

Harmonically trapped unitary few-body systems at finite temperature

Yangqian Yan and D. Blume

See:

Y. Yan and D. Blume, PRA 88, 023616 (2013)Y. Yan and D. Blume, arXiv: 1312.4470 (2013)Y. Yan and D. Blume, in preparation (2014)

Outline

- Introduction
 - Motivation
 - Systems considered
- Finite-temperature method:
 - Path integral Monte Carlo
- Results:
 - Two-component Fermi gas
 - Single-component Bose gas

Motivation

Finite systems at finite temperature

- Quantum dots
- Nuclei
- Cold atom experiments:
 - Selim Jochim's group: Effectively one-dimensional Fermi gas consisting of 2, 3, 4,... fermions at low T.
 - Deterministic number of particles per optical lattice site.
 - Large Bose/Fermi gases: Loss measurements.
- Treatment of few-body systems is "exact" and "easier" than that of many-body system.

Systems considered

- N particles with equal mass in a spherically symmetric trap.
 - N small; N fixed.

Effect of interactions?

Particle statistics?

Systems considered

- N particles with equal mass in a spherically symmetric trap.
 - N small; N fixed.

Effect of interactions?

Particle statistics?

Temperature of finite-sized system

- Canonical ensemble:
 - Fixed number of particles N
 - Fixed temperature T
 - Fixed harmonic trapping frequency ω

- Partition function: $Z = \sum_{j} e^{-\beta E_{j}}$
- Temperature region of interest: T< T_F and T> T_F

Statistics

Fermions

Fully determined by a_s . a_{ho} is the only length scale.

Here: We do not consider spin flips. Denoted as (2, 1) system.

Determined by a_s and threebody parameter κ_* . Length scales: a_{ho} , $1/\kappa_*$.

Here: finite-range of twobody potential serves as a regulator and determines κ_* .

How to treat finite N system at finite T?

- Use numerical technique: Path integral Monte Carlo (can treat bosons and fermions (?); for bosons, any N).
- All thermodynamic properties can be calculated from the density matrix: $\hat{\rho} = e^{-\beta \hat{H}}$ Inverse

Project to

position basis: $\rho(\mathbf{R}, \mathbf{R}', \beta) = \langle \mathbf{R} | \hat{\rho} | \mathbf{R}' \rangle$

Partition function

tion function:
$$Z = \int d\mathbf{R} \rho(\mathbf{R}, \mathbf{R}, \beta)$$

Observables: $\langle \hat{\mathcal{O}} \rangle = Z^{-1} \int d\mathbf{R} d\mathbf{R}' \rho(\mathbf{R}, \mathbf{R}', \beta) \langle \mathbf{R}' | \hat{\mathcal{O}} | \mathbf{R} \rangle$

temperature: $\beta = \frac{1}{k_B T}$

How to get the density matrix? M=2 "Hard": $\beta = \frac{1}{k_B T}$ Low T x_0 "Trick": $\langle x_0 | e^{-\beta H} | x_0 \rangle \rightarrow$ $\left\langle x_{0} \left| e^{-\frac{\beta}{M}H} \right| x_{1} \right\rangle \dots \left\langle x_{M-1} \left| e^{-\frac{\beta}{M}H} \right| x_{0} \right\rangle$ Approximate form for each link. "Easy": "Easy": Error High T High T huge. x_1 "Hard": Needs to $\overline{M k_B T}$ be done M times x_0 x

Particle symmetry

$$\hat{\rho} \rightarrow \hat{\rho} \mathcal{P}$$
 $Z = \int \mathrm{d}\mathbf{R}\rho(\mathcal{P}\mathbf{R},\mathbf{R},\beta)$

Example: For two particles $\mathcal{P} = \frac{1}{2}\hat{1} \pm \frac{1}{2}\hat{P}_{21}$

+: bosons -: fermions

Monte Carlo and the Fermi sign problem

- No exchanges at high T.
- Exchanges give positive and negative contributions and add up to a small number. Signal to noise ratio decreases.

Contact of two-component Fermi gas

Why contact? S. Tan, Ann. Phys. (2008)

- Proven to be fundamental (valid at zero and finite T).
- T dependence unknown for trapped few-body system (N>2).
- Relates physically distinct observables:
 - Short-range behavior of pair distribution function:

$$C_{N_1,N_2} = 4\pi \lim_{s \to 0} \frac{\left\langle N_{\text{pair}}^{r < s} \right\rangle_{\text{th}}}{s}$$

- Slope of eigen energy/free energy:
- $C_{N_1,N_2} = \frac{4\pi m}{\hbar^2} \left\langle \frac{\partial E(a_s)}{\partial \left(-a_s^{-1}\right)} \right\rangle_{\rm th}$
- Tail of momentum distribution, tail of radio-frequency spectrum, etc...

Pair relation

Pair relation

Pair relation

Pair relation

• Symbols: PIMC data for $r_0 = 0.06a_{ho}$

Non monotonic at low T for (2,1) system.

- Symbols: PIMC data for $r_0 = 0.06a_{ho}$
- Solid lines: B-spline & CG for the same range

Non monotonic at low T for (2,1) system.

Range of interaction effect is small.

- Symbols: PIMC data for $r_0 = 0.06a_{ho}$
- Solid lines: B-spline & CG for the same range
- Dotted lines: zerorange model

Non monotonic at low T for (2,1) system.

Range of interaction effect is small.

- Symbols: PIMC data for $r_0 = 0.06a_{ho}$
- Solid lines: B-spline & CG for the same range
- Dotted lines: zerorange model
- High T cluster

 expansion C_{2,1} ≈ 2C_{1,1}
 (canonical ensemble
 analog of virial
 expansion)

• Symbols: PIMC data for $r_0/a_{ho} = 0.06$

- Symbols: PIMC data for $r_0/a_{ho} = 0.06$
- Solid lines: CG using Gaussian potential

- Symbols: PIMC data for $r_0/a_{ho} = 0.06, 0.08$
- Solid lines: CG using Gaussian potential

- Symbols: PIMC data for $r_0/a_{ho} = 0.06, 0.08, 0.1$
- Solid lines: CG using Gaussian potential

- Symbols: PIMC data for $r_0/a_{ho} = 0.06, 0.08, 0.1$
- Solid lines: CG using Gaussian potential
- High T cluster expansion $C_{3,1} \approx 3C_{1,1}, C_{2,2} \approx 4C_{1,1}$

- Symbols: PIMC data for $r_0/a_{ho} = 0.06, 0.08, 0.1$
- Solid lines: CG using Gaussian potential
- High T cluster expansion $C_{3,1} \approx 3C_{1,1}, C_{2,2} \approx 4C_{1,1}$
- Higher order cluster expansion:

$$C_{3,1} \approx 3C_{1,1} + 3(C_{2,1} - 2C_{1,1}) + C_{2,2} \approx$$

$$4C_{1,1} + 4(C_{2,1} - 2C_{1,1}).$$

Summary: Two-Component Fermi Gas

- Fermi sign problem beaten (small N).
- Accurate results for few-body systems.
- Low T:
 - Non-monotonic behavior for spinimbalanced system.
- High T:
 - Cluster expansion for canonical ensemble.

So far, fermions have been discussed. What about bosons?

Three identical Bosons with zero range interaction at unitarity

- Analytically solvable.
 - Partition function can be obtained from sum over states.
 - Energy can be determined as a function of temperature.

Three identical Bosons with zero range interaction at unitarity

- Analytically solvable.
 - Partition function can be obtained from sum over states.
 - Energy can be determined as a function of temperature.

Three identical Bosons with zero range interaction at unitarity

- Analytically solvable.
 - Partition function can be obtained from sum over states.
 - Energy can be determined as a function of temperature.

Trimer state for zero-range model

Trimer energy is significantly larger than harmonic trap energy:

 $E_{trimer}/E_{ho} \approx 11$ For Cs, this corresponds to $\omega \approx 2\pi * 13$ kHz (large frequency).

Trimer state for Gaussian interaction

Trimer energy is significantly larger than harmonic trap energy:

 $E_{trimer}/E_{ho} \approx 11$ For Cs, this corresponds to $\omega \approx 2\pi * 13$ kHz (large frequency).

• Symbols: PIMC data for different ranges.

- Symbols: PIMC data for different ranges.
- Solid line: three non-interacting identical bosons.

- Symbols: PIMC data for different ranges.
- Solid line: three non-interacting identical bosons.
- Solid line: "frozen trimer" plus center of mass excitations.

- Symbols: PIMC data for different ranges.
- Solid line: three non-interacting identical bosons.
- Solid line: "frozen trimer" plus center of mass excitations.
- Dotted line: combined model.

N=3: PIMC energy as a function of T Phase transition like feature • Symbols: PIMC data for different 80 ranges. Solid line: three non-interacting $/ E_{ho}$ 40 identical bosons. Ē $z(\beta)e^{-\beta E_{trimer}} + z_{gas}(\beta)$ Solid line: "frozen $\mathbf{0}$ trimer" plus center of mass excitations. -40 8 10 2 6 **Dotted line:** $k_{_{\rm I\!P}}$ T / $E_{_{ m ho}}$ combined model. E_{trimer} determines the full curve

Heat capacity $C_{v} = \partial E / \partial T$ for N=3 200Heat capacity 100 resembles a E/E lambda shape. -100 (a) 100 C_v/k_B 10 (b) 0 5 10 k_B E

Heat capacity $C_{\nu} = \partial E / \partial T$ for N=3, 4

- Heat capacity
 resembles a
 lambda shape.
- For N=4, only energy of tetramer is needed.

Heat capacity $C_v = \partial E / \partial T$ for N=3, 4, 5

- Heat capacity
 resembles a
 lambda shape.
- For N=4, only energy of tetramer is needed.

Heat capacity $C_v = \partial E / \partial T$ for N=3, 4, 5

- Heat capacity
 resembles a
 lambda shape.
- For N=4, only energy of tetramer is needed.

Transition temperature

 Feed

 "number of particles"
 and "droplet
 state energy"
 into the
 combined
 model.

• $T_{cr} \sim N$

Energy of droplet state tied to Efimov trimer

 $E_{gauss} \sim N^2$

Energy of droplet state tied to Efimov trimer

Large finite range effect? Lack of repulsive core?

 $E_{gauss} \sim N^2$

 $E_{[1]} \sim N$ ([1] von Stecher, JPB (2010); a universal prediction)

 $E_{[2]} \sim N^2([2])$ Gattobigio and Kievsky, arXiv (2013); another universal prediction)

Transition temperature

 $E_{gauss} \sim N^2$ (nonuniversal for large N)

 $E_{[1]} \sim N$ ([1] von Stecher, JPB (2010); a universal prediction)

For N=100, see Piatecki and Krauth, Nature Comm. (2014)

Summary of single component Bose gas

- Combined model describes phase transition like feature from droplet state at low T to gas like state at high T.
- Possible experimental realization for few particles in trap?
- A step towards understanding unitary Bose gas?
- We assumed $|E_{trimer}| \gg E_{ho}$, what would happen if $|E_{trimer}| \approx E_{ho}$?

Outlook

- For Bose gas:
 - Superfluid fraction (already calculated).
 - Larger N.
 - Include three-body force: go closer to universal Efimov regime (underway).
 - Condensate fraction (to be implemented).
- For Fermi gas:
 - Superfluidity (see arXiv:1312.4470).
 - Larger N?

Thank you for your attention!