \mathcal{V} \frac{|\Delta|^2}{U}.$$

Zero-T phase diagram

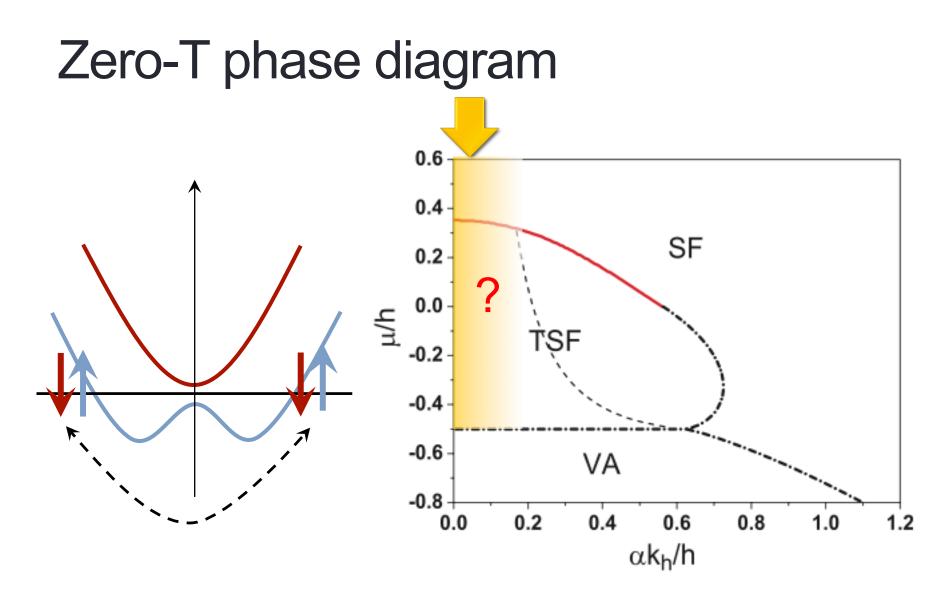


Zhou, WZ, and Yi, PRA 84 063603 (2011)

BCS-BEC crossover



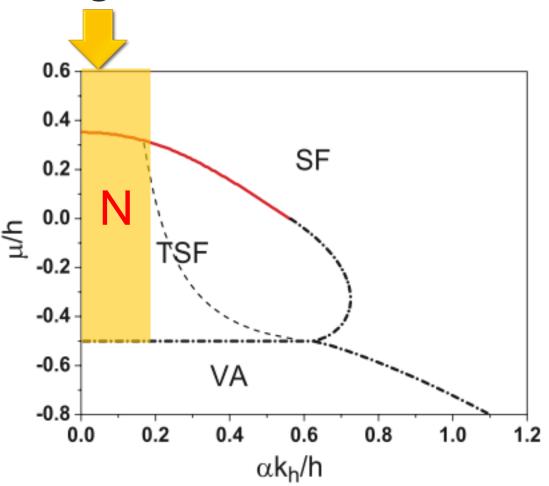
Zhou, WZ, and Yi, PRA 84 063603 (2011)



Zhou, WZ, and Yi, PRA 84 063603 (2011)

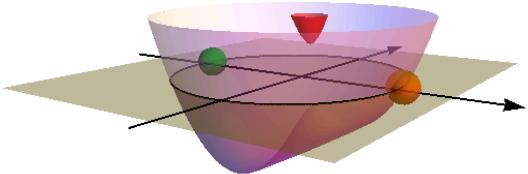
Zero-T phase diagram

- Pairing physics at large magnetic field limit
- Polaron-molecule transition
- Normal gas in the large h limit

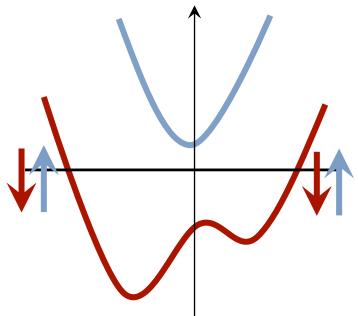


Yi and **WZ**, PRL 109, 140402 (2012)

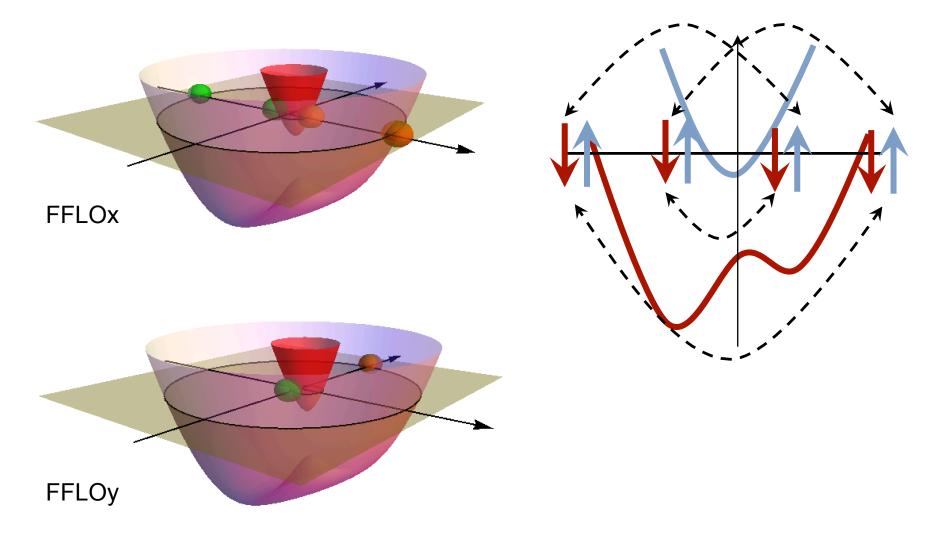
FFLO pairing

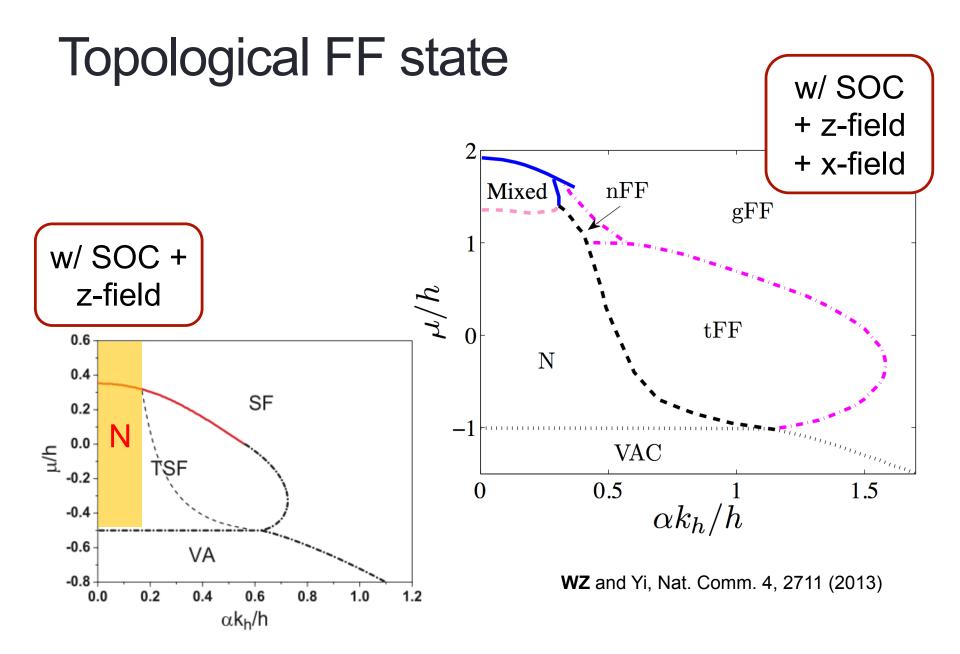


- BCS pairing becomes unstable
- SOC-induced spin mixing
- In-plane field induced Fermi surface asymmetry



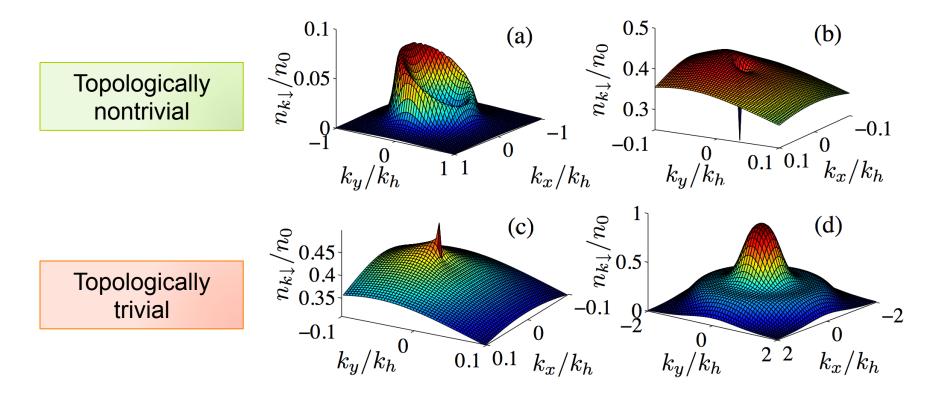
Competition of FFLO states





Detection of tFF

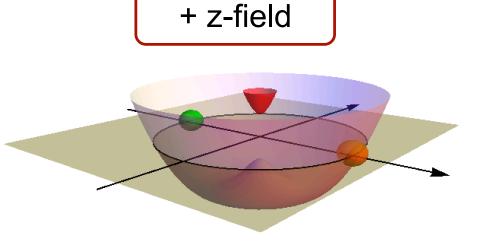
Momentum distribution of minority fermions



WZ and Yi, Nat. Comm. 4, 2711, (2013)

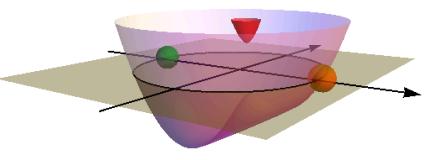
Summary

2D Fermi gas with Rashba SOC



- Topological superfluid
- Pairing instability at large z-field limit

Zhou, **WZ**, Yi, PRA 84 063603 (2011) Yi and **WZ**, PRL 109, 140402 (2012) + z-field + x-field



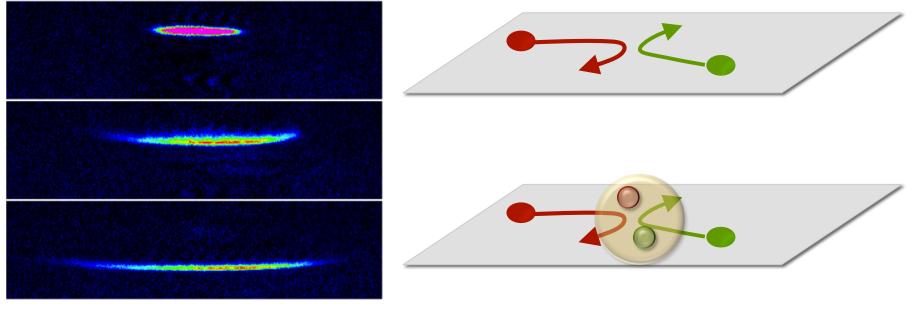
- Breakdown of BCS pairing
- Topological FFLO state

WZ and Yi, Nat. Comm. 4, 2711, (2013)

Outline

- Background
 - Spin-orbit coupling
 - Realization of spin-orbit coupling (1D, ERD)
 - Single particle property
- 2D Fermi gas with Rashba SOC & B-fields
 - Topological superfluid
 - FFLO pairing within a single branch
 - Topological FFLO state
- Few-body physics from a many-body perspective
 - Quasi-2D versus 2D: When and how the 3rd dimension matters?
 - Validity of a contact interaction

A typical 2D system in cold atoms



- Trapping potential along $z \sim 10^4 10^5$ Hz
- Trap size ~ 10⁻⁷ m
- Particle separation in the radial plane ~ 10⁻⁶ m
- Interatomic potential range ~ 10⁻⁹ m

Two-body bound state (Q2D)

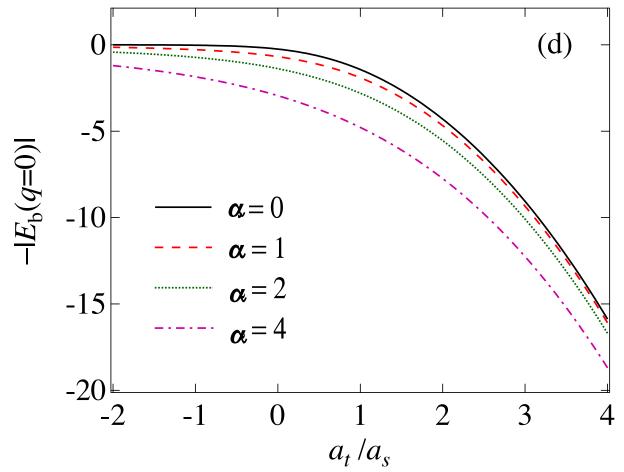
Two-channel model

$$H = H_0 + H_{\rm soc} + H_{\rm bf} + H_{\rm int}.$$

$$egin{aligned} |\Psi
angle_{\ell,m{q}} &= \left(eta_{\ell,m{q}} b^{\dagger}_{\ell,m{q}}
ight. \ &+ \sum_{m,n,m{k}} {}' \sum_{\sigma,\sigma'} \eta^{\sigma\sigma'}_{m,n,m{k},m{q}} c^{\dagger}_{m,m{k}+m{q}/2,\sigma} c^{\dagger}_{n,-m{k}+m{q}/2,\sigma'}
ight) |0
angle \end{aligned}$$

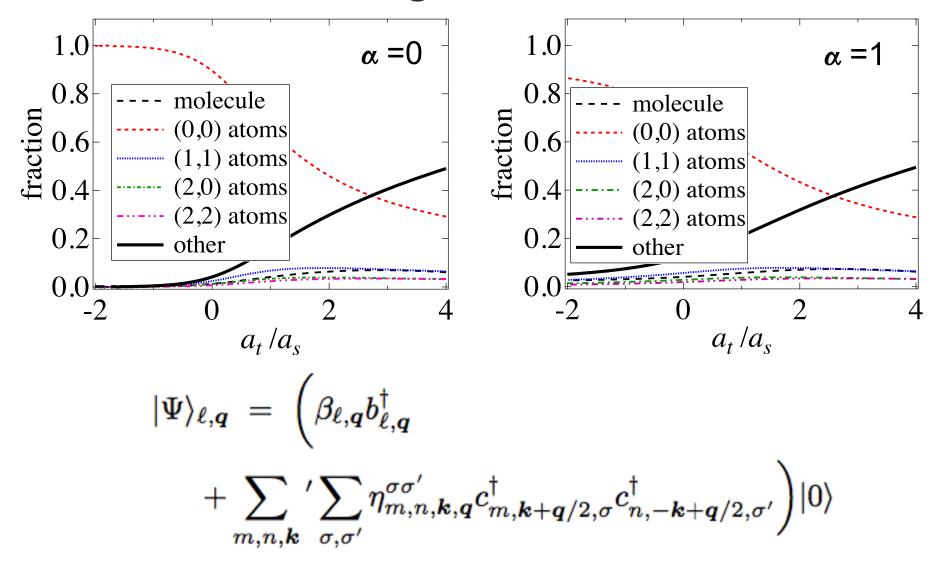
Two-body bound state (Q2D)

• q=0



Zhang, Wu, Tang, Guo, Yi, **WZ**, PRA 87, 033629 (2013)

Excitations along the z-direction



- When a Q2D Fermi gas can be looked as 2D?
 - Only on the BCS side.

- What if we introduce Rashba SOC?
 - It makes things worse.
 - SOC tends to increase the two-body binding energy.

- Can we still simulate 2D physics with Q2D system?
 - Yes, but need another way.

Separation of energy scales

- DOF in Q2D model:
 - fermions in ground state n=0 2D Fermi energy Interatomic distance
 fermions in excited states n=1,2,3... Trapping potential Trap size
 Feshbach molecules atomic interaction Interaction range
- Effective 2D Hamiltonian (2-channel model)
 - 2D Fermions
 - dressed molecules (structureless bosons)

Effective 2D Hamiltonian

$$\begin{split} H_{\text{eff}} &= \sum_{\mathbf{k},\sigma} \varepsilon_{\mathbf{k}} a_{\mathbf{k},\sigma}^{\dagger} a_{\mathbf{k},\sigma} + \delta_{b} d_{0}^{\dagger} d_{0} + \frac{\alpha_{b}}{L} \sum_{\mathbf{k}} \left(d_{0}^{\dagger} a_{\mathbf{k},\uparrow} a_{-\mathbf{k},\downarrow} + \text{H.C.} \right) \\ &+ \frac{V_{b}}{L^{2}} \sum_{\mathbf{k},\mathbf{k}'} a_{\mathbf{k},\uparrow}^{\dagger} a_{-\mathbf{k},\downarrow}^{\dagger} a_{-\mathbf{k}',\downarrow} a_{\mathbf{k}',\uparrow} + \gamma' \sum_{\mathbf{k}} \left[(k_{x} - ik_{y}) a_{\mathbf{k},\uparrow}^{\dagger} a_{\mathbf{k},\downarrow} + (k_{x} + ik_{y}) a_{\mathbf{k},\downarrow}^{\dagger} a_{\mathbf{k},\uparrow} \right] \end{split}$$

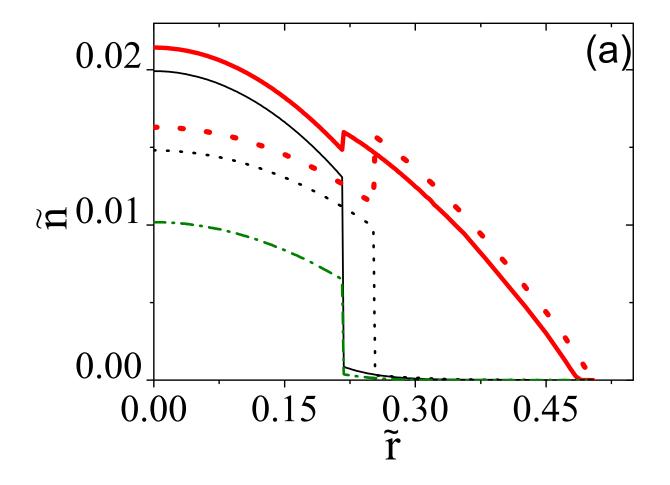
- Single-particle physics
 - Single particle dispersion
- Two-particle physics
 - background scattering
 - two-body binding energy
 - # of fermions in ground state

singular point of T(x)

first derivative of 1/T(x) at singular point

$$\Delta \varepsilon = O\left(\frac{\mu - E_b / 2}{\hbar \omega_z}\right)^2$$

Q2D Fermi gas with Rashba SOC



Outline

- Background
 - Spin-orbit coupling
 - Realization of spin-orbit coupling (1D, ERD)
 - Single particle property
- 2D Fermi gas with Rashba SOC & B-fields
 - Topological superfluid
 - FFLO pairing within a single branch
 - Topological FFLO state
- Few-body physics from a many-body perspective
 - Quasi-2D versus 2D: When and how the 3rd dimension matters?
 - Validity of a contact interaction

Two-body scattering state (2D)

$$\begin{split} H^{(2\mathrm{D})} &= H_0^{(2\mathrm{D})} + V_{2\mathrm{D}}\left(\rho\right), \\ &_{\perp} \langle \boldsymbol{\rho} | \psi_c^{(0)} \rangle = \frac{e^{i \boldsymbol{k} \cdot \boldsymbol{\rho}}}{2^{3/2} \pi} | \boldsymbol{\alpha} \left(\boldsymbol{q}, \boldsymbol{k} \right) \rangle_{\!S} - \frac{e^{-i \boldsymbol{k} \cdot \boldsymbol{\rho}}}{2^{3/2} \pi} | \bar{\boldsymbol{\alpha}} \left(\boldsymbol{q}, -\boldsymbol{k} \right) \rangle_{\!S}. \\ &_{\perp} \langle \boldsymbol{\rho} | \psi_c^{(+)} \rangle \approx_{\perp} \langle \boldsymbol{\rho} | \psi_c^{(0)} \rangle + A\left(c\right)_{\perp} \langle \boldsymbol{\rho} | \boldsymbol{g}\left(\varepsilon_c\right) | \mathbf{0} \rangle_{\perp} | 0, 0 \rangle_{\!S}, \end{split}$$

$$f^{(\text{2D})}\left(c'\leftarrow c\right) = -2\pi^2 \langle \psi_{c'}^{(0)} |\mathbf{0}\rangle_{\perp} |00\rangle_S A\left(c\right).$$

Two-body scattering state (2D)

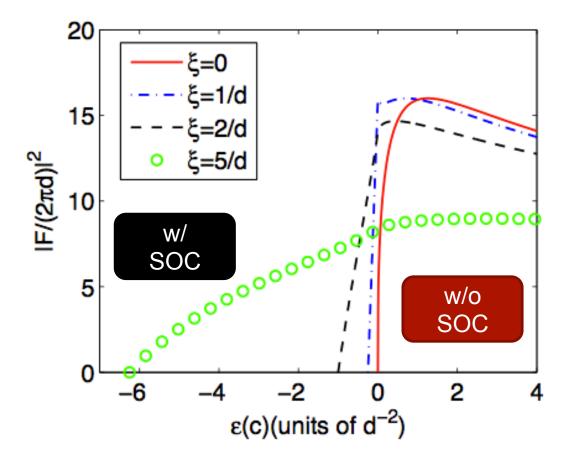
$$A\left(c
ight)=rac{(2\pi)_{S}\!\langle00|_{\perp}\langle\mathbf{0}|\psi_{c}^{(+)}
angle}{i\pi/2-C-\ln\left(d\sqrt{arepsilon_{c}}/2
ight)-(2\pi)\lambda\left(arepsilon_{c},oldsymbol{q}
ight)}.$$

- Scattering amplitude is *q*-dependent
- Qualitative change of behavior at low-energy limit

$$\begin{array}{c} \overset{\text{w/o}}{\text{SOC}} & \displaystyle \lim_{\varepsilon \to 0} f_0^{(\text{2D})} \propto \frac{1}{\ln \varepsilon_c} . \\ \\ & \\ \overset{\text{w/}}{\text{SOC}} & \displaystyle \lim_{\varepsilon_c \to \varepsilon_{\text{thre}}(q)} f^{(\text{2D})} \propto \sqrt{\varepsilon_c - \varepsilon_{\text{thre}}(q)} . \end{array}$$

Two-body scattering state (2D)

$$F \equiv \frac{f^{(2\mathrm{D})} \left(c' \leftarrow c\right)}{\langle \psi_{c'}^{(0)} | \mathbf{0} \rangle_{\perp} | 00 \rangle_{S} \langle 00 |_{\perp} \langle \mathbf{0} | \psi_{c}^{(+)} \rangle}$$



Zhang, Zhang, **WZ**, PRA 86 042707 (2012)

Two-body scattering state (Q2D)

 $A_{\rm eff}(c) =$

$$\begin{split} H &= H_0^{(2\mathrm{D})} + H_z + V_{3\mathrm{D}}\left(r\right). \end{split} \text{Short-range} \\ H_z &= -\frac{\partial^2}{\partial z^2} + \frac{\omega^2 z^2}{4} - \frac{\omega}{2} \end{split}$$

$$rac{(2\pi)_S \langle 00|_\perp \langle \mathbf{0}|\psi_c^{(+)}
angle}{i\pi/2 - C - \ln\left\{d_{ ext{eff}}\left(arepsilon_c, oldsymbol{q}
ight) \sqrt{arepsilon_c}/2
ight\} - (2\pi)\,\lambda\left(arepsilon_c, oldsymbol{q}
ight)}$$

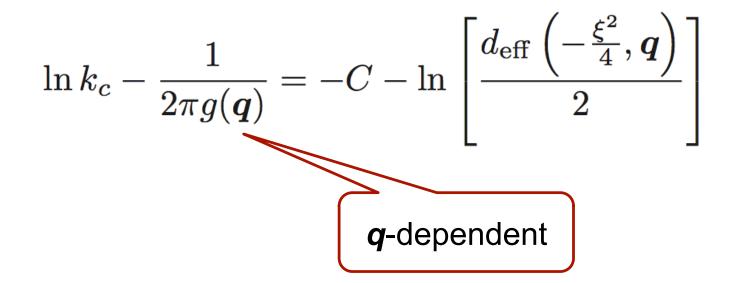
$$A\left(c
ight)=rac{(2\pi)_{S}\!\langle00|_{\perp}\langle\mathbf{0}|\psi_{c}^{(+)}
angle}{i\pi/2-C-\ln\left(d\sqrt{arepsilon_{c}}/2
ight)-(2\pi)\lambda\left(arepsilon_{c},oldsymbol{q}
ight)}.$$

2D

Effective Hamiltonian

Around threshold

$$\hat{V}_{o} = \frac{1}{\mathcal{S}} \sum_{\boldsymbol{k},\boldsymbol{k}',\boldsymbol{k}''} {}^{\prime}g(\boldsymbol{k}+\boldsymbol{k}')a^{\dagger}_{\boldsymbol{k},\uparrow}a^{\dagger}_{\boldsymbol{k}',\downarrow}a_{\boldsymbol{k}'+\boldsymbol{k}'',\downarrow}a_{\boldsymbol{k}'-\boldsymbol{k}'',\uparrow}.$$



Effective Hamiltonian

Around 2-body binding energy

$$\hat{V}_{b} = \hat{V}_{o} + \sum_{\boldsymbol{q}} \left(\frac{q^{2}}{4} + v(\boldsymbol{q}) \right) b_{\boldsymbol{q}}^{\dagger} b_{\boldsymbol{q}} \qquad \boldsymbol{q}\text{-dependent}$$

$$+ \frac{1}{\sqrt{S}} \sum_{\boldsymbol{k},\boldsymbol{k}'} 'u(\boldsymbol{k} + \boldsymbol{k}') a_{\boldsymbol{k},\uparrow}^{\dagger} a_{\boldsymbol{k}',\downarrow}^{\dagger} b_{\boldsymbol{k}+\boldsymbol{k}'} + h.c.$$

A contact interaction is valid provided that...

- The interaction is short-range
- The SOC intensity is weak
- The effective contact interaction strength is *q*-dependent