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Motivation 
Finite systems at finite temperature 
• Quantum dots 

• Nuclei 

 

• Cold atom experiments: 
• Selim Jochim’s group: Effectively one-dimensional Fermi gas 

consisting  of 2, 3, 4,… fermions at low T. 

• Deterministic number of particles per optical lattice site. 

• Large Bose/Fermi gases: Loss measurements. 

 

• Treatment of few-body systems is “exact” and “easier” 
than that of many-body system. 



Systems considered 
• N particles with equal mass in a spherically symmetric 

trap. 

• N small; N fixed. 

 

 

 

• Finite temperature? 

 

• Effect of interactions? 

 

• Particle statistics? 
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• N particles with equal mass in a spherically symmetric 

trap. 

• N small; N fixed. 

 

 

 

• Finite temperature? 

 

• Effect of interactions? 

 

• Particle statistics? 



Temperature of finite-sized 
system 
• Canonical ensemble: 

• Fixed number of particles N 

• Fixed temperature T 

• Fixed  harmonic trapping 
frequency 𝜔 

 

• Partition function: 

 

• Temperature region of interest: 

    T< TF and T> TF 

Few-body 
system 

Heat  bath 
at fixed T 

(no particle 
exchange) 

Thermal 
contact: 
Thermal  
equilibrium 



Model interaction 
• Short-range potential with 

tunable scattering length: 

• Gaussian  potential 
(smeared out delta-function) 

• Range of interaction 
𝑟0 ≈ 0.06𝑎ℎ𝑜 

 

 

 

 

 

• Throughout this talk: 

    𝑎𝑠 = ∞ (at unitarity) 
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“Low T” 

𝑟 

𝑉 

𝑉𝐺𝑎𝑢𝑠𝑠 = −𝑉 𝑒−𝑟2/(2𝑟0
2) 

Region of interest 



Statistics 
           Fermions                                   Bosons 

 

 

 

 

 

 

𝑎𝑠 𝑎𝑠 𝑎𝑠 

𝑎𝑠 

𝑎𝑠 

p-wave 

Fully determined by 𝑎𝑠. 
𝑎ℎ𝑜 is the only length 
scale. 

Determined by 𝑎𝑠 and three-
body parameter 𝜅∗. 
Length scales: 𝑎ℎ𝑜, 1/𝜅∗. 
 
Here: finite-range of two-
body potential serves as a 
regulator and determines 𝜅∗. 

Here: We do not 
consider spin flips. 
Denoted as (2, 1) 
system. 
 



How to treat finite N system at 
finite T? 
• Use numerical technique: Path integral Monte Carlo (can 

treat bosons and fermions (?); for bosons, any N). 

• All thermodynamic properties can be calculated from 

   the density matrix: Inverse  

temperature: 𝛽 =
1

𝑘𝐵𝑇
 

Project to 
position basis: 

Partition function: 

Observables: 



“Hard”: Needs to 
be done M times 

How to get the density matrix? 

“Trick”: 𝑥0 𝑒−𝛽𝐻 𝑥0 → 

𝑥0 𝑒−
𝛽
𝑀𝐻 𝑥1 … 𝑥𝑀−1 𝑒−

𝛽
𝑀𝐻 𝑥0  

 

𝛽 =
1

𝑘𝐵𝑇
 

𝛽

𝑀
=

1

𝑀 𝑘𝐵𝑇
 

“Hard”: 
 Low T 

“Easy”: 
High T 

“Easy”: 
High T 

𝑥0 

𝑥0 

𝑥1 

Approximate 
form for 
each link. 
Error  
huge. 
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“Hard”: Needs to 
be done M times 

How to get the density matrix? 
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 Low T 
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medium. 
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“Hard”: Needs to 
be done M times 

How to get the density matrix? 
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“Hard”: Needs to 
be done M times 

How to get the density matrix? 

“Trick”: 𝑥0 𝑒−𝛽𝐻 𝑥0 → 
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Error  
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“Hard”: Needs to 
be done M times 

How to get the density matrix? 

“Trick”: 𝑥0 𝑒−𝛽𝐻 𝑥0 → 

𝑥0 𝑒−
𝛽
𝑀𝐻 𝑥1 … 𝑥𝑀−1 𝑒−

𝛽
𝑀𝐻 𝑥0  

 

𝛽 =
1

𝑘𝐵𝑇
 

𝛽

𝑀
=

1

𝑀 𝑘𝐵𝑇
 

“Hard”: 
 Low T 

“Easy”: 
High T 

“Easy”: 
High T 

𝑥𝑀/2 

Repeat 
1000 
times 

𝑥0 

𝑥0 

M=32 



Particle symmetry 

Example: For two particles  

𝜌  -> 𝜌  

𝑥1 

𝑥1 𝑥1 

𝑥1 

𝑥2 

𝑥2 

𝑥2 

𝑥2 

+: bosons 
−: fermions 



Monte Carlo and the Fermi sign 
problem 
• No exchanges at high T. 

• Exchanges give positive and negative contributions and 
add up to a small number. Signal to noise ratio decreases. 

 

 Signal 
Noise 

S ~ 

(2,1) 

(3,1) 
(4,1) (5,1) 

~𝑇𝐹 

Small S: 
Poor signal for 
fermions. 
Bose/Fermi statistics 
important. 



 

Why contact?  S. Tan, Ann. Phys. (2008) 

• Proven to be fundamental (valid at zero and finite T). 

• T dependence unknown for trapped few-body system (N>2). 

• Relates physically distinct observables: 

• Short-range behavior of pair distribution function: 

 

 

• Slope of eigen energy/free energy: 

 

• Tail of momentum distribution, tail of radio-frequency 
spectrum, etc… 

Contact of two-component 
Fermi gas 



 

      Pair relation                                   Adiabatic relation 

 

 

Contact of (3,1) & (2,1) Fermi 
gases: 𝑟0 = 0.06 𝑎ℎ𝑜 

𝑘𝐵𝑇 = 0 

𝑘𝐵𝑇 = 2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 1.2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 0.6𝐸ℎ𝑜 

𝑟0 = 0.06𝑎ℎ𝑜 

finite T: PIMC 
Correlated 
Gaussian 
for zero T. 
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Contact of (3,1) & (2,1) Fermi 
gases: 𝑟0 = 0.06 𝑎ℎ𝑜 

𝑘𝐵𝑇 = 0 

𝑘𝐵𝑇 = 2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 1.2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 1.2𝐸ℎ𝑜 

𝑟0 = 0.06𝑎ℎ𝑜 

finite T:PIMC 
Correlated 
Gaussian 
for zero T. 

Focus on the short 
range part of pair 
distribution function 
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Contact of (3,1) & (2,1) Fermi 
gases: 𝑟0 = 0.06 𝑎ℎ𝑜 

𝑘𝐵𝑇 = 0 

𝑘𝐵𝑇 = 2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 1.2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 0.6𝐸ℎ𝑜 

𝑟0 = 0.06𝑎ℎ𝑜 



 

      Pair relation                                   Adiabatic relation 

 

 

Contact of (3,1) & (2,1) Fermi 
gases: 𝑟0 = 0.06 𝑎ℎ𝑜 

𝑘𝐵𝑇 = 0 

𝑘𝐵𝑇 = 2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 1.2𝐸ℎ𝑜 

𝑘𝐵𝑇 = 0.6𝐸ℎ𝑜 

𝑟0 = 0.06𝑎ℎ𝑜 



Contact of (1,1) & (2,1) systems 

• Symbols: PIMC data for 
𝑟0 = 0.06𝑎ℎ𝑜 



Contact of (1,1) & (2,1) systems 

• Symbols: PIMC data for 
𝑟0 = 0.06𝑎ℎ𝑜 

• Solid lines: B-spline & 
CG for the same range 

Non monotonic at low T for (2,1) 
system. 
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𝑟0 = 0.06𝑎ℎ𝑜 

• Solid lines: B-spline & 
CG for the same range 

• Dotted lines: zero-
range model 

Non monotonic at low T for (2,1) 
system. 
Range of interaction effect is small. 



Contact of (1,1) & (2,1) systems 

• Symbols: PIMC data for 
𝑟0 = 0.06𝑎ℎ𝑜 

• Solid lines: B-spline & 
CG for the same range 

• Dotted lines: zero-
range model 

• High T cluster 
expansion 𝐶2,1 ≈ 2𝐶1,1     

    (canonical ensemble 

    analog of virial 

    expansion) 

Non monotonic at low T for (2,1) 
system. 
Range of interaction effect is small. 



Contact of (3,1) & (2,2) systems 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06 



Contact of (3,1) & (2,2) systems 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06 

• Solid lines: CG using 
Gaussian potential 

 

Spin-imbalanced gas has 
non-monotonic behavior. 
Balanced  gas has monotonic 
behavior. 



Contact of (3,1) & (2,2) systems 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06, 0.08 

• Solid lines: CG using 
Gaussian potential 

 

Spin-imbalanced gas has 
non-monotonic behavior. 
Balanced  gas has monotonic 
behavior. 



Contact of (3,1) & (2,2) systems 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06, 0.08, 0.1 

• Solid lines: CG using 
Gaussian potential 

Spin-imbalanced gas has 
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behavior. 



Contact of (3,1) & (2,2) systems 
Spin-imbalanced gas has 
non-monotonic behavior. 
Balanced  gas has monotonic 
behavior. 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06, 0.08, 0.1 

• Solid lines: CG using 
Gaussian potential 

• High T cluster expansion 
𝐶3,1 ≈ 3𝐶1,1, 𝐶2,2 ≈ 4𝐶1,1 



Contact of (3,1) & (2,2) systems 

• Symbols: PIMC data for 
𝑟0/𝑎ℎ𝑜= 0.06, 0.08, 0.1 

• Solid lines: CG using 
Gaussian potential 

• High T cluster expansion 
𝐶3,1 ≈ 3𝐶1,1, 𝐶2,2 ≈ 4𝐶1,1 

• Higher order cluster 
expansion:                
   𝐶3,1 ≈ 3𝐶1,1 +

3 𝐶2,1 − 2𝐶1,1    

   𝐶2,2≈

4𝐶1,1 + 4 𝐶2,1 − 2𝐶1,1 . 

 

Spin-imbalanced gas has 
non-monotonic behavior. 
Balanced  gas has monotonic 
behavior. 



Summary: Two-Component 
Fermi Gas 
• Fermi sign problem 

beaten (small N). 

• Accurate results for 
few-body systems. 

• Low T: 

• Non-monotonic 
behavior  for spin- 
imbalanced system. 

• High T: 

• Cluster expansion for 
canonical ensemble. 

So far, fermions have 
been discussed. 
What about bosons? 

(1,1)  

(4,1) 



Three identical Bosons with zero 
range interaction at unitarity 
• Analytically solvable. 

• Partition function can be obtained from sum over states. 

• Energy can be determined as a function of temperature. 

0 

𝐸𝑡𝑟𝑖𝑚𝑒𝑟 

Energy gap 

Energy  
levels 
spaced by 𝐸ℎ𝑜 

𝜃𝑏 is “three-body parameter”  (related to 𝜅∗) 



Three identical Bosons with zero 
range interaction at unitarity 
• Analytically solvable. 

• Partition function can be obtained from sum over states. 
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Three identical Bosons with zero 
range interaction at unitarity 
• Analytically solvable. 

• Partition function can be obtained from sum over states. 

• Energy can be determined as a function of temperature. 

0 

𝐸𝑡𝑟𝑖𝑚𝑒𝑟 

Energy gap 

Energy  
levels 
spaced by 𝐸ℎ𝑜 

𝑟0 = 0.06𝑎ℎ𝑜 

𝑟0 = 0.08𝑎ℎ𝑜 

𝑟0 = 0.1𝑎ℎ𝑜 

𝜃𝑏 is “three-body parameter”  (related to 𝜅∗) 



Trimer state for zero-range 
model 

Trimer energy is significantly  larger than harmonic trap energy:  

𝐸𝑡𝑟𝑖𝑚𝑒𝑟/𝐸ℎ𝑜 ≈ 11 For Cs, this corresponds to  
 𝜔 ≈ 2𝜋 ∗13kHz (large frequency). 

𝑅𝑡𝑟𝑖𝑚𝑒𝑟 𝑅 = 𝑎ℎ𝑜 22.7𝑅𝑡𝑟𝑖𝑚𝑒𝑟 

To fit two trimers 
into trap, trapping 
frequency has to be 
reduced by 515, 
i.e., 𝜔 ≈ 2𝜋 ∗25Hz 

Two competing 
length scales 



Trimer state for Gaussian 
interaction 

Trimer energy is significantly  larger than harmonic trap energy:  

𝐸𝑡𝑟𝑖𝑚𝑒𝑟/𝐸ℎ𝑜 ≈ 11 For Cs, this corresponds to  
 𝜔 ≈ 2𝜋 ∗13kHz (large frequency). 

𝑅𝑡𝑟𝑖𝑚𝑒𝑟 𝑅 = 𝑎ℎ𝑜 

In free space, the energy 
ratios for series of 

trimers are 
𝐸 0

𝐸 1 ≈23.0 

and 
𝐸 1

𝐸 2 ≈ 22.7. 

Not fully universal but 
“Efimov-like”. 

𝑅𝑡𝑟𝑖𝑚𝑒𝑟 𝑅 = 𝑎ℎ𝑜 
Two competing 

length scales 



N=3: PIMC energy as a function 
of T 

• Symbols: PIMC 
data for different 
ranges. 



N=3: PIMC energy as a function 
of T 

• Symbols: PIMC 
data for different 
ranges. 

• Solid line: three 
non-interacting 
identical bosons. 

𝑧𝑔𝑎𝑠(𝛽) 



N=3: PIMC energy as a function 
of T 

• Symbols: PIMC 
data for different 
ranges. 

• Solid line: three 
non-interacting 
identical bosons. 

• Solid line: “frozen 
trimer” plus 
center of mass 
excitations. 

𝑧𝑔𝑎𝑠(𝛽) 

𝑧 𝛽 𝑒−𝛽𝐸𝑡𝑟𝑖𝑚𝑒𝑟  



N=3: PIMC energy as a function 
of T 

• Symbols: PIMC 
data for different 
ranges. 

• Solid line: three 
non-interacting 
identical bosons. 

• Solid line: “frozen 
trimer” plus 
center of mass 
excitations. 

• Dotted line: 
combined model. 

 

𝑧 𝛽 𝑒−𝛽𝐸𝑡𝑟𝑖𝑚𝑒𝑟

+ 𝑧𝑔𝑎𝑠(𝛽) 



N=3: PIMC energy as a function 
of T 

• Symbols: PIMC 
data for different 
ranges. 

• Solid line: three 
non-interacting 
identical bosons. 

• Solid line: “frozen 
trimer” plus 
center of mass 
excitations. 

• Dotted line: 
combined model. 

 

𝑧 𝛽 𝑒−𝛽𝐸𝑡𝑟𝑖𝑚𝑒𝑟

+ 𝑧𝑔𝑎𝑠(𝛽) 

Phase transition like feature 

𝐸𝑡𝑟𝑖𝑚𝑒𝑟  determines the full curve 



Heat capacity 𝐶𝑣 = 𝜕𝐸/𝜕𝑇 for N=3 

• Heat capacity 
resembles a 
lambda shape. 

 



Heat capacity 𝐶𝑣 = 𝜕𝐸/𝜕𝑇 for N=3, 4 

• Heat capacity 
resembles a 
lambda shape. 
 

• For N=4, only 
energy of 
tetramer is 
needed. 



Heat capacity 𝐶𝑣 = 𝜕𝐸/𝜕𝑇 for N=3, 4, 5 

• Heat capacity 
resembles a 
lambda shape. 
 

• For N=4, only 
energy of 
tetramer is 
needed. 

 
• Same for N=5 

 
 



Heat capacity 𝐶𝑣 = 𝜕𝐸/𝜕𝑇 for N=3, 4, 5 

𝑇𝑐𝑟 

• Heat capacity 
resembles a 
lambda shape. 
 

• For N=4, only 
energy of 
tetramer is 
needed. 

 
• Same for N=5 

 
 



Transition temperature 

• Feed 
“number of 
particles” 
and “droplet 
state energy” 
into the 
combined 
model. 

• 𝑇𝑐𝑟~𝑁 

Critically depends on 𝐸𝑑𝑟𝑜𝑝𝑙𝑒𝑡 



Energy of droplet state tied to 
Efimov trimer  

𝐸𝑔𝑎𝑢𝑠𝑠~ 𝑁2 

 

 

 



Energy of droplet state tied to 
Efimov trimer  

𝐸𝑔𝑎𝑢𝑠𝑠~ 𝑁2 

 

𝐸[1]~𝑁 ([1] von 

Stecher, JPB 
(2010); a universal 
prediction) 

 

 

𝐸[2]~𝑁2([2] 

Gattobigio and 
Kievsky, arXiv 
(2013);  another 
universal 
prediction) 

 

 

Large finite range effect? 
Lack of repulsive core? 



Transition temperature 

𝐸𝑔𝑎𝑢𝑠𝑠~ 𝑁2 (non-

universal for large 
N) 

 

𝐸[1]~𝑁 ([1] von 

Stecher, JPB 
(2010); a universal 
prediction) 

 

For N=100, see 
Piatecki and 
Krauth, Nature 
Comm. (2014) 



• Combined model describes phase transition like feature 

from droplet state at low T to gas like state at high T. 

 

• Possible experimental realization for few particles in trap? 

 

• A step towards understanding unitary Bose gas? 

 

• We assumed 𝐸𝑡𝑟𝑖𝑚𝑒𝑟 ≫ 𝐸ℎ𝑜, what would happen if 
𝐸𝑡𝑟𝑖𝑚𝑒𝑟 ≈ 𝐸ℎ𝑜? 

 

 

Summary of single component 
Bose gas 



Outlook 
• For Bose gas: 

• Superfluid fraction (already calculated). 

• Larger N. 

• Include three-body force: go closer to universal Efimov 
regime (underway). 

• Condensate fraction (to be implemented). 

• For Fermi gas: 

• Superfluidity (see arXiv:1312.4470). 

• Larger N? 

Thank you for your attention! 


