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* Unitarity

+ Universal relations for 2-
component Fermi gas

- Universal relations for a Bose gas



Largest cross sections
allowed by quantum
mechanics

a — OO : unitarity

Large, finite a:
universal regime

S-wave scattering

length, a, can be

controlled with
Feshbach resonance.

At unitarity, T'and n are
only remaining scales

Scattering Length a(B)
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- Few-body physics controls aspects of many-body physics

* Tan's Contact, C, for fermions with 2 spin states:

- Gives the dependence of the energy on the scattering length:
d.  C
da ~ 4ma2

- Gives the large-momentum tail of the momentum distribution:

kin(k) — C

- There are many more relations involving the contact!

- Virial theorem, equation of state, etc. Tan, Ann. Phys. 323,
(2008)

- Note: the Fermi gas is stable at unitarity.



The tail of the momentum distribution is determined by the

contact: 4
k*n(k) — C
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scaled by Fermi momentum

ke=(3m? <n>)1/3

Plateau (1/k* tail) above 2 k! 6



Tan’s Contact:

- An extensive, thermodynamic variable conjugate to //a

- Measures how likely it is for two atoms to be close together

+ For homogeneous Fermi gas at zero temperature:
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+ Two- and three-body contacts:
CQZfd3T’CQ Cngdg’f‘C;g

The large-momentum tail becomes:

A, 50, and ¢ are known universal numbers:
so=1.00624 [1]
A =89.2626 [2]
¢ =-1.33813 [2]

. k. can be determined experimentally

[1] Efimov Phys. Lett. 33B 563 (1970) 8
[2] Braaten, Kang, and Platter PRL 106 153005 (2011)



Measure Efimov resonance in the three body loss rate at scattering

length a.
10¢
: . For®Rb, a_ = —759 ag [1]
- I |+ k.is universally related to a. [2]:
OE 1- ' A_K, = —1.50763
= : .
3 . For ®Rb, k, = 1/(503 ag)
o
— 0.1¢ . Note: simple extrapolation of the
R ; _ loss rate to unitarity suggests
, o j that the Bose gas is unstable at
A= 1/kthermal I I
0.01 A N _ unitarity.
-10° -10*
scattering length a (a,)
[1] JILA, PRL 108, 145305 (2012) 9

[2] Gogolin, Mora, and Egger, PRL 100, 140404 (2008)



- At unitarity with 7=0, n is the only dimensionful scale in

the system (assuming log-periodic dependence on k. is
weak).

- By dimensional analysis,

Co = Od’I'L4/3 — (9 = aN(n1/3>
C3 = pn®/3 = (O3 = BN (n?/3)

* « and B are universal numbers
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- Interaction hamiltonian
- Two-body scattering amplitude
- Two- and three-body contacts

- Tail of the Momentum
Distribution
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The large scattering length zero-range limit can be described

by a quantum field theory with

Hine = 5 = 1ly + 2 gyl glgyy

In terms of the S-wave scattering length:
g = 8m/(1/a — 2A /)
995 H
A2
e A is an explicit momentum cutoff
e is a log-periodic function of the cutoff

g3 =

12



The 2-body scattering amplitude can be derived by solving the
integral equation:

X e

81 /m

ALE) = —1/a+/—mE — ic
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Use the adiabatic relations to define the 2-body contact
operator (assume there is no 3-body interaction):

9, 1
(aa—Z) = L g2 TepTapep

8mram 4

OF

1 C
— (aa—a> B 8ﬂam/d3R<%g§¢TwTw¢> B 2

mTam

Similarly, for 3-body contact, consider

/4:8%
Ok, .




The contact densities are

> 5 H(log(A
Cr = L (ytytyy) - 2D ytytytyy)

2 H'(log(A
Ca = 22 (Z%( )yttt

Where:
e A is an explicit momentum cutoff
e [ is a log-periodic function of the cutoff

e H’is the derivative of H with respect to log(A)

Note:

¢ The expectation values have cutoff dependence

¢ The contact densities are independent of the cutoff
¢ The contact densities are state-dependent



The momentum distribution for the bosons is

n(k) = / d°R / dPre”* T (T (R + r)(R — ir))

We can use the OPE to expand 9T (R + :r)Y(R— Sr):

YR+ Ir)Y(R— 3r) =) cn(r)On(R)

e Some of the coefficients are non-analytic at r=0.

® These can give power law tails in n(k).



Express product of local operators at nearby points as a series
of local operators:

OA(R-F ) OB( ch )

¢ Expansion coefficients of lowest dimension operators can be
determined by matching expectation values in few-body states

¢ The coefficients are the same for any state of the system

® |n many cases, the series can be truncated after only a few
terms

e Construct operators O, (R) from fields and gradients of fields

¢ The set of operators includes those from Taylor expanding the left
hand side and operators resulting from quantum fluctuations 17



Assume our system IS homogeneous
<¢T ——I‘ E Cn

Calculate LHS in 2-body scattering state:

W(%w —31)) =
= o o e
- AamfA%(p?/m)

— etPT
TP




Now consider RHS of

<¢T( Z Cn (T (0))

Calculate expectation values of relevant local operators in 2-
body scattering states:

im*A®(p* /m)
8T

(¥1(0)) =

This matches the 7* term from the LHS. So, the expansion

coefficient for (T4 (0)) is just 1. This term does not
contribute at large momenta.




Now consider RHS of

<¢T( Z Cn (T (0))

Calculate expectation values of relevant local operators in 2-
body scattering states:

1 .2 2 A2/7..2
(19209 T(0)) = m* A*(p° /m)
This matches the p-dependence of the r' term from the LHS.
So, the expansion coefficient of (igngszpw(O)) iS

r This term can contribute
KT at large momenta!




Putting these together:

PI R+ IR - 1r) = plp(R) + br- [BIVY(R) — VolypR)] + -

— 5m 1BV PTYP(R) + -

Insert into
n(k) = /d3R/d3’re—ik'r(¢T(R+ ;1)) (R — Sr))

Only terms in the second line can contribute at large k.

L[ sn1 2t
S o [ @RGSR+
/d37'(8—7r')6k Z—k—4: 1

:—02-|—...



Including the 3-atom interactions:

® (0 @t 13y, (O

\ L5

ot _ Terms which fal
Note: depends on k.
component P faster than 1/k°

fermions!




- Description of experiment

- Loss rate measurement

- Measurement of momentum
distributions

- Looking for universality
- Extracting the contacts

23



JILA, Nature Physics 10, 116—119 (2014)

Step 1: Produce a dilute BEC of ®*Rb

na’ < 1

<

(n) = 5.5/um?
((n) = 1.6/,um3) y



Step 2: ramp to unitarity,
then hold for a variable time

The JILA group observed that the spacial distribution
didn't change dramatically after the ramp and hold.,



Step 3: turn off trapping
potential and interactions

D

Step 4: allow the gas to expand
then take a picture.

26
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The momentum distributions saturate on a timescale
tsat ~ 100,US < tloss 28



Scale k*n(k) by appropriate powers of kr = (67%(n))/?

N SR

2 10' f ..‘“\:‘:A“ <>—16/ 3 -
% A‘:-C::. :\f‘.‘ %

S v -
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K/K- )



- The high-momentum tail of the scaled momentum
distribution is

k*n(k)  an'/?)  Asin(2soIn(k/k.)+¢) B(n3/>)

+ ke = 1/(503 ag) determined from Efimov resonance

- Fit this for a and g to the tail of the measured
momentum distribution with (n) = 5.5/um?

30



Fit o and B to tail of the (n) = 5.5/um? distribution:

15— -—
" - o ~ 20
¢ ol N A b2
1 p -
<
=9
S )
>
0= 0
K/K 3



- Noting that In(k/k,) = In(k/kr) + In(kr /K. )We see
that K.introduces a relative phase between
distributions with different &z

- Since o and S are universal numbers they should apply
for the distribution with (n) = 1.6/pm?

32



Use fitted values of « and Bfrom (n) = 5.5/um?" to
predict momentum distribution with (n) = 1.6/um>:

1 5 L} L) L) ' L} L) L L} L) L) L) L} l

K/K s



We find:

Co = 20n*/3
C3 — 2’72,5/3

Calculations of Cs :

Co = 10.3n%/3 Diederix, Van Heigst, and Stoof PRA 84, 033618

(2011)

Co = 327?,4/3 Van Heugten and Stoof arXiv:1302.1792 (2013)

Co = 12n4/3 Skyes, Corson, D’Incao, Kol
Hazzard, and Bohn arXiv:

Co = 0. 02n%/3 Rossi, Salasnich, Ancilotto, -

Calculations of C3: none!

er, Greene, Rey,
309.0828 (2013)

'oigo arXiv:1403.5145 (2014)



- Virial theorem

-+ Radio frequency spectroscopy

35



Determine C, from Determine C; from

the slope near energy difference
unitarity. at unitarity.




Rabi frequency

Log-periodic
function of w/mk.2



+ EFT provides a convenient, powerful formalism for
deriving universal relations for atomic systems.

+ Measured tails of momentum distributions in the JILA
experiment are consistent with logarithmic scaling
violations predicted by universal relations.

+ This agreement with the universal relations provides
guantitative support for the claim by the JILA group
that the state of matter they observed was a locally
equilibrated unitary Bose gas.

* The virial theorem and rf transition rate provide other
experimental probes of the contact.
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