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Ingredients of Pionless Effective Field Theory

I For momenta p < mπ pions can be integrated out as degrees
of freedom and only nucleons and external currents are left.

I For any effective (field) theory one writes down all terms with
degrees of freedom that respect symmetries.

I Develop a power counting to organize terms by their relative
importance.

I Calculate respective observables up to a given order in the
power counting.
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Dibaryon Propagators

Lagrangian

The Lagrangian in EFT6π is

L = N̂†

(
i∂0 +

~∇2

2MN

)
N̂ − t̂†i

(
i∂0 +

~∇2

4MN
−∆

(3S1)
(−1) −∆

(3S1)
(0)

)
t̂i

− ŝ†a

(
i∂0 +

~∇2

4MN
−∆

(1S0)
(−1) −∆

(1S0)
(0)

)
ŝa + yt

[
t̂†i N̂

TPi N̂ + H.c.
]

+ ys
[
ŝ†aN̂

T P̄aN̂ + H.c .
]
.

The projector Pi = 1√
8
σ2σiτ2 (P̄a = 1√

8
τaτ2σ2) projects out the

spin-triplet iso-singlet (spin-singlet iso-triplet) combination of
nucleons.
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The LO dressed deuteron propagator is given by a bubble sum

(LO)

(NLO) (NNLO)

(Z -parametrization) At LO coefficients are fit to reproduce the
deuteron pole and at NLO to reproduce the residue about the
deuteron pole.

1

y2
t

=
M2

N

8πγt

Zt − 1

1 + (Zt − 1)
, ∆

(3S1)
(−1) =

2y2
t

MN

γt − µ
Zt − 1

, ∆
(3S1)
(0) =

γ2
t

MN
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The spin-triplet (“deuteron”) and spin-singlet dibaryon propagator
to NNLO are given by

iDNNLO
t,s (p0, ~p) =

4πi

MNy
2
t,s

1

γt,s −
√

~p2

4 −MNp0 − iε
×

×

 1︸︷︷︸
LO

+
Zt,s − 1

2γt,s

(
γt,s +

√
~p2

4
−MNp0 − iε

)
︸ ︷︷ ︸

NLO

+

(
Zt,s − 1

2γt,s

)2(~p2

4
−MNp0 − γ2

t

)
︸ ︷︷ ︸

NNLO

+ · · ·

 .
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Quartet Channel (nd Scattering)

At LO in the Quartet channel, nd scattering is given by an infinite
sum of diagrams.

This infinite sum of diagrams can be represented by an integral
equation.
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The integral equation gives

(
it ji
)βb
αa

(~k, ~p, h) =
y2
t

2
(σiσj)βαδ

b
a

i

− ~k2

4MN
− γ2

t
MN

+ h − (~k+~p)2

2MN
+ iε

+

+
y2
t

2
(σiσk)βγδ

b
c

∫
d4q

(2π)4
(it jk)γcαa(~k, ~q, h + q0)×

× iD
(0)
t

(
~k2

4MN
− γ2

t

MN
+ h + q0, ~q

)
i

~k2

2MN
− h − q0 − ~q2

2MN
+ iε
×

× i

− ~k2

4MN
− γ2

t
MN

+ 2h + q0 − (~q+~p)2

2MN
+ iε

.
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Projecting spin and isospin in the Quartet channel and projecting
out in angular momentum gives

t lq(k , p) =− y2
t MN

pk
Ql

(
p2 + k2 −MNE − iε

pk

)
−

+
2

π

∫ Λ

0
dqq2t lq(k , q)

1

γt −
√

3~q2

4 −MNE − iε

1

qp
×

Ql

(
p2 + q2 −MNE − iε

pq

)
,

where

Ql(a) =
1

2

∫ 1

−1
dx

Pl(x)

x + a
.
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Higher Orders

NLO correction is

NNLO corrections are

Note the second diagram contains full off-shell scattering
amplitude.
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The NNLO scattering amplitude is

t l0,q(k, p) + t l1,q(k , p) + t l2,q(k , p) = B l
0(k , p) + B l

1(k , p) + B l
2(k, p)+

+ (K l
0(q, p,E ) + K l

1(q, p,E ) + K l
2(q, p,E ))⊗ (t l0,q(q, k) + t l1,q(q, k) + t l2,q(q, k)),

where

A(q)⊗B(q) =
2

π

∫ Λ

0
dqq2A(q)B(q).

The inhomogeneous and homogeneous terms are

B l
0(k, p) = −y2

t MN

pk
Ql

(
p2 + k2 −MNE − iε

pk

)
,B l

1(k, p) = B l
2(k , p) = 0

K l
n(q, p,E ) = −MNy

2
t

4π
D

(n)
t

(
E −

~q2

2MN
, ~q

)
1

qp
Ql

(
q2 + p2 −MNE − iε

pq

)
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Partial Resummation Technique

Denoting t lNLO = t l0,q + t l1,q, for the partial resummation technique
one finds

t lNLO(k, p) = B l
0(k, p)+B l

1(k , p)+(K l
0(q, p,E )+K l

1(q, p,E ))⊗t lNLO(k, q),

with the diagrammatic representation
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New Full Perturbative technique

Picking out only LO pieces gives

t l0,q(k, p) = B l
0(k , p) + K l

0(q, p,E )⊗ t l0,q(k , q),

only NLO pieces

t l1,q(k , p) = B l
1(k, p)+K l

1(q, p,E )⊗t l0,q(k , q)+K l
0(q, p,E )⊗t l1,q(k, q),

and only NNLO pieces

t l2,q(k, p) = B l
2(k , p)+K l

2 ⊗ t l0,q(k, q) + K l
1(q, p,E )⊗ t l1,q(k , q)

+ K l
0(q, p,E )⊗ t l2,q(k , q).

Terms are reshuffled to inhomogeneous term. Kernel at each order
is the same

Jared Vanasse Fully Perturbative Calculation of nd Scattering to Next-to-next-to-leading-order



Building Blocks
Quartet Channel
Doublet Channel
SD-mixing Term

Results

Higher Orders
Partial Resummation Technique
New Technique

Diagrammatically NLO correction is now given by

NLO NLOLO

,

and NNLO correction by

NNLO NLOLO

NNLO

Note all corrections are half off-shell.

Jared Vanasse Fully Perturbative Calculation of nd Scattering to Next-to-next-to-leading-order



Building Blocks
Quartet Channel
Doublet Channel
SD-mixing Term

Results

Doublet Channel nd scattering

At LO in the Doublet channel, nd scattering is given by a coupled
set of integral equations
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Using the perturbative technique, the Doublet nd scattering
amplitude integral equation at LO is

tl0,d(k , p) = Bl
0(k , p) + Kl

0(q, p,E )⊗ tl0,d(k , q),

at NLO

tl1,d(k, p) = Bl
1(k , p) + Kl

1(q, p,E )⊗ tl0,d(k , q) + Kl
0(q, p,E )⊗ tl1,d(k, q),

and at NNLO

tl2,d(k, p) = Bl
2(k , p) + Kl

2(q, p,E )⊗ tl0,d(k , q)+

+ Kl
1(q, p,E )⊗ tl1,d(k , q) + Kl

0(q, p,E )⊗ tl2,d(k, q).

The Equations are the same as in Quartet case but are now matrix
equations in cluster configuration space.
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The vector ~tln,d(k , q) is

tln,d(k, q) =

(
t ln,Nt→Nt(k , q)

t ln,Nt→Ns(k, q)

)
.

The inhomogeneous term is

Bl
0(k , p) =

 y2
t MN

pk Ql

(
p2+k2−MNE−iε

pk

)
+H0(E ,Λ)δl0

−3ytysMN
pk Ql

(
p2+k2−MNE−iε

pk

)
−H0(E ,Λ)δl0


Bl

1(k , p) =

(
H1(E ,Λ)δl0
−H1(E ,Λ)δl0

)
,Bl

2(k , p) =

(
H2(E ,Λ)δl0
−H2(E ,Λ)δl0

)
.
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The homogeneous term is

Kl
n(q, p,E ) =D(n)(E , ~q)

1

qp
Ql

(
q2 + p2 −MNE − iε

qp

)(
1 −3
−3 1

)
+ δl0

n∑
j=0

D(j)(E , ~q)Hn−j(E ,Λ)

(
1 −1
−1 1

)
,

where

Dn(E , ~q) =

(
D

(n)
t (E , ~q) 0

0 D
(n)
s (E , ~q)

)
,

and the three-body force terms defined by

H(E ,Λ) =
2HLO

0 (Λ)

Λ2
+

2HNLO
0 (Λ)

Λ2
+

2HN2LO
0 (Λ)

Λ2
+

2HN2LO
2 (Λ)

Λ4
(MNE+γ2

d).
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SD-mixing Term

The SD-mixing Lagrangian is

LSDNd = ySD d̂
†
i

[
N̂T

(
(
→
∂ −

←
∂)i (

→
∂ −

←
∂)j − 1

3
δij(

→
∂ −

←
∂)2

)
Pj N̂

]
+H.c .

The SD-mixing amplitude is given by the sum of diagrams

SD
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The sum of all diagrams gives the amplitude

(txwSD)βbαa (~k, ~p) =
4MN√

8
vTp (Kxw )βbαa (~k, ~p)vp

− 4MN√
8

∫
d3q

(2π)3
vTp (Kxy )βbγc (~q, ~p)D

(
E −

~q2

2MN
, ~q

)(
(tyw )γcαa (~k, ~q)

)
− 4MN√

8

∫
d3q

(2π)3

(
(txy )βbγc (~q, ~p)

)T
D

(
E −

~q2

2MN
, ~q

)
(Kyw )γcαa(~k, ~q)vp

+
4MN√

8

∫
d3q

(2π)3

∫
d3`

(2π)3

(
(txz)βbδd (~̀, ~p, )

)T
D

(
E −

~q2

2MN
, ~q

)
(Kzy )δdγc(~q,~̀)D

(
E −

~̀2

2MN
,~̀

)(
(tyw )γcαa (~k, ~q)

)
,

where
vp =

(
1
0

)
.
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All angular dependence is contained in

(Kxw )βbαa(~q,~̀) =
1

~q2 + ~q · ~̀ + ~̀2
−MNE − iε

×

×

( (
K11

SD
xw
)βb
αa

(~q,~̀)
(
K12

SD
xw
)βb
αa

(~q,~̀)(
K21

SD
xw
)βb
αa

(~q,~̀)
(
K22

SD
xw
)βb
αa

(~q,~̀)

)
,

where(
K11

PV
xw
)βb
αa

(~k, ~p) = ytySD(σyσx)βαδ
b
a

[
(2~p + ~k)w (2~p + ~k)y − 1

3
δyw (2~p + ~k)2

]
(
K12

PV
xA
)βb
αa

(~k, ~p) = ysySD(σy )βα(τA)ba

[
(2~k + ~p)x(2~k + ~p)y − 1

3
δyx(2~k + ~p)2

]
(
K21

PV
Bw
)βb
αa

(~k, ~p) = ytySD(σy )βα(τ)ba

[
(2~p + ~k)w (2~p + ~k)y − 1

3
δyw (2~p + ~k)2

]
(
K22

PV
BA
)βb
αa

(~k, ~p) = 0.
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The amplitude can be projected in partial waves of ~J = ~L + ~S

tSD
JM
L′S′,LS(k , p) =

1

4π

∫
dΩk

∫
dΩp

(
Y M

J,L′S′(p̂)
)∗

tSD(~k, ~p)Y M
J,LS(k̂).

The projected amplitude is

tSD
JM
L′S′,LS(k, p) =

MN√
8π

vTp K(k, p)JL′S′,LSvp+

− MN

2
√

8π3

∫ ∞
0

dqq2vTp K(q, p)JL′S′,LSD

(
E − ~q2

2MN
,~q

)(
tJMLS,LS(k, q)

)
− MN

2
√

8π3

∫ ∞
0

dqq2
(
tJML′S′,L′S′(q, p)

)T
D

(
E − ~q2

2MN
,~q

)
K(k, q)JL′S′,LSvp

+
MN

4
√

8π5

∫ ∞
0

dqq2

∫ ∞
0

d``2
(
tJML′S′,L′S′(p, `)

)T
D

(
E − ~q2

2MN
,~q

)
×

×K(q, `)JML′S′,LSD

(
E −

~̀2

2MN
,~̀

)(
tJMLS,LS(k, q)

)
.
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[
K(k, p)JL′S′,LS

]
11

= 4π
√

S̄ S̄ ′L̄

√
10

3

(
δS′,1/2 + 2δS′,3/2

)
C 0,0,0
L,2,L′(−1)2S′+S+L−J×

×
{

2 1 1
1/2 S S ′

}{
S ′ 2 S
L J L′

}
]

1

kp
(k2QL′(a) + 4p2QL(a))

+ 8π
√

S̄ S̄ ′L̄
(
δS′,1/2 + 2δS′,3/2

)∑
L′′

C 0,0,0
L,1,L′′C

0,0,0
L′′,1,L′×

× (−1)
3/2−S′−L−L′′

√
L̄′′


1/2 1 S
1 L′′ L
S ′ L′ J

QL′′(a)

+ 8π
√

S̄ S̄ ′L̄
(
δS′,1/2 + 2δS′,3/2

)∑
L′′

C 0,0,0
L,1,L′′C

0,0,0
L′′,1,L′(−1)

1/2+S′+L+L′′×

×
√

L̄′′
{

1/2 1 S ′

L′ J L′′

}{
L 1 L′′

1/2 J S

}
QL′′(a)

− 16π

3

1√
L̄

(
δS′,1/2 + 2δS′,3/2

)
(−1)

1/2−S′
δL,L′δS,S′

∑
L′′

C 0,0,0
L,1,L′′C

0,0,0
1,L′′,L

√
L̄′′QL′′(a)

+ (S ←→ S ′)(L←→ L′)(k ←→ p)

Jared Vanasse Fully Perturbative Calculation of nd Scattering to Next-to-next-to-leading-order



Building Blocks
Quartet Channel
Doublet Channel
SD-mixing Term

Results

[
K(k , p)JL′S ′,LS

]
21

= 8π
√

5
√

S̄ L̄δS ′1/2C
0,0,0
L,2,L′(−1)1+S+L−J{

2 1 1
1/2 S S ′

}{
S ′ 2 S
L J L′

}
1

kp
(k2QL′(a) + 4p2QL(a))

+ 8π
√

6
√
L̄S̄δS ′1/2

∑
L′′

√
L̄′′C 0,0,0

L,1,L′′C
0,0,0
L′′,1,L′


1/2 1 S
1 L′′ L
S ′ L′ J

QL′′(a)

+ 8π
√

6
√
L̄S̄δS ′1/2

∑
L′′

(−1)1+L+L′′
√
L̄′′C 0,0,0

L,1,L′′C
0,0,0
L′′,1,L′×

×
{

L′ 1 L′′

1/2 J S ′

}{
L 1 L′′

1/2 J S

}
QL′′(a)

+
16π√

3
(−1)L

′′−L
√

1

L̄′

∑
L′′

√
L̄′′C 0,0,0

L,1,L′′C
0,0,0
L′′,1,L′δS ′1/2δS ′SδL′LQL′′(a)
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Doublet S-wave
Higher Quartet Partial Waves
Higher Doublet Partial Waves
mixing angles

The S matrix can be decomposed into irreducible representations
of ~J and parity. For J = 1/2 it is a 2×2 unitary matrix

S
1
2 + =

 S
1
2

2 3
2 ,2

3
2

S
1
2

2 3
2 ,0

1
2

S
1
2

0 1
2 ,2

3
2

S
1
2

0 1
2 ,0

1
2

 ,S
1
2 − =

 S
1
2

1 1
2 ,1

1
2

S
1
2

1 1
2 ,1

3
2

S
1
2

1 3
2 ,1

1
2

S
1
2

1 3
2 ,1

3
2

 ,

which is decomposed by

SJπ =
(
uJπ
)T

e2iδJπ

uJπ

δ
1
2 + =

 δ
1
2

2 3
2

0

0 δ
1
2

0 1
2

 , δ
1
2 − =

 δ
1
2

1 1
2

0

0 δ
1
2

1 3
2

 ,

u
1
2 + =

(
cos η

1
2 + sin η

1
2 +

− sin η
1
2 + cos η

1
2 +

)
,u

1
2 − =

(
cos ε

1
2 − sin ε

1
2 −

− sin ε
1
2 − cos ε

1
2 −

)
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Doublet S-wave
Higher Quartet Partial Waves
Higher Doublet Partial Waves
mixing angles

For J ≥ 3/2 S is a unitary 3×3 matrix

SJπ =

 SJ
J∓ 3

2
3
2 ,J∓

3
2

3
2

SJ
J∓ 3

2
3
2 ,J±

1
2

1
2

SJ
J∓ 3

2
3
2 ,J±

1
2

3
2

SJ
J± 1

2
1
2 ,J∓

3
2

3
2

SJ
J± 1

2
1
2 ,J±

1
2

1
2

SJ
J± 1

2
1
2 ,J±

1
2

3
2

SJ
J± 1

2
3
2 ,J∓

3
2

3
2

SJ
J± 1

2
3
2 ,J±

1
2

1
2

SJ
J± 1

2
3
2 ,J±

1
2

3
2


which is decomposed by

δJπ =

 δJ
J∓ 3

2
3
2

0 0

0 δJ
J± 1

2
1
2

0

0 0 δJ
J± 1

2
3
2

 , uJπ = vJπwJπxJπ

vJπ =

 1 0 0
0 cos εJπ sin εJπ

0 − sin εJπ cos εJπ

 ,wJπ =

 cos ζJπ 0 sin ζJπ

0 1 0
− sin ζJπ 0 cos ζJπ

 ,

xJπ =

 cos ηJπ sin ηJπ 0
− sin ηJπ cos ηJπ 0

0 0 1


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quartet S-wave phase shift at NNLO. Crosses are AV-18+UIX with
hyperspherical harmonics method, and x’s Bonn-B with Faddeev
equations.
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imaginary part of quartet S-wave phase shift at NNLO. Note here
imaginary part is positive unlike in partial resummation technique.
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The bands are due to cutoff variation from Λ = 200− 1600 MeV
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for l = 1: j =l − 1
2 , l + 1

2 , l + 3
2 :: for l > 1: j =l − 3
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Conclusions and Future Directions

I Most phase shifts and mixing angles are described well by
NNLO EFT6π at low energies.

I N3LO contributions will be important as they contain
two-body P wave contact interactions, which may help fix
certain mixing-angles and phase shifts.

I New technique makes higher order perturbative calculations
much easier, which is important in order to calculate
polarizaiton observables such as Ay .

I The new technique can be used to calculate any diagram with
full off-shell scattering amplitudes. This makes calculations
involving external currents much simpler to calculate (e.g. 3H
and 3He Compton scattering and photodisintegration both
parity conserving and violating).
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Numerical Techniques

ti = Bi +
∑
j

Kijwj tj

∑
j

(δij − Kijwj) tj = Bi

Integral equation is discretized and solved along contour in
complex plane (Hetherington-Schick Method)
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