INT Program INT-14-1 Universality in few-body systems: Theoretical challenges and new directions April 4, 2014

Borromean States of Three Identical Particles in Two Spatial Dimensions

Artem G. Volosniev

Aarhus University, Denmark

Collaborators: Dmitri Fedorov, Aksel Jensen and Nikolaj Zinner (Aarhus University) Eur. Phys. J. D 67 95 (2013) (arXiv:1211.3923)

arXiv:1312.6535

1 System

- 2 Motivation and Aims
- 3 Preliminaries
- **4** Three bosons
- **5** Three spinless fermions

6 Summary

7 Outlook

Hamiltonian

$$
H = -\frac{\hbar^2}{2m} \sum_{i=1}^{3} \frac{\partial^2}{\partial r_i^2} + g \sum_{i < j} V(|r_i - r_j|), \qquad r_i = (r_{xi}, r_{yi})
$$
\n
$$
V_{(1r1-r3)}
$$
\n
$$
V_{(1r1-r3)}
$$
\n
$$
V_{(1r2-r3)}
$$

$$
\quad \text{bosons: } \Psi(r_i,r_j) = \Psi(r_j,r_i)
$$

$$
\blacksquare \text{ spinless fermions: } \Psi(\mathbf{r_i}, \mathbf{r_j}) = -\Psi(\mathbf{r_j}, \mathbf{r_i})
$$

- $V(r)$ is a bounded function of 'short' range $\int V r^n dr < \infty, \forall n$).
- $g > 0$ can be tuned. If $g = g_2$ no two-body bound states.

Our basic idea is to consider three-body systems at $g = g_2$. If the three body system at $g = g_2$ has a bound state it is called Borromean.

Motivation from 3D

 $a \rightarrow \infty$ infinitely many bound states. Tune g to eliminate two-body bound states - get infinetely many three-body Borromean states.

artem@phys.au.dk Aarhus University, Denmark

Motivation and Aims

Theoretical understanding

- occurence conditions for Borromean states in 2D
- mechanism for occurence of Borromean states, also in 1D, 2D, 3D
- understanding of Super Efimov states using real space

Motivation and Aims

Numerical analysis

- produce a set of numerical examples
- establish reference points for future numerical computations
- test different numerical techniques

Motivation ans Aims

Talk by Sergei Moroz on Tuesday 1st of April Experimental relevance

from E. Haller et al., Science 325, 1224

- few-body recombination loss
- \blacksquare matter of trimers, that might be stabilized for spinless fermions

What should be taken into account

- quasi 2D
- few-body calculations for loss
- **many-body physics**

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

Two Dimensions (Two bosons)

Consider dimensionless equation for two body bound states in attractive square well potential

$$
-\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r}\Psi(r) + gV(r)\Psi(r) = -B\Psi(r), B > 0
$$

$$
V = \begin{cases} -1; & 0 < r < 1 \\ 0; & r > 1 \end{cases} \Psi = \begin{cases} CJ_0(\sqrt{g+Br}); & 0 < r < 1 \\ C_1K_0(\sqrt{Br}); & r > 1 \end{cases}
$$
Condition for binding energy

$$
\sqrt{g+B}\frac{J_1(\sqrt{g+B})}{J_0(\sqrt{g+B})}=\sqrt{B}\frac{K_1(\sqrt{B})}{K_0(\sqrt{B})}
$$

For $g \to 0$

$$
\frac{\mathsf{g}}{2} \simeq \frac{1}{-\ln\sqrt{B}} \to B \simeq \exp(-4/\mathsf{g})
$$

If $B \sim 1/(a_{2D})^2 \rightarrow a_{2D} \sim \exp(2/g)$

Two Dimensions (no Efimov effect for bosons)

For a purely attractive potential: $g_2 = 0$. This observation leads to absence of three-body states at g_2 .

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

This means that one would have universal three-body states that vanish together with two-body bound states

- L. W. Bruch, J. A. Tjon PRA 19 425 (1979)
- S. K. Adhikari et al. PRA 37, 3666 (1988)
- E. Nielsen, D. V. Fedorov, and A. S. Jensen PRA 56 3287 (1997)
- H.-W. Hammer and D.T. Son PRL 93 250408 (2004)
- D. Blume PRB 72 094510 (2005)
- O. I. Kartavtsev and A. V. Malykh PRA 74 042506 (2006)
- F. F. Bellotti et al. J. Phys. B: At. Mol. Opt. Phys. 44 205302 (2011)

...

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

Universal properties of three bosons in 2D

For $E_2 \rightarrow -0$ ($a_{2D} \rightarrow \infty$) - two universal states with $E_3/E_2 \simeq 16.52, 1.27$

L. W. Bruch, J. A. Tjon PRA 19 425 (1979)

artem@phys.au.dk Aarhus University, Denmark

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

Borromean bosonic systems in 2D

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0) ∩∩∩∩●∩∩∩∩∩

Occurence of Borromean Systems

We consider following potential

$$
gV(r) = g \frac{m\omega^2}{2} \left(r^2 - l \frac{\hbar}{m\omega}\right) f(r)
$$

for small $r: f(r) = 1$; for large r: $f(r) \sim exp(-r)$

Approximating potential as an oscillator we get $g_2 = 8/l^2$ $E_3(g_2) \simeq -2.20\hbar\omega/l$ $g_3=16/(3\mathit{l}^2)$ – three-body body threshold $g_3/g_2 = 2/3$ (the smallest possible: J.-M. Richard and S. Fleck, PRL 73 1464, (1994)) Borromean window $g_3 < g < g_2$

Fermionic systems in 2D

Two spinless fermions

$$
-\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial}{\partial r}\Psi+\frac{1}{r^2}\Psi(r)+gV(r)\Psi(r)=E_2\Psi(r)
$$

• For
$$
E_2 = 0
$$
: $\Psi_0(r \to \infty) \simeq (r - a_p^2/r)$, resonant state if $a_p \to \infty$.

To bind two spinless fermions potential should be of finite depth.

Three particles at $a_p \rightarrow \infty$ – Super Efimov states with angular momentum ± 1 and energy $E_3^{(n)} \propto \exp(-2e^{3\pi n/4+\theta})$

Talk by Sergej Moroz on Tuesday 1st of April

Yusuke Nishida, Sergej Moroz, Dam Thanh Son Phys. Rev. Lett. 110, 235301 (2013)

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

Hyperspherical Formalism (Coordinate transformation)

$$
H=-\frac{\hbar^2}{2m}\sum_{i=1}^3\frac{\partial^2}{\partial \mathbf{r_i}^2}+g\sum_{i
$$

$$
(r_{x1}, r_{y1}, r_{x2}, r_{y2}, r_{x3}, r_{y3}) \rightarrow (R_x, R_y, X_x, X_y, Y_x, Y_y)
$$

$$
\mathbf{X} = (\mathbf{r}_1 - \mathbf{r}_2)/\sqrt{2}, \mathbf{Y} = \sqrt{1/6}(\mathbf{r}_1 + \mathbf{r}_2 - 2\mathbf{r}_3)
$$

$$
\mathbf{R} = \sqrt{1/3}(\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3)
$$

$$
(R_x, R_y, X_x, X_y, Y_x, Y_y) \rightarrow (R_x, R_y, \rho, \alpha, \phi_X, \phi_Y)
$$

$$
\rho = \sqrt{X_x^2 + X_y^2 + Y_x^2 + Y_y^2}
$$

$$
\rho \sin(\alpha) = \sqrt{X_x^2 + X_y^2}, \rho \cos(\alpha) = \sqrt{Y_x^2 + Y_y^2}
$$

Hyperspherical Formalism

$$
H = T_R - \frac{\hbar^2}{2m} \left(\frac{1}{\rho^{3/2}} \frac{\partial^2}{\partial \rho^2} \rho^{3/2} - \frac{3}{4\rho^2} \right) + \frac{\hbar^2}{2m\rho^2} \Lambda^2 + \sum V
$$

where

$$
\Lambda^2=-\frac{\partial^2}{\partial \alpha^2}-2\cot(2\alpha)\frac{\partial}{\partial \alpha}-\frac{1}{\sin^2(\alpha)}\frac{\partial^2}{\partial \phi_{\mathsf{X}}^2}-\frac{1}{\cos^2(\alpha)}\frac{\partial^2}{\partial \phi_{\mathsf{Y}}^2}
$$

first we solve part with angles for given ρ :

$$
(\Lambda^2 - \lambda(\rho))\Psi = \left(\sum \frac{2m\rho^2}{\hbar^2}V\right)\Psi(\rho;\alpha,\phi_X,\phi_Y)
$$

using Faddeev decomposition

$$
(\Lambda^2 - \lambda(\rho))\psi = \frac{2m\rho^2}{\hbar^2}V(\sqrt{2}\sin(\alpha)\rho)\Psi(\rho;\alpha,\phi_X,\phi_Y)
$$

artem@phys.au.dk Aarhus University, Denmark Aarhus University, Denmark Aarhus University, Denmark

Hyperspherical Formalism

After obtaining eigenstates for angular part we decompose the total wave function in this basis set

$$
\Phi(\rho,\alpha,\phi_X,\phi_Y)=\frac{1}{\rho^{3/2}}\sum_{\{\lambda\}}f_{\lambda_n}(\rho)\Psi_n(\rho;\alpha,\phi_X,\phi_Y)
$$

where f_{λ_n} should solve the set of equations

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{\lambda_n + 3/4}{\rho^2} - \frac{2mE}{\hbar^2}\right) f_{\lambda_n} = \frac{2m}{\hbar^2} \sum_{n'} \left(2P_{nn'} \frac{\partial}{\partial \rho} f_{\lambda_{n'}} + Q_{nn'} f_{\lambda_{n'}}\right)
$$

$$
P_{nn'} = \langle \Psi_n | \frac{\partial}{\partial \rho} | \Psi_{n'} \rangle
$$

$$
Q_{nn'} = \langle \Psi_n | \frac{\partial^2}{\partial \rho^2} | \Psi_{n'} \rangle
$$

artem@phys.au.dk Aarhus University, Denmark Aarhus University, Denmark Aarhus University, Denmark

Hyperspherical Formalism

Hyperspherical formalism is particulaly useful to investigate universality that arises from long-distance behavior of λ . For example in 3D (D. Fedorov and A. Jensen PRL ⁷¹ ⁴¹⁰³):

$$
\left(-\frac{\partial^2}{\partial\rho^2}+\frac{\lambda_n+15/4}{\rho^2}-\frac{2mE}{\hbar^2}\right)f_{\lambda_n}=\frac{2m}{\hbar^2}\sum_{n'}\left(2P_{nn'}\frac{\partial}{\partial\rho}f_{\lambda_{n'}}+Q_{nn'}f_{\lambda_{n'}}\right)
$$

For $a\rightarrow\infty$ Q, P decay faster than $1/r^2$ and using only the lowest λ we recover Efimov scenario

$$
\left(-\frac{\partial^2}{\partial\rho^2}+\frac{-1.01-1/4}{\rho^2}-\frac{2mE}{\hbar^2}\right)f_{\lambda_0}=0
$$

In 2D lowest adiabatic curve is larger than $-1/(4\rho^2)$ at two-body threshold $($ E. Nielsen, D. V. Fedorov, and A. S. Jensen PRA 56 3287 (1997)) - no Efimov effect.

artem@phys.au.dk Aarhus University, Denmark Aarhus University, Denmark Aarhus University, Denmark

Restrictions on potentials for Borromean binding

- Two-body problem with $\int V(r)r{\rm d}r\leq 0$ always has a bound state
- Lowest adiabatic potential in hypershperical formalism has $3/(4\rho^2)$ repulsive core
- Potentials should have positive net volume, $\int V(r)r dr > 0$ **The State**
- Potentials should have finite depth, $g_2 \int V(r) r \mathrm{d}r \not\rightarrow 0$

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

Numerical Search for Borromean states

Correlated Gaussians approach

$$
\mathbf{E}[f] = \frac{\langle f|H|f\rangle}{\langle f|f\rangle}
$$

\n
$$
\mathbf{f} = \sum c_i \exp\left[-a^2(\mathbf{X} - \mathbf{S}_x)^2 - 2c(\mathbf{X} - \mathbf{S}_x)(\mathbf{Y} - \mathbf{S}_y) - b^2(\mathbf{Y} - \mathbf{S}_y)^2\right]
$$

The potential is the sum of three Gaussians

$$
\frac{mr_0^2}{\hbar^2}V(r) = b_1 \exp(-r^2/r_0^2) + b_2 \exp(-a_1r^2/r_0^2) + b_3 \exp(-a_2r^2/r_0^2)
$$

tuned to resonant two-body state.

Borromean Binding (results)

Numerical search: no Borromean states for potentials without barrier*

Possible (handwaving) explanation: two-body state is bound with smaller overall depth of the attractive part, which leads to small attractive part in the lowest adiabatic potential for three particles.

*Also for known numerical calculations in the literature

Properties of Borromean states

Similar to 3D

deep potentials with an outer barrier and without a core - similar to harmonic oscillator, described above

- 1 large Borromean window $(g_3/g_2 \sim 2/3)$
- 2 binding energy and extend at g_2 is of natural order
- potentials with a large core and a barrier
	-
	- 1 small Borromean window $(g_3/g_2 \rightarrow 1)$
	- 2 small binding energy and large extend at g_2

The three-body r.m.s radius diverges at g_3 .

Unanswered Questions

- Can we have Borromean states in a potential without a barrier?
- \blacksquare Is it possible to construct a theory with one additional parameter produced by overall features of the potential that will tell if there is a three-body bound state at g_2 ?

Super Efimov States (Hyperspherical approach)

$$
(\Lambda^2 - \lambda(\rho))\psi = \frac{2m\rho^2}{\hbar^2} V(\sqrt{2}\sin(\alpha)\rho)\Psi(\rho; \alpha, \phi_X, \phi_Y)
$$

$$
\Lambda^2 = -\frac{\partial^2}{\partial \alpha^2} - 2\cot(2\alpha)\frac{\partial}{\partial \alpha} - \frac{1}{\sin^2(\alpha)}\frac{\partial^2}{\partial \phi_X^2} - \frac{1}{\cos^2(\alpha)}\frac{\partial^2}{\partial \phi_Y^2}
$$

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

First notice that the Hamiltonian commutes with the operator of total angular momentum $\hat{L}=i\frac{\partial}{\partial \phi}$ $\frac{\partial}{\partial \phi_X} + i \frac{\partial}{\partial \phi}$ $\frac{\partial}{\partial \phi_Y}$ with eigenstates $exp(-iM(\phi_X + \phi_Y))$, $M = ..., -1, 0, 1, ...$

$$
\psi_M(\rho;\alpha,\phi_X,\phi_Y)=\sum_{l=-\infty}^{\infty}e^{-il\phi_X}e^{-i(M-l)\phi_Y}\phi_{Ml}(\rho;\alpha)
$$

for spinless fermions l - odd. for Super Efimov states $M = \pm 1$

[Borromean states of three identical particles in two dimensions](#page-0-0)

Super Efimov States (Hyperspherical approach)

We are interested in large distance behavior of $\lambda(\rho)$. For the lowest potential we need the smallest $l = \pm 1$.

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0)

$$
\begin{split}\n&\bigg(-\frac{\partial^2}{\partial \alpha^2} - 2 \cot(2\alpha) \frac{\partial}{\partial \alpha} + \frac{1}{\sin^2 \alpha} + \frac{2gm\rho^2}{\hbar^2} V - \lambda^1\bigg) \phi_{11} \\
&= -\frac{2gm\rho^2}{\hbar^2} V(\sqrt{2}\rho \sin(\alpha))(R_{111} + R_{11-1}), \\
&\bigg(-\frac{\partial^2}{\partial \alpha^2} - 2 \cot(2\alpha) \frac{\partial}{\partial \alpha} + \frac{1}{\sin^2 \alpha} + \frac{4}{\cos^2 \alpha} + \frac{2gm\rho^2}{\hbar^2} V - \lambda^1\bigg) \phi_{1-1} \\
&= -\frac{2gm\rho^2}{\hbar^2} V(\sqrt{2}\rho \sin(\alpha))(R_{1-11} + R_{1-1-1})\ .\n\end{split}
$$

Chao Gao and Zhenhua Yu arxiv1401.0965

artem@phys.au.dk Aarhus University, Denmark

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0) Super Efimov States (lowest adiabatic potential at large

distance)

$$
\lambda_0^1 = -1 - \tfrac{Y}{\ln(\rho/r_0)} - \tfrac{16}{9\ln^2(\rho/r_0)} + o\left(\tfrac{1}{\ln^2(\rho/r_0)}\right), \, Y > 0
$$

$$
\left(-\frac{\partial^2}{\partial \rho^2} + \frac{\lambda_n^1 + 3/4}{\rho^2} - \frac{2mE}{\hbar^2}\right) f_{\lambda_n^1} = \frac{2m}{\hbar^2} \sum_{n'} \left(2P_{nn'} \frac{\partial}{\partial \rho} f_{\lambda_{n'}^1} + Q_{nn'} f_{\lambda_{n'}^1}\right)
$$

first we neglect couplings, as in 3D

$$
\left(-\frac{\partial^2}{\partial \rho^2} - \frac{1}{4\rho^2} - \frac{Y}{\rho^2 \ln(\rho/r_0)} - \frac{16}{9\rho^2 \ln^2(\rho/r_0)} - \frac{2mE}{\hbar^2}\right) f_{\lambda_0^1} = 0
$$

For
$$
E = 0
$$
 and neglecting terms $\sim 1/(\ln^2(\rho/r_0))$ the solution is $f_{\lambda_0^1} = \sqrt{\rho \ln(\rho/r_0)} \left[AJ_1(2\sqrt{Y \ln(\rho/r_0)}) + AY_1(2\sqrt{Y \ln(\rho/r_0)}) \right],$ $E_n \sim \exp(-(\pi n)^2/(2Y)),$

[Title](#page-0-0) [Outline](#page-1-0) [System](#page-2-0) [Motivation and Aims](#page-4-0) [Preliminaries](#page-8-0) [Three Bosons](#page-18-0) [Three fermions](#page-23-0) [Summary](#page-32-0) [Outlook](#page-34-0) <u>nnochnnoc</u>

Super Efimov States (couplings)

For previous slide to be valid Q, P should be small at large distance. However, $Q_{00} = -\frac{Y}{\rho^2 \ln \theta}$ $\frac{Y}{\rho^2 \ln(\rho/r_0)} + \frac{?}{\rho^2 \ln^2(\rho^2)}$ $\frac{r}{\rho^2 \ln^2(\rho/r_0)}$. **Prospective**

$$
\left(-\frac{\partial^2}{\partial\rho^2}-\frac{1}{4\rho^2}-\frac{s_0+1/4}{\rho^2\ln^2(\rho/r_0)}-\frac{2mE}{\hbar^2}\right)f_{\lambda_0^1}=0
$$

with $s_0 = 16/9 + ? - 1/4$. The equation has zero-energy solution File equation has zero-energy solution
 $f_{\lambda_0^1} = \sqrt{\rho \ln(\rho/r_0)} \cos(\sqrt{s} \ln(\ln(\rho/r_0)) + \delta)$ Conclusions

We recover Super Efimov if $? = 1/4$ and all other P, Q are small.

Other Angular Momenta

Previous slides considered $M = +1$.

Other angular momenta?

- **a** at $\rho \to \infty$ angular momenta with $M \neq \pm 1$ produce positive adiabatic potentials for $E_2 \rightarrow 0$: this leads to finite amount of bound states with angular momenta other than ± 1 .
- **states with** $|M| > 1$ **will generally have potential curves higher than** $M = 1$
- **for** $\rho \rightarrow 0$ the lowest adiabatic curve is $M = 0$.

Zero Angular Momentum, $M = 0$

Schematic plot of lowest adiabatic potentials $(M = \pm 1, M = 0)$

Let us take the oscillator potential considered before. We get that the deeply bound ground state has $M = 0$ at the two-body threshold. Again the largest Borromean window is reached: $g_3/g_2 = 2/3$.

artem@phys.au.dk Aarhus University, Denmark Aarhus University, Denmark Aarhus University, Denmark

Numerical findings

We again use variational approach with correlated Gaussians, using sums of Gaussians as potentials

$$
V_1(r) = -g \frac{\hbar^2}{2mb^2} \exp(-r^2/b^2)
$$

\n
$$
V_2(r) = -g \frac{\hbar^2}{2mb^2} (-\exp(-r^2/b^2) + 0.5 \exp(-0.5r^2/b^2))
$$

\n
$$
V_3(r) = -g \frac{\hbar^2}{2mb^2} (\exp(-r^2/b^2) - 0.8 \exp(-0.5r^2/b^2))
$$

Not the best choice

Numerical findings

Table : Ground and excited states have angular momentum 0 and ± 1 . Lengths and energies are in units of b and $\hbar^2/(mb^2)$, respectively.

Density distribution for the third particle, when two other particles are placed in the most favorable configuration (black dots).

Summary (Bosons in 2D)

- Borromean states can only occur for potentials with *substantial* attractive part and positive net volume.
- Numerical search did not yield Borromean states for potentials without barrier.
- For potentials with barrier properties of Borromean states are similar to 3D Borromean ground state.

Summary (Spinless fermions in 2D)

- Borromean states always exist at the two-body threshold (follows from the existence of the Super Efimov states).
- To establish the Super Efimov scenario in the hyperspherical formalism more work is needed.
- **The ground state can be with** $M = 0$ **.**

- **CCCUTED CONDUCED CONDUCED** Conductions for Borromean states for three bosons
- Super Efimov states in hyperspherical formalism. Is it possible to construct different scheme of dividing Hamiltonian that will produce $\sim \frac{1}{1 \ln^2(\rho/r_0)}$ as leading order.
- \blacksquare Investigate lowest state of three spinless fermions, is it always $M = 0$?
- ■ Quasi 2D