Fully Perturbative Calculation of *nd* Scattering to Next-to-next-to-leading-order

Jared Vanasse

Duke University

April 15, 2014

Ingredients of Pionless Effective Field Theory

- For momenta p < m_π pions can be integrated out as degrees of freedom and only nucleons and external currents are left.
- For any effective (field) theory one writes down all terms with degrees of freedom that respect symmetries.
- Develop a power counting to organize terms by their relative importance.
- Calculate respective observables up to a given order in the power counting.

Lagrangian Dibaryon Propagators

Lagrangian

The Lagrangian in $\mathrm{EFT}_{\not\!\pi}$ is

$$\begin{split} \mathcal{L} &= \hat{N}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{2M_{N}} \right) \hat{N} - \hat{t}_{i}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{4M_{N}} - \Delta_{(-1)}^{(3S_{1})} - \Delta_{(0)}^{(3S_{1})} \right) \hat{t}_{i} \\ &- \hat{s}_{a}^{\dagger} \left(i\partial_{0} + \frac{\vec{\nabla}^{2}}{4M_{N}} - \Delta_{(-1)}^{(1S_{0})} - \Delta_{(0)}^{(1S_{0})} \right) \hat{s}_{a} + y_{t} \left[\hat{t}_{i}^{\dagger} \hat{N}^{T} P_{i} \hat{N} + H.c. \right] \\ &+ y_{s} \left[\hat{s}_{a}^{\dagger} \hat{N}^{T} \bar{P}_{a} \hat{N} + H.c. \right]. \end{split}$$

The projector $P_i = \frac{1}{\sqrt{8}}\sigma_2\sigma_i\tau_2$ ($\bar{P}_a = \frac{1}{\sqrt{8}}\tau_a\tau_2\sigma_2$) projects out the spin-triplet iso-singlet (spin-singlet iso-triplet) combination of nucleons.

Lagrangian Dibaryon Propagators

The LO dressed deuteron propagator is given by a bubble sum

(Z-parametrization) At LO coefficients are fit to reproduce the deuteron pole and at NLO to reproduce the residue about the deuteron pole.

$$\frac{1}{y_t^2} = \frac{M_N^2}{8\pi\gamma_t} \frac{Z_t - 1}{1 + (Z_t - 1)}, \quad \Delta_{(-1)}^{(3S_1)} = \frac{2y_t^2}{M_N} \frac{\gamma_t - \mu}{Z_t - 1}, \quad \Delta_{(0)}^{(3S_1)} = \frac{\gamma_t^2}{M_N}$$

Lagrangian Dibaryon Propagators

The spin-triplet ("deuteron") and spin-singlet dibaryon propagator to NNLO are given by

$$iD_{t,s}^{NNLO}(p_0, \vec{\mathbf{p}}) = \frac{4\pi i}{M_N y_{t,s}^2} \frac{1}{\gamma_{t,s} - \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}} \times \left[\underbrace{1}_{\text{LO}} + \underbrace{\frac{Z_{t,s} - 1}{2\gamma_{t,s}} \left(\gamma_{t,s} + \sqrt{\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - i\epsilon}\right)}_{\text{NLO}} + \underbrace{\left(\frac{Z_{t,s} - 1}{2\gamma_{t,s}}\right)^2 \left(\frac{\vec{\mathbf{p}}^2}{4} - M_N p_0 - \gamma_t^2\right)}_{\text{NNLO}} + \cdots \right]$$

.

Higher Orders Partial Resummation Technique New Technique

Quartet Channel (nd Scattering)

At LO in the Quartet channel, *nd* scattering is given by an infinite sum of diagrams.

This infinite sum of diagrams can be represented by an integral equation.

Higher Orders Partial Resummation Technique New Technique

The integral equation gives

$$\begin{split} (it^{jj})_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}},h) &= \frac{y_t^2}{2} (\sigma^i \sigma^j)_{\alpha}^{\beta} \delta^b_a \frac{i}{-\frac{\vec{\mathbf{k}}^2}{4M_N} - \frac{\gamma_t^2}{M_N} + h - \frac{(\vec{\mathbf{k}} + \vec{\mathbf{p}})^2}{2M_N} + i\epsilon} + \\ &+ \frac{y_t^2}{2} (\sigma^j \sigma^k)_{\gamma}^{\beta} \delta^b_c \int \frac{d^4 q}{(2\pi)^4} (it^{jk})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}},h+q_0) \times \\ &\times i D_t^{(0)} \left(\frac{\vec{\mathbf{k}}^2}{4M_N} - \frac{\gamma_t^2}{M_N} + h + q_0,\vec{\mathbf{q}} \right) \frac{i}{\frac{\vec{\mathbf{k}}^2}{2M_N} - h - q_0 - \frac{\vec{\mathbf{q}}^2}{2M_N} + i\epsilon} \times \\ &\times \frac{i}{-\frac{\vec{\mathbf{k}}^2}{4M_N} - \frac{\gamma_t^2}{M_N} + 2h + q_0 - \frac{(\vec{\mathbf{q}} + \vec{\mathbf{p}})^2}{2M_N} + i\epsilon}. \end{split}$$

Higher Orders Partial Resummation Technique New Technique

Projecting spin and isospin in the Quartet channel and projecting out in angular momentum gives

$$\begin{split} t_q^{\prime}(k,p) &= -\frac{y_t^2 M_N}{pk} Q_l \left(\frac{p^2 + k^2 - M_N E - i\epsilon}{pk} \right) - \\ &+ \frac{2}{\pi} \int_0^{\Lambda} dq q^2 t_q^{\prime}(k,q) \frac{1}{\gamma_t - \sqrt{\frac{3\vec{\mathbf{q}}^2}{4} - M_N E - i\epsilon}} \frac{1}{qp} \times \\ &Q_l \left(\frac{p^2 + q^2 - M_N E - i\epsilon}{pq} \right), \end{split}$$

where

$$Q_{l}(a) = \frac{1}{2} \int_{-1}^{1} dx \frac{P_{l}(x)}{x+a}$$

Higher Orders Partial Resummation Technique New Technique

Higher Orders

NLO correction is

NNLO corrections are

Note the second diagram contains full off-shell scattering amplitude.

 Building Blocks
 Higher Orders

 Quartet Channel
 Higher Orders

 Doublet Channel
 Partial Resummation Technique

 SD-mixing Term
 New Technique

The NNLO scattering amplitude is

$$t_{0,q}^{\prime}(k,p) + t_{1,q}^{\prime}(k,p) + t_{2,q}^{\prime}(k,p) = B_{0}^{\prime}(k,p) + B_{1}^{\prime}(k,p) + B_{2}^{\prime}(k,p) + (K_{0}^{\prime}(q,p,E) + K_{1}^{\prime}(q,p,E) + K_{2}^{\prime}(q,p,E)) \otimes (t_{0,q}^{\prime}(q,k) + t_{1,q}^{\prime}(q,k) + t_{2,q}^{\prime}(q,k)),$$

where

$$A(q)\otimes B(q)=rac{2}{\pi}\int_0^{\Lambda}dqq^2A(q)B(q).$$

The inhomogeneous and homogeneous terms are

$$B_0'(k,p) = -\frac{y_t^2 M_N}{pk} Q_l\left(\frac{p^2 + k^2 - M_N E - i\epsilon}{pk}\right), B_1'(k,p) = B_2'(k,p) = 0$$

$$K_n^I(q,p,E) = -\frac{M_N y_t^2}{4\pi} D_t^{(n)} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N}, \vec{\mathbf{q}} \right) \frac{1}{qp} Q_I \left(\frac{q^2 + p^2 - M_N E - i\epsilon}{pq} \right)$$

Higher Orders Partial Resummation Technique New Technique

Partial Resummation Technique

Denoting $t'_{NLO} = t'_{0,q} + t'_{1,q}$, for the partial resummation technique one finds

$$t'_{NLO}(k,p) = B'_0(k,p) + B'_1(k,p) + (K'_0(q,p,E) + K'_1(q,p,E)) \otimes t'_{NLO}(k,q),$$

with the diagrammatic representation

Higher Orders Partial Resummation Technique New Technique

New Full Perturbative technique

Picking out only LO pieces gives

0

$$t_{0,q}^{\prime}(k,p)=B_{0}^{\prime}(k,p)+K_{0}^{\prime}(q,p,E)\otimes t_{0,q}^{\prime}(k,q),$$
nly NLO pieces

 $t_{1,q}^{\prime}(k,p) = B_{1}^{\prime}(k,p) + K_{1}^{\prime}(q,p,E) \otimes t_{0,q}^{\prime}(k,q) + K_{0}^{\prime}(q,p,E) \otimes t_{1,q}^{\prime}(k,q),$ and only NNLO pieces

$$egin{aligned} t_{2,q}^{\prime}(k,p) &= B_2^{\prime}(k,p) + \mathcal{K}_2^{\prime} \otimes t_{0,q}^{\prime}(k,q) + \mathcal{K}_1^{\prime}(q,p,E) \otimes t_{1,q}^{\prime}(k,q) \ &+ \mathcal{K}_0^{\prime}(q,p,E) \otimes t_{2,q}^{\prime}(k,q). \end{aligned}$$

Terms are reshuffled to inhomogeneous term. Kernel at each order is the same

Higher Orders Partial Resummation Technique New Technique

Diagrammatically NLO correction is now given by

and NNLO correction by

Note all corrections are half off-shell.

Doublet Channel nd scattering

At LO in the Doublet channel, *nd* scattering is given by a coupled set of integral equations

Using the perturbative technique, the Doublet *nd* scattering amplitude integral equation at LO is

$$\mathbf{t}_{0,d}^{\prime}(k,p) = \mathbf{B}_0^{\prime}(k,p) + \mathbf{K}_0^{\prime}(q,p,E) \otimes \mathbf{t}_{0,d}^{\prime}(k,q),$$

at NLO

$$\begin{split} \mathbf{t}_{1,d}^{\prime}(k,p) &= \mathbf{B}_{1}^{\prime}(k,p) + \mathbf{K}_{1}^{\prime}(q,p,E) \otimes \mathbf{t}_{0,d}^{\prime}(k,q) + \mathbf{K}_{0}^{\prime}(q,p,E) \otimes \mathbf{t}_{1,d}^{\prime}(k,q), \\ \text{and at NNLO} \end{split}$$

$$\begin{aligned} \mathbf{t}_{2,d}^{\prime}(k,p) &= \mathbf{B}_{2}^{\prime}(k,p) + \mathbf{K}_{2}^{\prime}(q,p,E) \otimes \mathbf{t}_{0,d}^{\prime}(k,q) + \\ &+ \mathbf{K}_{1}^{\prime}(q,p,E) \otimes \mathbf{t}_{1,d}^{\prime}(k,q) + \mathbf{K}_{0}^{\prime}(q,p,E) \otimes \mathbf{t}_{2,d}^{\prime}(k,q). \end{aligned}$$

The Equations are the same as in Quartet case but are now matrix equations in cluster configuration space.

The vector
$$ec{\mathbf{t}}_{n,d}^{\prime}(k,q)$$
 is

$$\mathbf{t}_{n,d}^{\prime}(k,q) = \left(egin{array}{c} t_{n,Nt o Nt}^{\prime}(k,q) \ t_{n,Nt o Ns}^{\prime}(k,q) \end{array}
ight).$$

The inhomogeneous term is

$$\mathbf{B}_{0}^{\prime}(k,p) = \begin{pmatrix} \frac{y_{t}^{2}M_{N}}{pk}Q_{I}\left(\frac{p^{2}+k^{2}-M_{N}E-i\epsilon}{pk}\right) + \mathcal{H}_{0}(E,\Lambda)\delta_{I0} \\ -\frac{3y_{t}y_{s}M_{N}}{pk}Q_{I}\left(\frac{p^{2}+k^{2}-M_{N}E-i\epsilon}{pk}\right) - \mathcal{H}_{0}(E,\Lambda)\delta_{I0} \end{pmatrix} \\ \mathbf{B}_{1}^{\prime}(k,p) = \begin{pmatrix} \mathcal{H}_{1}(E,\Lambda)\delta_{I0} \\ -\mathcal{H}_{1}(E,\Lambda)\delta_{I0} \end{pmatrix}, \mathbf{B}_{2}^{\prime}(k,p) = \begin{pmatrix} \mathcal{H}_{2}(E,\Lambda)\delta_{I0} \\ -\mathcal{H}_{2}(E,\Lambda)\delta_{I0} \end{pmatrix}.$$

The homogeneous term is

$$\begin{aligned} \mathbf{K}_{n}^{l}(q,p,E) = \mathbf{D}^{(n)}(E,\vec{\mathbf{q}}) \frac{1}{qp} Q_{l} \left(\frac{q^{2} + p^{2} - M_{N}E - i\epsilon}{qp} \right) \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix} \\ + \delta_{l0} \sum_{j=0}^{n} \mathbf{D}^{(j)}(E,\vec{\mathbf{q}}) \mathcal{H}_{n-j}(E,\Lambda) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \end{aligned}$$

where

$$\mathbf{D}^{n}(E,\vec{\mathbf{q}}) = \begin{pmatrix} D_{t}^{(n)}(E,\vec{\mathbf{q}}) & 0\\ 0 & D_{s}^{(n)}(E,\vec{\mathbf{q}}) \end{pmatrix},$$

and the three-body force terms defined by

$$\mathcal{H}(E,\Lambda) = \frac{2H_0^{LO}(\Lambda)}{\Lambda^2} + \frac{2H_0^{NLO}(\Lambda)}{\Lambda^2} + \frac{2H_0^{N^2LO}(\Lambda)}{\Lambda^2} + \frac{2H_2^{N^2LO}(\Lambda)}{\Lambda^4} (M_N E + \gamma_d^2).$$

SD-mixing Term

The SD-mixing Lagrangian is

$$\mathcal{L}_{Nd}^{SD} = y_{SD} \hat{d}_i^{\dagger} \left[\hat{N}^T \left((\vec{\partial} - \overleftarrow{\partial})^i (\vec{\partial} - \overleftarrow{\partial})^j - \frac{1}{3} \delta^{ij} (\vec{\partial} - \overleftarrow{\partial})^2 \right) P_j \hat{N} \right] + H.c.$$

The SD-mixing amplitude is given by the sum of diagrams

The sum of all diagrams gives the amplitude

$$\begin{split} (t_{SD}^{xw})_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= \frac{4M_N}{\sqrt{8}} \mathbf{v}_p^T \left(\mathcal{K}^{xw}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) \mathbf{v}_p \\ &- \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \mathbf{v}_p^T \left(\mathcal{K}^{xy}\right)_{\gamma c}^{\beta b}(\vec{\mathbf{q}},\vec{\mathbf{p}}) \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \left((\mathbf{t}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}})\right) \\ &- \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \left((\mathbf{t}^{xy})_{\gamma c}^{\beta b}(\vec{\mathbf{q}},\vec{\mathbf{p}})\right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \left(\mathcal{K}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}}) \mathbf{v}_p \\ &+ \frac{4M_N}{\sqrt{8}} \int \frac{d^3 q}{(2\pi)^3} \int \frac{d^3 \ell}{(2\pi)^3} \left((\mathbf{t}^{xz})_{\delta d}^{\beta b}(\vec{\ell},\vec{\mathbf{p}},)\right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N},\vec{\mathbf{q}}\right) \\ &\quad \left(\mathcal{K}^{zy})_{\gamma c}^{\delta d}(\vec{\mathbf{q}},\vec{\ell})\mathbf{D} \left(E - \frac{\vec{\ell}^2}{2M_N},\vec{\ell}\right) \left((\mathbf{t}^{yw})_{\alpha a}^{\gamma c}(\vec{\mathbf{k}},\vec{\mathbf{q}})\right), \end{split}$$

 $\mathbf{v}_p = \left(\begin{array}{c} 1 \\ 0 \end{array}
ight).$

where

All angular dependence is contained in

$$\begin{aligned} (\mathcal{K}^{xw})^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) = & \frac{1}{\vec{\mathbf{q}}^2 + \vec{\mathbf{q}} \cdot \vec{\ell} + \vec{\ell}^2 - M_N E - i\epsilon} \times \\ & \times \begin{pmatrix} (\mathcal{K}^{11}_{SD} \times)^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) & (\mathcal{K}^{12}_{SD} \times)^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) \\ (\mathcal{K}^{21}_{SD} \times)^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) & (\mathcal{K}^{22}_{SD} \times)^{\beta b}_{\alpha a}(\vec{\mathbf{q}},\vec{\ell}) \end{pmatrix}, \end{aligned}$$

where

$$\begin{split} \left(\mathcal{K}_{PV}^{11\ xw}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= y_t y_{SD}(\sigma^y \sigma^x)_{\alpha}^{\beta} \delta_a^b \left[(2\vec{\mathbf{p}}+\vec{\mathbf{k}})^w (2\vec{\mathbf{p}}+\vec{\mathbf{k}})^y - \frac{1}{3} \delta_{yw} (2\vec{\mathbf{p}}+\vec{\mathbf{k}})^2 \right] \\ \left(\mathcal{K}_{PV}^{12\ xA}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= y_s y_{SD}(\sigma^y)_{\alpha}^{\beta} (\tau^A)_a^b \left[(2\vec{\mathbf{k}}+\vec{\mathbf{p}})^x (2\vec{\mathbf{k}}+\vec{\mathbf{p}})^y - \frac{1}{3} \delta_{yx} (2\vec{\mathbf{k}}+\vec{\mathbf{p}})^2 \right] \\ \left(\mathcal{K}_{PV}^{21\ Bw}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= y_t y_{SD}(\sigma^y)_{\alpha}^{\beta} (\tau)_a^b \left[(2\vec{\mathbf{p}}+\vec{\mathbf{k}})^w (2\vec{\mathbf{p}}+\vec{\mathbf{k}})^y - \frac{1}{3} \delta_{yw} (2\vec{\mathbf{p}}+\vec{\mathbf{k}})^2 \right] \\ \left(\mathcal{K}_{PV}^{22\ BA}\right)_{\alpha a}^{\beta b}(\vec{\mathbf{k}},\vec{\mathbf{p}}) &= 0. \end{split}$$

The amplitude can be projected in partial waves of $\vec{J}=\vec{L}+\vec{S}$

$$t_{SDL'S',LS}(k,p) = \frac{1}{4\pi} \int d\Omega_k \int d\Omega_p \left(\mathscr{Y}^M_{J,L'S'}(\hat{\mathbf{p}})\right)^* t_{SD}(\vec{\mathbf{k}},\vec{\mathbf{p}}) \mathscr{Y}^M_{J,LS}(\hat{\mathbf{k}}).$$

The projected amplitude is

$$\begin{split} t_{SDL'S',LS}(k,p) &= \frac{M_N}{\sqrt{8\pi}} \mathbf{v}_p^T \mathcal{K}(k,p)_{L'S',LS}^J \mathbf{v}_p + \\ &- \frac{M_N}{2\sqrt{8\pi^3}} \int_0^\infty dq q^2 \mathbf{v}_p^T \mathcal{K}(q,p)_{L'S',LS}^J \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N}, \vec{\mathbf{q}} \right) \left(\mathbf{t}_{LS,LS}^{JM}(k,q) \right) \\ &- \frac{M_N}{2\sqrt{8\pi^3}} \int_0^\infty dq q^2 \left(\mathbf{t}_{L'S',L'S'}^{JM}(q,p) \right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N}, \vec{\mathbf{q}} \right) \mathcal{K}(k,q)_{L'S',LS}^J \mathbf{v}_p \\ &+ \frac{M_N}{4\sqrt{8\pi^5}} \int_0^\infty dq q^2 \int_0^\infty d\ell \ell^2 \left(\mathbf{t}_{L'S',L'S'}^{JM}(p,\ell) \right)^T \mathbf{D} \left(E - \frac{\vec{\mathbf{q}}^2}{2M_N}, \vec{\mathbf{q}} \right) \times \\ &\times \mathcal{K}(q,\ell)_{L'S',LS}^{JM} \mathbf{D} \left(E - \frac{\ell^2}{2M_N}, \vec{\ell} \right) \left(\mathbf{t}_{LS,LS}^{JM}(k,q) \right). \end{split}$$

$$\begin{split} \left[\mathcal{K}(k,p)_{L'S',LS}^{J} \right]_{11} &= 4\pi \sqrt{\bar{S}\bar{S'}\bar{L}} \sqrt{\frac{10}{3}} \left(\delta_{S',1/2} + 2\delta_{S',3/2} \right) C_{L,2,L'}^{0,0,0} (-1)^{2S'+S+L-J} \times \\ &\times \left\{ \begin{array}{ccc} 2 & 1 & 1 \\ 1/2 & S & S' \end{array} \right\} \left\{ \begin{array}{ccc} S' & 2 & S \\ L & J & L' \end{array} \right\} \left] \frac{1}{kp} (k^2 Q_{L'}(a) + 4p^2 Q_L(a)) \\ &+ 8\pi \sqrt{\bar{S}\bar{S'}\bar{L}} \left(\delta_{S',1/2} + 2\delta_{S',3/2} \right) \sum_{L''} C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} \times \\ &\times (-1)^{3/2-S'-L-L''} \sqrt{\bar{L''}} \left\{ \begin{array}{ccc} 1/2 & 1 & S \\ 1 & L'' & L \\ S' & L' & J \end{array} \right\} Q_{L''}(a) \\ &+ 8\pi \sqrt{\bar{S}\bar{S'}\bar{L}} \left(\delta_{S',1/2} + 2\delta_{S',3/2} \right) \sum_{L''} C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} - (-1)^{1/2+S'+L+L''} \times \\ &\times \sqrt{\bar{L''}} \left\{ \begin{array}{ccc} 1/2 & 1 & S \\ 1/2 & J & S \end{array} \right\} Q_{L''}(a) \\ &- \frac{16\pi}{3} \frac{1}{\sqrt{\bar{L}}} \left(\delta_{S',1/2} + 2\delta_{S',3/2} \right) (-1)^{1/2-S'} \delta_{L,L'} \delta_{S,S'} \sum_{L''} C_{L,1,L''}^{0,0,0} C_{1,L''}^{0,0,0} \sqrt{\bar{L''}} Q_{L''}(a) \\ &+ (S \longleftrightarrow S') (L \longleftrightarrow L') (k \longleftrightarrow p) \end{split}$$

Building Blocks Quartet Channel Doublet Channel SD-mixing Term Results

$$\begin{split} & \left[\mathcal{K}(k,p)_{L'S',LS}^{J} \right]_{21} = 8\pi\sqrt{5}\sqrt{\overline{S}L}\delta_{S'^{1/2}}C_{L,2,L'}^{0,0,0}(-1)^{1+S+L-J} \\ & \left\{ \begin{array}{ccc} 2 & 1 & 1 \\ 1/2 & S & S' \end{array} \right\} \left\{ \begin{array}{ccc} S' & 2 & S \\ L & J & L' \end{array} \right\} \frac{1}{kp} (k^2 Q_{L'}(a) + 4p^2 Q_L(a)) \\ & + 8\pi\sqrt{6}\sqrt{L}\overline{S}\delta_{S'^{1/2}} \sum_{L''} \sqrt{\overline{L''}}C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} \left\{ \begin{array}{ccc} 1/2 & 1 & S \\ 1 & L'' & L \\ S' & L' & J \end{array} \right\} Q_{L''}(a) \\ & + 8\pi\sqrt{6}\sqrt{L}\overline{S}\delta_{S'^{1/2}} \sum_{L''} (-1)^{1+L+L''} \sqrt{\overline{L''}}C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} \\ & + 8\pi\sqrt{6}\sqrt{L}\overline{S}\delta_{S'^{1/2}} \sum_{L''} (-1)^{1+L+L''} \sqrt{\overline{L''}}C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} \\ & \times \left\{ \begin{array}{ccc} L' & 1 & L'' \\ 1/2 & J & S' \end{array} \right\} \left\{ \begin{array}{ccc} L & 1 & L'' \\ 1/2 & J & S \end{array} \right\} Q_{L''}(a) \\ & + \frac{16\pi}{\sqrt{3}} (-1)^{L''-L} \sqrt{\frac{1}{L'}} \sum_{L''} \sqrt{\overline{L''}}C_{L,1,L''}^{0,0,0} C_{L'',1,L'}^{0,0,0} \\ \end{array}$$

The S matrix can be decomposed into irreducible representations of \vec{J} and parity. For J = 1/2 it is a 2×2 unitary matrix

$$\mathbf{S}^{\frac{1}{2}+} = \begin{pmatrix} S_{2\frac{3}{2},2\frac{3}{2}}^{\frac{1}{2}} & S_{2\frac{3}{2},0\frac{1}{2}}^{\frac{1}{2}} \\ S_{0\frac{1}{2},2\frac{3}{2}}^{\frac{1}{2}} & S_{0\frac{1}{2},0\frac{1}{2}}^{\frac{1}{2}} \end{pmatrix}, \\ \mathbf{S}^{\frac{1}{2}-} = \begin{pmatrix} S_{1\frac{1}{2},1\frac{1}{2}}^{\frac{1}{2}} & S_{1\frac{1}{2},1\frac{3}{2}}^{\frac{1}{2}} \\ S_{1\frac{3}{2},1\frac{1}{2}}^{\frac{1}{2}} & S_{1\frac{3}{2},1\frac{3}{2}}^{\frac{1}{2}} \end{pmatrix},$$

which is decomposed by

1

$$\begin{split} \mathbf{S}^{J\pi} &= \left(\mathbf{u}^{J\pi}\right)^T e^{2i\delta^{J\pi}} \mathbf{u}^{J\pi} \\ \delta^{\frac{1}{2}+} &= \left(\begin{array}{c} \delta^{\frac{1}{2}}_{2\frac{3}{2}} & 0\\ 0 & \delta^{\frac{1}{2}}_{0\frac{1}{2}} \end{array}\right), \delta^{\frac{1}{2}-} &= \left(\begin{array}{c} \delta^{\frac{1}{2}}_{1\frac{1}{2}} & 0\\ 0 & \delta^{\frac{1}{2}}_{1\frac{3}{2}} \end{array}\right), \\ \mathbf{u}^{\frac{1}{2}+} &= \left(\begin{array}{c} \cos \eta^{\frac{1}{2}+} & \sin \eta^{\frac{1}{2}+}\\ -\sin \eta^{\frac{1}{2}+} & \cos \eta^{\frac{1}{2}+} \end{array}\right), \mathbf{u}^{\frac{1}{2}-} &= \left(\begin{array}{c} \cos \epsilon^{\frac{1}{2}-} & \sin \epsilon^{\frac{1}{2}-}\\ -\sin \epsilon^{\frac{1}{2}-} & \cos \epsilon^{\frac{1}{2}-} \end{array}\right) \end{split}$$

For $J \ge 3/2$ **S** is a unitary 3×3 matrix

$$\mathbf{S}^{J\pi} = \begin{pmatrix} S^J_{J\mp\frac{3}{2}\frac{3}{2},J\mp\frac{3}{2}\frac{3}{2}} & S^J_{J\mp\frac{3}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{1}{2}} & S^J_{J\mp\frac{3}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{3}{2}} \\ S^J_{J\pm\frac{1}{2}\frac{1}{2},J\mp\frac{3}{2}\frac{3}{2}} & S^J_{J\pm\frac{1}{2}\frac{1}{2},J\pm\frac{1}{2}\frac{1}{2}} & S^J_{J\pm\frac{1}{2}\frac{1}{2},J\pm\frac{1}{2}\frac{3}{2}} \\ S^J_{J\pm\frac{1}{2}\frac{3}{2},J\mp\frac{3}{2}\frac{3}{2}} & S^J_{J\pm\frac{1}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{1}{2}} & S^J_{J\pm\frac{1}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{3}{2}} \\ S^J_{J\pm\frac{1}{2}\frac{3}{2},J\mp\frac{3}{2}\frac{3}{2}} & S^J_{J\pm\frac{1}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{1}{2}} & S^J_{J\pm\frac{1}{2}\frac{3}{2},J\pm\frac{1}{2}\frac{3}{2}} \end{pmatrix}$$

which is decomposed by

$$\begin{split} \boldsymbol{\delta}^{J\pi} &= \begin{pmatrix} \delta^{J}_{J\mp\frac{3}{2}\frac{3}{2}} & 0 & 0\\ 0 & \delta^{J}_{J\pm\frac{1}{2}\frac{1}{2}} & 0\\ 0 & 0 & \delta^{J}_{J\pm\frac{1}{2}\frac{3}{2}} \end{pmatrix} \quad, \quad \mathbf{u}^{J\pi} = \mathbf{v}^{J\pi} \mathbf{w}^{J\pi} \mathbf{x}^{J\pi} \\ \mathbf{v}^{J\pi} &= \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \epsilon^{J\pi} & \sin \epsilon^{J\pi}\\ 0 & -\sin \epsilon^{J\pi} & \cos \epsilon^{J\pi} \end{pmatrix}, \\ \mathbf{w}^{J\pi} &= \begin{pmatrix} \cos \zeta^{J\pi} & 0 & \sin \zeta^{J\pi}\\ 0 & 1 & 0\\ -\sin \zeta^{J\pi} & 0 & \cos \zeta^{J\pi} \end{pmatrix}, \\ \mathbf{x}^{J\pi} &= \begin{pmatrix} \cos \eta^{J\pi} & \sin \eta^{J\pi} & 0\\ -\sin \eta^{J\pi} & \cos \eta^{J\pi} & 0\\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

quartet S-wave phase shift at NNLO. Crosses are AV-18+UIX with hyperspherical harmonics method, and x's Bonn-B with Faddeev equations.

imaginary part of quartet S-wave phase shift at NNLO. Note here imaginary part is positive unlike in partial resummation technique.

The bands are due to cutoff variation from $\Lambda = 200 - 1600$ MeV

Building Blocks	Quartet S-wave
Quartet Channel	Doublet S-wave
Doublet Channel	Higher Quartet Partial Waves
SD-mixing Term	Higher Doublet Partial Waves
Results	mixing angles

Jared Vanasse

Building Blocks	Quartet S-wave
Quartet Channel	Doublet S-wave
Doublet Channel	Higher Quartet Partial Waves
SD-mixing Term	Higher Doublet Partial Waves
Results	mixing angles

Jared Vanasse Fully Perturbat

Building Blocks	Quartet S-wave
Quartet Channel	Doublet S-wave
Doublet Channel	Higher Quartet Partial Waves
SD-mixing Term	Higher Doublet Partial Waves
Results	mixing angles

Quartet S-wave Doublet S-wave Higher Quartet Partial Waves Higher Doublet Partial Waves mixing angles

Conclusions and Future Directions

- ► Most phase shifts and mixing angles are described well by NNLO EFT_# at low energies.
- N³LO contributions will be important as they contain two-body P wave contact interactions, which may help fix certain mixing-angles and phase shifts.
- New technique makes higher order perturbative calculations much easier, which is important in order to calculate polarizaiton observables such as A_y.
- The new technique can be used to calculate any diagram with full off-shell scattering amplitudes. This makes calculations involving external currents much simpler to calculate (e.g. ³H and ³He Compton scattering and photodisintegration both parity conserving and violating).

Numerical Techniques

$$t_i = B_i + \sum_j K_{ij} w_j t_j$$

$$\sum_{j} \left(\delta_{ij} - \mathcal{K}_{ij} w_j \right) t_j = B_i$$

Integral equation is discretized and solved along contour in complex plane (Hetherington-Schick Method)

