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Gauge Invariance

Gauge invariance (Eicheninvarianz) principle :
◮ key point in construction of fundamental interactions

◮ its original quantum-mechanical formulation by Fock(26) and Weyl(28) after
some generalizations (see, e.g., survey [JacksonOkun(01)] )

◮ fruitful applications in different branches of physics, including nuclear physics

◮ so-called low-energy theorems for EM transitions.

Our departure point in describing electromagnetic (EM) interactions with nuclei (in
general, bound systems of charged particles) is to use the so-called Fock-Weyl
criterion and a generalization of the Siegert theorem.
Now I would like to show how one can meet this criterion in all orders in charge e and
construct EM interaction operators in case of nuclear forces arbitrarily dependent on
velocity. Along the guideline we have derived the conserved current density operator
for a dicluster system (more precisely, the system of two finite-size clusters with
many-body interaction effects included) that could be ... .
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The Fock-Weyl criterion and its consequences

Let us write for a quantum-mechanical system that interacts with EM field the
Schrödinger equation

ı
∂Ψ

∂t
= H {Aµ}Ψ (0.1)

and consider gradient displacement (gauge transformation after Weyl)

Aµ(x) → A′
µ(x) = Aµ(x) + ∂µG(x) (0.2)

of EM potential Aµ(x) = (A0(x),A(x)) at space-time point x = (t , x) with an arbitrary
function G(x). This point is sufficiently delicate [Kaz(82)]. In particular, one has to
consider that function G(x) has well-defined limits at t = ±∞.

Theory is gauge invariant if there exists a unitary transformation Ψ → Ψ′ = UΨ (after
Fock(26) ) such that Eq. (0.1) remains unchanged in its form, viz.,

ı
∂Ψ′

∂t
= H

{

A′
µ

}

Ψ′

This physical requirement is equivalent to the constraint

H
{

A′
µ

}

= UH {Aµ}U† + ı
∂U
∂t

U† = UH {Aµ}U† − ıU
∂U†

∂t
(0.3)

imposed upon Hamiltonian H {Aµ} of the system.
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Existence of U is demonstrated by assuming that

U = eıχ(t), χ(t) = −
∫

ρ̂(x)G(x) dx, (0.4)

where ρ̂(x) is charge-density operator.
In fact, let us consider the field Aµ(x) minimally coupled with a system of interacting
nonrelativistic particles (nucleons). It allows us to split H {Aµ} into unperturbed part
H0 = Hrad + Hnucl and interaction HI {Aµ} of the nucleus with the EM field, viz.,
H {Aµ} = H0 + HI {Aµ}. In turn,

HI {Aµ} = H(1)
I {Aµ}+

1
2!

H(2)
I {Aµ}+ · · · , (0.5)

where superscript denotes order in e. In its canonical form,

H(1)
I {Aµ} =

∫

Aµ(x)J
µ(x) dx, (0.6)

where Jµ(x) = (ρ(x), J(x)) is charge-current density operator for system (nucleus).
Further, if the operators χ and ∂χ/∂t commute, from Eqs. (0.3) it follows that

H + HI {Aµ + ∂µG} = eıχHe−ıχ + eıχHI {Aµ} e−ıχ − ∂χ

∂t
, (0.7)

since we are looking for the generator χ = χ† which would be dependent merely on
the nuclear variables.
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Then in accordance with [KotMelShe(95)]

H(1) {Aµ + ∂µG} = ı[χ,H]− ∂χ

∂t
+ H(1) {Aµ} ,

1
2!

H(2) {Aµ + ∂µG} =
ı2

2!
[χ, [χ,H]] + ı[χ,H(1) {Aµ}] +

1
2

H(2) {Aµ} , (0.8)

. . . . . . . . . . . .

from which it follows at Aµ = 0 (µ = 0, 1, 2, 3) :
∫

Jµ(x)∂µG(x) dx = ı[χ,H]− ∂χ

∂t
, H(n) {∂µG} = ın[χ,H](n) (0.9)

(n = 2, 3, . . .)

where [χ,H](n) ≡ [χ, [χ, . . . [χ,H] . . .]] is the multiple commutator with n brackets.
One can see that the first of Eqs. (0.9) is fulfilled for a freely chosen function G(x)
with the operator χ determined as in Eq. (0.4). In turn, such a link gives rise to the
continuity equation (CE) for the current:

ıdiv J(x) = [H, ρ(x)] (0.10)

or, equivalently,
[P, J(0)] = [H, ρ(0)] (0.11)

Here P is total momentum operator of nucleus (system).
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Thus we have shown that the Fock-Weyl criterion generates the gauge-invariance
conditions in various orders in e at operator level. Following [Kaz(82)], one should
stress that even if relations (0.9) are satisfied it is necessary to take care of
independence of amplitude for some EM transition from choice of gauge (shortly, its
GI). Actually, the GI in the first order in e for a single-photon process with energy
transfer ω and momentum transfer q implies that after the replacement of the photon
polarization vector εµ = (ε0, ε) by qµ = (ω, q) the corresponding amplitude (e.g., see
below Eq. (0.15)) must be equal zero, i.e.,

q〈Pf ; f | J(0) | Pi ; i〉 = ω〈Pf ; f | ρ(0) | Pi ; i〉 . (0.12)

On other hand, this relation is obtained if one calculates the matrix element of both
sides of Eq. (0.11) between the initial and final states | Pi ; i〉 and | Pf ; f 〉, the H - and
P - eigenvectors:

Ĥ | Pi ; i〉 = Ei | Pi ; i〉 , Ĥ | Pf ; f 〉 = Ef | Pf ; f 〉 (0.13)

and
P̂ | Pi ; i〉 = Pi | Pi ; i〉 , P̂ | Pf ; f 〉 = Pf | Pf ; f 〉 , (0.14)

keeping in mind energy-momentum conservation with ω = Ef − Ei(q = Pf − Pi) for
the photoabsorption and ω = Ei − Ef (q = Pi − Pf ) for the photoemission.
In other words, CE itself is insufficient to ensure GI of EM transition amplitude. It
should be augmented with additional requirement, viz., initial and final WFs must be
exact solutions of eigenvalue problem by Eqs. (0.13) - (0.14). Clearly, it is difficult to
meet this requirement in practice when handling many-particle WFs (especially,
nuclear ones).
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An effective way of ensuring gauge independent treatment of
single-photon processes on nuclei

As shown in [She(89)], [LevShe(93)], photonuclear reaction amplitude of interest (to
be more definite for the photon emission with energy Eγ and momentum k )

Tif =
[

2(2π)3Eγ

]−1/2 〈

Pi − k;f
∣

∣

∣
εµĴµ(0)

∣

∣

∣
Pi ; i

〉

(0.15)

can be expressed through electric (E(k)) and magnetic (H(k)) field strengths,

E(k) = i
[

2(2π)3Eγ

]−1/2
(Eγε(k)− kε0(k)) , (0.16)

H(k) = i
[

2(2π)3Eγ

]−1/2
k × ε(k), (0.17)

these manifestly GI quantities, and the matrix elements Dif (k) and Mif (k) of the
so-called generalized electric and magnetic dipole moments of nucleus (system):

Tif = E(k)Dif (k) + H(k)Mif (k). (0.18)

These formulae were derived without separation of the center-of-mass (CM) motion,
and thus they can be used in relativistic nuclear models [She(12)] or in problems,
where such a separation becomes hardly feasible (see [LevCanShe(04)] and refs.
therein).
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Note helpful relations such as
i) property of translational invariance

Jµ(~x) = e−i~P~x Jµ(0)ei~P~x (0.19)

ii) Foldy representation [Foldy(530] for

~aei~b~c =

∫ 1

0
{∇~c

(

~a · ~ceiλ~b~c
)

+ iλ~c × [~a × ~b]eiλ~b~c}dλ (0.20)

with arbitrary vectors ~a, ~b and ~c .
iii) operator identity

eâ+b̂ = eb̂eâ exp







1
∫

0

ds e−sâ
[

e−sb̂ â esb̂ − â
]

esâ







, (0.21)

that yields

eâ+b̂ = eb̂ exp







1
∫

0

e−sb̂âesb̂ds







if
[

e−sb̂âesb̂, â
]

= 0.

for any operators â and b̂.
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Generalized electric dipole moment operator with one-body charge
density

For the exposition we will confine ourselves to nonrelativistic approach, in which
nuclear Hamiltonian H

H =
P2

2M
+Hint ≡ KCM + Hint , (0.22)

where M total mass of nuclear system, is divided into kinetic energy operator KCM of
center-of-mass (CM) motion and intrinsic Hamiltonian Hint that depends on internal
variables of interacting nucleons. The respective eigenvectors can be factorized as
|Pi ; i〉= |Pi) |i〉 , |Pi − k; f 〉= |Pi − k) |f 〉, where the bracket |) is used to represent a
vector in the space of the CM coordinate R so that P̂ |P) = P |P) and
Hint |i(f )〉 = E int

i(f ) |i(f )〉.
Then the reaction amplitude can be written in the form Tif = 〈f |Tint |i〉 with operator
Tint , which acts in the space of internal variables,

Tint = E(k)D(k) + H(k)M(k), (0.23)

where we have introduced operator D(k) of generalized electric dipole
moment(GEDM)

D(k) =
1

Eγ

1
∫

0

(Pi − λk|R[H, ρ(0)] |Pi) dλ, (0.24)
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and operator M(k) of generalized magnetic dipole moment (GMDM)

M(k) = −
1
∫

0

(Pi − λk|R × J(0) |Pi)λdλ. (0.25)

Further, with the help the relation [H,R] = −iP/M we find

(2π)3D(k) =
1

Eγ

1
∫

0

dλ
{

[Dint (λk) ,Hint ] + λ
k · (2Pi − λk)

2M
Dint (λk) + i

Pi − λk
M

ρint (λk)
}

(0.26)
with

ρint(λk) = (2π)3 (Pi − λk| ρ(0) |Pi) , (0.27)

Dint(λk) = −(2π)3 (Pi − λk|Rρ(0) |Pi) =
i
λ
∇kρint(λk). (0.28)
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In the phenomenological treatment of EM interactions with nuclei one considers the
one-body (additive in constituents) charge density operator,
ρ(x) = ρ[1](x) ≡∑α ρα (x), where the summation runs over all the constituents
(protons and neutrons) and the charge distribution referred to one nucleon

ρα (x) = ρp (x − r̂α )πp (α) + ρn (x − r̂α )πn (α) (0.29)

with arbitrary (for a moment) functions ρp,n (y) normalized as
∫

ρp (y)dy = ep = e,
∫

ρn (y)dy = 0. Here r̂α nucleon coordinate operator and
πp (α) = 1

2 [1 + τ3 (α)] (πn (α) = 1
2 [1 − τ3 (α)]) is the projection operator onto proton

(neutron) states.
Thus within this one-body model we obtain

ρ
[1]
int (λk) =

∑

α

ρα (λk) =
∑

α

f N
α (λk) e−iλkr ′α (0.30)

and

D[1]
int (λk) = d[1]

int (λk) + i
k
k

∑

α

e−iλkr ′α df N
α (q)
dq

∣

∣

∣

∣

q=λk

, (0.31)

d[1]
int (λk) =

∑

α

dα (λk) =
∑

α

f N
α (λk) r′α e−iλkr ′α , (0.32)

where r′α = rα − R relative coordinate (Jacobi variable) and f N
α (~q) nucleon FF.
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Generalized magnetic dipole moment operator for systems with
two-body forces between their constituents.

As to the GMDM, we are looking for current density operator J (x) in form

J (x) = J[1] (x) + J[2] (x) (0.33)

to be consistent with nonrelativistic Hamiltonian

H =
∑

α

p2
α

2mα
+
∑

α<β

V (α, β) ≡ K + V (0.34)

via CE, viz.,
[

P, J[1] (0)
]

=
[

K , ρ[1] (0)
]

, (0.35)
[

P, J[2] (0)
]

=
[

V , ρ[1] (0)
]

, (0.36)

where pα momentum operator of nucleon with label α, mα = m nucleon
(constituent) mass and V (α, β) interaction between two constituents.
Respectively,

(2π)3 M (k) = M1BD (k) + M2BD (k) , (0.37)

M1BD (k) ≡ i (2π)3 ∇k ×
1
∫

0

dλ (Pi − λk| J[1](0) |Pi) = MC (k) + MS (k) , (0.38)
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and let me be concerned with two-body part

M2BD (k) = i (2π)3 ∇k ×
1
∫

0

dλ (Pi − λk| J[2] (0) |Pi) (0.39)

At this point, if we put Ĵ int(λk) = (2π)3 (Pi − λk| J (0) |Pi) by analogy with the relation
(0.27) and consider the Fourier transform Ĵ int(q) =

∫

e−iqx Ĵ int(x) dx, it gives rise to
quantum analog

M̂ (0) ≡ M̂ =

∫

dxx × Ĵ int(x) (0.40)

of the Biot-Savart formula for magnetic dipole moment from classical
magnetodynamics. Such a continuity justifies the terminology adopted here.
In its turn, operator M2BD (k), being generated by two-body current density J[2] (x),
occurs if commutator in the r.h.s. of Eq. (0.36 ) is nonzero. In this application to
nuclear physics we will show a possible way of constructing the density taking into
exchange and nonlocal properties of nuclear forces.
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In this context, following [KoShe(84)], we employ the representation

V̂ (α, β) =

∫

dx exp (−i p̂αβx)V (r̂αβ + x, r̂αβ) (0.41)

of translationally invariant interaction V (α, β) that can depend on rαβ = rα − rβ
pαβ = (mβ pα − mα pβ ) / (mα + mβ ) (pαβ = 1

2 (pα − pβ ) for identical particles) in
an arbitrary manner. Of course, one needs to keep in mind that quantities

V
(

r′αβ , rαβ

)

≡
〈

r′αβ

∣

∣

∣
V̂ (α, β)

∣

∣

∣
rαβ

〉

are operators in spin space of two particles

(nucleons) and depend on their charge state.
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Functional H{Aµ} can be built up if we include EM field via minimal substitution:

p̂α → p̂α −
∫

dxA (x) ρ̂α (x) , i
∂

∂t
→ i

∂

∂t
−
∫

dxA0 (x) ρ̂ (x) . (0.42)

Omitting details we arrive to two-body current density operator

Ĵ[2] (x) = − i
2

∑

α<β

∫

dy

1
∫

0

ds
{

ρ̂α

(

x +
1
2

ys
)

− ρ̂β

(

x − 1
2

ys
)}

ye−i p̂αβyV (r̂αβ + y, r̂αβ

(0.43)
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From Eq. (0.43) for a local NN interaction V (r + y, r) = V (r) δ (y) it follows that

Ĵ[2] (x) = 0. For nonlocal interactions V̂ (α, β) the commutator
[

r̂αβ , V̂ (α, β)
]

6= 0.

Among them we encounter spin-orbit potentials, forces of Majorana type,
V̂M (α, β) = PM (α, β)VM (r̂αβ) , for which VM (r + y, r) = VM (r) δ (2r + y) , separable
interactions and so on. Explicit analytic expressions for contribution Ĵ[2]

M (x) that
stems from product PM (α, β) = −Pσ (α, β)Pτ (α, β) of spin and isospin exchange
operators, Pσ (α, β) = 1

2 [1 + σ (α) · σ (β)] and Pτ (α, β) = 1
2 [1 + τ (α) · τ (β)] , to

the two-particle current J[2] (x) can be written as

Ĵ[2]
M (x) = − i

2

∑

α<β

1
∫

0

ds {ρ̂α (x + r̂αβs)− ρ̂β (x − r̂αβs)}
[

r̂αβ , V̂M (α, β)
]

(0.44)

or within isospin formalism

Ĵ[2]
M (x) =

1
2

∑

α<β

[τ(α)× τ(β)]3 Pσ (α, β) r̂αβVM (r̂αβ)

1
2
∫

− 1
2

ρv

(

x − R̂αβ + r̂αβ t
)

dt ,

(0.45)
where function ρv (x) determines isovector part of distribution (0.29). For this
derivation we have used the relation [τ3(α)− τ3(β)]Pτ (α, β) = − 1

2 i [τ(α)× τ(β)]3 .
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After this, by introducing the so-called exchange contribution

M̂exc (k) ≡ − (2π)3

1
∫

0

λdλ (Pi − λk| Ĵ[2]
M (0) |Pi) (0.46)

to the GMDM we get with point-like nucleons

M̂exc = M̂exc (0) = −e
8

∑

α<β

[τ(α)× τ(β)]3 r′α × r′βPσ (α, β)VM (r̂αβ) (0.47)

to be compared with the magnetic dipole moment of system with any nonlocal
two-body interaction,

M̂2BD = − i
4

∑

α<β

(

d̂α(0)− d̂β(0)
)

×
[

r̂αβ , V̂ (α, β)
]

(0.48)

that follows from Eq.(0.43) and property
[r̂αβ , exp(−i p̂αβy)V (r̂αβ + y, r̂αβ)] = y exp(−i p̂αβy)V (r̂αβ + y, r̂αβ). The operator
(0.47) becomes equivalent to that from [Sachs(48)] if we replace vector product
r′α × r′β by rα × rβ . With such a proviso we could call operator (0.47) the Sachs
exchange moment.
Finally, we would like to emphasize that the factor [τ (α)× τ (β)]3 in the isospin
dependence of J[2]

M (x) arises from the exchange τ (α) · τ (β) nonlocality , being
typical of realistic NN forces (cf., the so-called pionic and sea-gull MECs).
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Some Recollections
We will now prove the fundamental theorem:
any operator O may be expressed as a sum of
products of creation and annihilation operators ...
S. Weinberg
Quantum Theory of Fields, Vol. I, 1995, p. 175.

In accordance with the motto each of ten generators of the Poincaré group Π may be
expressed as a sum of products of creation and annihilation operators a†(n) and a(n)
(n = 1, 2, ...) for free particles, e.g., bosons and/or fermions.

In the framework of such a corpuscular picture Hamiltonian of a system of interacting
mesons and nucleons can be written as

H =

∞
∑

C=0

∞
∑

A=0

HCA,

HCA =

∫

∑

HCA(1
′, 2′, ..., n′

C ; 1,2,...,nA)a
†(1′)a†(2′)...a†(n′

C)a(nA)...a(2)a(1),

C(A) – particle-creation (annihilation) number for operator substructure HCA and

HCA(1
′, 2′, ...,C; 1,2, ...,A) = δ(~p′

1 + ~p′
2 + ...+ ~p′

C − ~p1 − ~p2 − ...− ~pA)

× hCA(p
′
1µ

′
1ξ

′
1, p

′
2µ

′
2ξ

′
2, ..., p

′
Cµ

′
Cξ

′
C ; p1µ1ξ1, p2µ2ξ2, ..., pAµAξA),

c-number coefficients hCA do not contain! delta function.
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“To free ourselves from any dependence on pre-existing field theories” (after
S.Weinberg), boost operators ~N = (N1,N2,N3)

~N =

∞
∑

C=0

∞
∑

A=0

~NCA,

~NCA =

∫

∑

~NCA(1
′, 2′, ..., n′

C ; 1, 2, ..., nA)a
†(1′)a†(2′)...a†(n′

C)a(nA)...a(2)a(1)

one of our purposes is to find some links between coefficients HCA and ~NCA,
compatible with commutations

[Pi ,Pj ] = 0, [Ji , Jj ] = iεijk Jk , [Ji ,Pj ] = iεijk Pk ,

[~P,H] = 0, [~J,H] = 0, [Ji ,Nj ] = iεijk Nk , [Pi ,Nj ] = iδijH,

[H, ~N] = i~P, [Ni ,Nj ] = −iεijk Jk ,

(i , j , k = 1, 2, 3),

~P = (P1,P2,P3) and ~J = (J1, J2, J3) linear and angular momentum operators.
For instant form of relativistic dynamics after Dirac only Hamiltonian and boost
operators carry interactions,

H = HF + HI

~N = ~NF + ~NI

while ~P = ~PF and ~J = ~JF .
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In turn,

HCA =

∫

HCA(~x)d~x so H =

∫

H(~x)d~x
with density

H(~x) =
∞
∑

C=0

∞
∑

A=0

HCA(~x).

For instance, in case with C = A = 2,

H22(1
′, 2′; 1, 2) = δ(~p′

1 + ~p′
2 − ~p1 − ~p2)h(1

′2′; 12)

H22(~x) =
1

(2π)3

∫

∑

exp[−i(~p′
1 + ~p′

2 − ~p1 − ~p2)~x ]h(1
′2′; 12)a†

(

1′
)

a†
(

2′
)

a (2) a (1) .

As usually a(n) = a(~pn, µn, ξn). Further, transformation properties with respect to Π in
case of massive particle with spin j :

UF (Λ, b)a
†(p, µ)U−1

F (Λ, b) = eiΛpbD(j)
µ′µ(W (Λ, p))a†(Λp, µ′),

∀Λ ∈ L+ and arbitrary spacetime shifts b = (b0, ~b),
with D-function whose argument is Wigner rotation W (Λ, p), L+ the homogeneous
(proper) orthochronous Lorentz group, (Λ, b) → UF (Λ, b) unitary irreducible
representation of Π in Hilbert space, e.g. hardronic states, for operators
a(p, µ) = a(~p, µ)

√
p0 that meet covariant commutation relations

[a(p′, µ′), a†(p, µ)]± = p0δ(~p − ~p′)δµ′µ,

[a(p′, µ′), a(p, µ)]± = [a†(p′, µ′), a†(p, µ)]± = 0.

Here p0 =
√

~p2 + m2 is fourth component of 4-momentum p = (p0, ~p).
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Often one has to deal with field models where in Dirac (D) picture

UF (Λ, b)HI(x)U
−1
F (Λ, b) = HI(Λx + b), ∀x = (t , ~x).

For interaction density

H22(x) =
1

(2π)3

∫

∑

exp[i(p′
1 + p′

2 − p1 − p2)x ]× h(1′2′; 12)a†
(

1′
)

a†
(

2′
)

a (2) a (1)

it means

D
(j′1)
η′

1µ
′

1
(W (Λ, p′

1))D
(j′2)
η′

2µ
′

2
(W (Λ, p′

2))D
(j1)∗
η1µ1

(W (Λ, p1))D
(j2)∗
η2µ2

(W (Λ, p2))

× h(p′
1µ

′
1, p

′
2µ

′
2; p1µ1, p2µ2) = h(Λp′

1η
′
1,Λp′

2η
′
2; Λp1η1,Λp2η2).

Of course, summations over all dummy labels are implied.
After these preliminaries we will show how one can build up interaction parts in
Hamiltonian and boosts.
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Recall that angular momentum ~J = ~JF = ~Jπ + ~Jferm with

~Jπ =
i
2

∫

d~k ~k ×
(

∂a†(~k)

∂~k
a(~k)− a†(~k)

∂a(~k)

∂~k

)

and ~Jferm = ~Lferm + ~Sferm, where

~Lferm =
i
2

∫

∑

d~p ~p ×
(

∂b†(~pµ)
∂~p

b(~pµ)− b†(~pµ)
∂b(~pµ)
∂~p

+
∂d†(~pµ)
∂~p

d(~pµ)− d†(~pµ)
∂d(~pµ)
∂~p

)

,

~Sferm =
1
2

∫

∑

d~pχ†(µ′)~σχ(µ)(b†(~pµ′)b(~pµ)− d†(~pµ′)d(~pµ)),

boosts ~NF = ~Nπ + ~Nferm with

~Nπ =
i
2

∫

d~k ω~k (
∂a†(~k)

∂~k
a(~k)− a†(~k)

∂a(~k)

∂~k
)

and ~Nferm = ~Norb
ferm + ~Nspin

ferm, where

~Norb
ferm =

i
2

∫

∑

d~p E~p

(

∂b†(~pµ)
∂~p

b(~pµ)− b†(~pµ)
∂b(~pµ)
∂~p

+
∂d†(~pµ)
∂~p

d(~pµ)− d†(~pµ)
∂d(~pµ)
∂~p

)

,

~Nspin
ferm = −1

2

∫

∑

d~p ~p × χ†(µ)~σχ(µ)

E~p + m

(

b†(~pµ)b(~pµ) + d†(~pµ)d(~pµ)
)

,

ω~k =

√

~k2 + m2
π (E~p =

√

~p2 + m2) pion (nucleon) energy and χ(µ) Pauli spinor.
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Clothed Particle Representation (CPR) of Hamiltonian and Other
Generators of the Poincaré Group

At this point, one can address the so–called Belinfante ansatz

~Nbel = −
∫

~xH(~x)d~x

which is helpful for a simultaneous blockdiagonalization of Hamiltonian and boost
[2,3], viz., both of them, being dependent on primary operators {α} (such as a†(a),
b†(b) and d†(d) for mesons and nucleons) in bare particle representation (BPR), are
expressed through corresponding operators {αc} for particle creation and
annihilation in CPR via unitary clothing transformations (UCTs) W (α) = W (αc)

α = W (αc)αcW †(αc)

A key point of clothing procedure in question is to remove so-called bad terms from
Hamiltonian

H ≡ H(α) = HF (α) + HI(α) = W (αc)H(αc)W
†(αc) ≡ K (αc),

By definition, such terms prevent physical vacuum |Ω〉 (H lowest eigenstate) and
one-clothed-particle states |n〉c = a†

c(n)|Ω〉 to be H eigenvectors for all n included.
Bad terms occur every time when any normally ordered product

a†(1′)a†(2′)...a†(n′
C)a(nA)...a(2)a(1)

of class [C.A] embodies, at least, one substructure ∈ [k .0] (k = 1, 2...) or/and [k .1]
(k = 2, 3, ...).
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Respectively, let us write for boson–fermion system

HI(α) = V (α) + Vren(α)

with primary (trial) interaction

V (α) = Vbad + Vgood

”good” (e.g., ∈ [k .2]) as antithesis of ”bad” while Vren(α) ∼ [1.1] + [0.2] + [2.0] ”mass
renormalization counterterms”. Latter are important to ensure relativistic invariance
(RI) in Dirac sense.
In its turn, V =

∑

b
Vb comprises separate boson–fermion couplings Vb. In order to

compare our calculations with those by Bonn group (Machleidt, Holinde, Elster) we
have employed

V (α) = Vs + Vps + Vv

Vs = gs

∫

d~x ψ̄(~x)ψ(~x)ϕs(~x) Vps = igps

∫

d~x ψ̄(~x)γ5ψ(~x)ϕps(~x)

Vv = V (1)
v + V (2)

v , V (1)
v =

∫

d~xHsc(~x), V (2)
v =

∫

d~xHnonsc(~x)

Hsc(~x) = gvψ̄(~x)γµψ(~x)ϕ
µ
v (~x) +

fv

4m
ψ̄(~x)σµνψ(~x)ϕ

µν
v (~x)

Hnonsc(~x) =
g2

v

2m2
v
ψ̄(~x)γ0ψ(~x)ψ̄(~x)γ0ψ(~x) +

f 2
v

4m2
ψ̄(~x)σ0iψ(~x)ψ̄(~x)σ0iψ(~x)

ϕµν
v (~x) = ∂µϕν

v (~x)− ∂νϕµ
v (~x) tensor of vector field in Schrödinger (S) picture.
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Here we encounter scalar Hsc and nonscalar Hnonsc contributions to interaction
densities of ρNN and ωNN couplings

UF (Λ, a)Hsc(x)U
−1
F (Λ, a) = Hsc(Λx + a)

UF (Λ, a)Hnonsc(x)U
−1
F (Λ, a) 6= Hnonsc(Λx + a)

Therefore, in order to apply our approach to local field models with derivatives and/or
spin j ≥ 1 and also to their nonlocal extensions in framework of such a corpuscular
picture we have developed clothing procedure [2,3] removing from Vbad only its scalar
part Vsc , if any. Clothing itself (cf. our talks at ISHEPP’02 and ISHEPP’04), as
illustration for ρNN and ωNN couplings, is prompted by

H(α) = K (αc) = W (αc)[HF (αc) + Vv(αc) + Vren(αc)]W
†(αc)

or putting W = expR with R = −R† so

K (αc) = HF (αc) + V (1)
v (αc) + [R,HF ] + V (2)

v (αc)

+ [R,V (1)
v ] +

1
2
[R, [R,HF ]] + [R,V (2)

v ] +
1
2
[R, [R,V (1)

v ] + ...

and requiring [R,HF ] = −V (1)
v (*) for the operator R of interest to get

H = K (αc) = KF + KI

with a new free part KF = HF (αc) ∼ a†
cac and interaction

KI =
1
2
[R,V (1)

v ] + V (2)
v +

1
3
[R, [R,V (1)

v ]] + ...
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After a simple algebra we find

1
2

[

R,V (1)
v

]

(NN → NN) = Kv(NN → NN) + Kcont(NN → NN)

Operator Kcont(NN → NN) may be associated with a contact interaction since it does
not contain any propagators (details see in Refs. [6,7]). It has turned out that this
operator cancels completely non–scalar operator V (2). In our opinion, such a
cancellation, first discussed here, is a pleasant feature of the CPR.
Moreover, using property Vsc(x) to be Lorentz scalar one can show that Lie algebra
of Π is satisfied with

~NI = ~NBel + ~D ≡
∫

~xV (1)
v (~x)d~x + ~D

and get recursive formulae for finding contributions ~D(n) to ~D =
∞
∑

n=2

~D(n), label (n) –

n’th order in coupling constants. It differs from expansion by Krueger and Gloeckle
(1999).
In parallel, we have

~N(α) = ~B(αc) = W (αc){~NF (α) + ~NI(α) + ~Nren(α)}W †(αc)

with
~NI = −

∫

~xVv(~x)d~x = −
∫

~x{V (1)
v (~x) + V (2)

v (~x)}d~x = ~N(1)
I + ~N(2)

I
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As before (see Refs. [2,3]) we find

[R, ~NF ] = −~N(1)
I ,

once operator meets condition (*) so boost generators in CPR acquire structure
similar to K (αc)

~B(αc) = ~BF + ~BI .

Here ~BF = ~NF (αc) the boost operator for noninteracting clothed particles (in our case
fermions and vector mesons) and ~BI includes the contributions induced by
interactions between them

~BI = +
1
2
[R, ~N(1)

I ] +
1
3
[R, [R, ~N(1)

I ]] + ...
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Relativistic Interactions in Meson–Nucleon Systems
Interaction operators

KI ∼ a†
cb†

c acbc(πN → πN) + b†
c b†

c bcbc(NN → NN) + d†
c d†

c dcdc(N̄N̄ → N̄N̄)

+ b†
c b†

c b†
c bcbcbc(NNN → NNN) + ... + [a†

ca†
cbcdc + H.c.](NN̄ ↔ 2π) + ...

+ [a†
cb†

c b†
c bcbc + H.c.](NN ↔ πNN) + ...

Pion-nucleon interaction operator

K (πN → πN) =

∫

d~p1d~p2d~k1d~k2 VπN(~k2, ~p2;~k1, ~p1)a
†
c(~k2)b

†
c (~p2)ac(~k1)bc(~p1),

VπN(~k2, ~p2;~k1, ~p1) =
g2

2(2π)3

m
√

ω~k1
ω~k2

E~p1
E~p2

δ(~p1 + ~k1 − ~p2 − ~k2)

ū(~p2)

{

1
2

[

1

p̂1 + k̂1 + m
+

1

p̂2 + k̂2 + m

]

+
1
2

[

1

p̂1 − k̂2 + m
+

1

p̂2 − k̂1 + m

]}

u(~p1)

πN quasipotential in momentum space is:

ṼπN(~k2, ~p2;~k1, ~p1) =
〈

a†
c(~k2)b

†
c (~p2)Ω|K (πN → πN)|a†

c(~k1)b
†
c (~p1)Ω

〉
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Figure 1: Different contributions to πN quasipotential.
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Graphs in Fig. 1 are topologically equivalent to well-known time-ordered Feynman
diagrams. However, in Schrödinger picture used here, where all events are related to
one and the same instant t = 0, such an analogy could be misleading: line directions
in Fig. 1 are given with the sole scope to discriminate between nucleon and
antinucleon states.
Energy conservation is not assumed in constructing this and other quasipotentials.
Indeed, coefficients in front of a†

cb†
c acbc generally do not fulfill on-energy-shell

condition
E~p1

+ ω~k1
= E~p2

+ ω~k2
,

In this connection, ”left” four-vector s1 is not necessarily equal to ”right” Mandelstam
vector s2 = p2 + k2.
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Nucleon-nucleon interaction operator

After normal ordering of fermion operators we derive NN → NN interaction operator:

KNN =

∫

d~p1d~p2d~p ′
1d~p ′

2VNN(~p
′
1 , ~p

′
2 ;~p1, ~p2)b

†
c (~p

′
1)b

†
c (~p

′
2)bc(~p1)bc(~p2),

VNN(~p
′
1 , ~p

′
2 ;~p1, ~p2) = −1

2
g2

(2π)3

m2

√

E~p1
E~p2

E~p ′

1
E~p ′

2

δ(~p ′
1 + ~p ′

2 − ~p1 − ~p2)

×ū(~p ′
1)γ5u(~p1)

1
(p1 − p′

1)
2 − µ2

ū(~p ′
2)γ5u(~p2),

Corresponding relativistic and properly symmetrized NN interaction

ṼNN(~p
′
1 , ~p

′
2 ;~p1, ~p2) =

〈

b†
c (~p

′
1)b

†
c (~p

′
2)Ω | KNN | b†

c (~p1)b
†
c (~p2)Ω

〉

or through covariant (Feynman-like) “propagators”,
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ṼNN(~p
′
1 , ~p

′
2 ;~p1, ~p2) = −1

2
g2

(2π)3

m2

2
√

E~p1
E~p2

E~p ′

1
E~p ′

2

δ(~p ′
1 + ~p ′

2 − ~p1 − ~p2)

× ū(~p ′
1)γ5u(~p1)

1
2

{

1
(p1 − p′

1)
2 − µ2

+
1

(p2 − p′
2)

2 − µ2

}

ū(~p ′
2)γ5u(~p2)− (1 ↔ 2). (*)

Formula (*) determines NN part of OBE interaction derived earlier via Okubo
transformation method by Korchin, Shebeko [ Phys. At. Nucl. 56 (1993) 1663 ] (cf.
Fuda, Zhang. Phys. Rev. C 51 (1995) 23 ) taking into account pion exchange and
heavy-meson exchanges.
Distinctive feature of potential (*) is the presence of covariant (Feynman-like)
“propagator”,

1
2

{

1
(p1 − p′

1)
2 − µ2

+
1

(p2 − p′
2)

2 − µ2

}

.

On the energy shell for NN scattering, that is

Ei ≡ E~p1
+ E~p2

= E~p ′

1
+ E~p ′

2
≡ Ef ,

this expression is converted into genuine Feynman propagator.
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NN ↔ πNN transition operators

K (NN → πNN) =

∫

d~p1d~p2d~p ′
1d~p ′

2d~kVπNN(~p
′
1 , ~p

′
2 , ~k ;~p1, ~p2)

a†
c(~k)b

†
c (~p

′
1)b

†
c (~p

′
2)bc(~p1)bc(~p2)

VπNN

(

~p ′
1 , ~p

′
2 , ~k ;~p1, ~p2

)

= VπNN (Feynman-like) + VπNN (off-energy-shell) ,

where

VπNN(Feynman − like) = −i
g3

(2π)9/2

m2δ(~p1 + ~p2 − ~p ′
1 − ~p ′

2 − ~k)
√

2ω~k E~p1
E~p2

E~p ′

1
E~p ′

2

× ū(~p ′
2)γ5u(~p2)

(p2 − p′
2)

2 − µ2
ū(~p ′

1)

[

1

p̂′
1 + k̂ + m

+
1

p̂1 − k̂ + m

]

u(~p1),

Then we introduce quasipotential

ṼπNN(~p
′
1 , ~p

′
2 , ~k ;~p1, ~p2) =

〈

a†
c(~k)b

†
c (~p1

′)b†
c (~p

′
2)Ω|K (NN → πNN)|b†

c (~p1)b
†
c (~p2)Ω

〉

and draw respective graphs
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Figure 2: Illustration of the ”retarded” pion production mechanisms on the NN pair in the
g3

−order.
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Figure 3: Illustration of the ”advanced” pion production mechanisms on the NN pair in the
g3

−order.
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Three–Nucleon Forces

Normal ordering of fermion operators in [R, [R, [R,V ]]] leads to NNN → NNN
interaction operator (antiparticle degrees of freedom are neglected),

K (3N → 3N) =

∫

d~p1d~p2d~p3d~p ′
1d~p ′

2d~p ′
3V3N(~p

′
1 , ~p

′
2 , ~p

′
3 ;~p1, ~p2, ~p3)

× b†
c (~p

′
1)b

†
c (~p

′
2)b

†
c (~p

′
3)bc(~p1)bc(~p2)bc(~p3),

V3N(~p
′
1 , ~p

′
2 , ~p

′
3 ;~p1, ~p2, ~p3)

= −1
8

g4m4

(2π)6

δ(~p ′
1 + ~p ′

2 + ~p ′
3 − ~p1 − ~p2 − ~p3)

√

E~p1
E~p2

E~p3
E~p ′

1
E~p ′

2
E~p ′

3

D
~p ′

1 ,~p ′

2 ,~p ′

3
~p1,~p2,~p3

1
E~q

ū(~p ′
1)γ5u(~p1)

× ū(~p ′
2)

m − q̂
2m

u(~p2)ū(~p
′
3)γ5u(~p3),D

~p ′

1 ,~p ′

2 ,~p ′

3
~p1,~p2,~p3

=
E~p ′

2
− E~q + E~p1

− E~p ′

1

[(p1 − p ′
1)

2 − µ2] [(p ′
2 − q)2 − µ2]

×
[

3
(p3 − p ′

3)
2 − µ2

+
1

(p2 − q)2 − µ2

]

+
E~p2

− E~q + E~p ′

3
− E~p3

[(p3 − p ′
3)

2 − µ2] [(p2 − q)2 − µ2]

×
[

3
(p1 − p ′

1)
2 − µ2

+
1

(p ′
2 − q)2 − µ2

]

, ~q = ~p ′
1 + ~p ′

2 − ~p1 = ~p2 + ~p3 − ~p ′
3

In static limit for nucleons the quasipotential appears as a correction of nucleon-recoil
order.
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S Operator, Equivalence Theorem for S Matrix and Its Application to
Elastic NN Scattering

By definition, with H = HF (α) + HI(α)

S = lim
t2→+∞

lim
t1→−∞

eıHF t2 e−ıH(t2−t1)e−ıHF t1

Let us introduce S operator for decomposition H = K (αc) = KF (αc) + KI(αc),

Scloth = lim
t2→+∞

lim
t1→−∞

eıKF t2 e−ıK (t2−t1)e−ıKF t1

One can show that if WD (t)=exp (iKF t)Wexp (−iKF t) meets condition

lim
t→±∞

WD (t) = 1 or limt→±∞RD (t) = 0
then

Scloth = lim
t2→+∞

lim
t1→−∞

eıKF (αc )t2 e−ıH(αc )(t2−t1)e−ıKF (αc )t1

Matrix elements of S = S(α) between bare states α†...Ω0 with HFΩ0 = 0,
〈

α†...Ω0

∣

∣

∣
S(α)

∣

∣

∣
α†...Ω0

〉

and matrix elements of Scloth = S(αc) between clothed states α†
c ...Ω with KFΩ = 0,

〈

α†
c ...Ω

∣

∣

∣
S(αc)

∣

∣

∣
α†

c ...Ω
〉

are equal to each other since αc-algebra with physical vacuum Ω is isomorphic to α
-algebra with bare vacuum Ω0, i.e.,

Sfi ≡ 〈f | S | i〉 = 〈f ; c | Scloth | i ; c〉
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Application to Elastic NN Scattering

This result (ISHEPP’02, FB’03) has allowed us to reduce extremely complicated
problem of describing NN scattering in QFT to solution of integral equation

〈1′, 2′|TNN(E + i0)|1, 2〉 = 〈1′, 2′|KNN |1, 2〉
+ 〈1′, 2′|KNN(E + i0 − KF )

−1TNN(E + i0)|1, 2〉

|12〉 = b†
c b†

c |Ω〉 any clothed two–nucleon state, once we will confine ourselves to
approximation KI = KNN or equation for R− matrix

〈

1′2′
∣

∣ R̄(E) |12〉 =
〈

1′2′
∣

∣ K̄NN |12〉+
∫

34

∑

〈

1′2′
∣

∣ K̄NN |34〉 〈34| R̄(E) |12〉
E − E3 − E4

with R̄(E) = R(E)/2 (K̄NN = KNN/2), symbol
∫

34

∑

implies the p.v . integration.

After angular–momentum decomposition in c.m.s

R̄JST
L′ L (p

′, p) = V̄ JST
L′ L (p

′, p) +
1
2

∑

L′′

P

∞
∫

0

q2 dq
Ep − Eq

V̄ JST
L′ L′′(p

′, q)R̄JST
L′′L(q, p)

R̄JST
L′L (p′, p) ≡ R̄JST

L′L (p′, p; 2Ep)
In our case such a decomposition means transition to matrix elements between
states
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|pJ(LS)MJ〉 =
∑

(

1
2µ1

1
2µ2 |SMS

)

(LmLSMS |JMJ )

×
∫

dΩ~pYLmL(~̂p) b†
c (~pµ1)b

†
c (−~pµ2) |Ω〉

A careful exploration shows that our equation for T -matrix with cutoff functions

Fb(p
′, p) =

[

Λ2
b − m2

b

Λ2
b − (p′ − p)2

]nb

≡ Fb[(p
′ − p)2]

has much common with equation by Bonn group in JST -representation (in particular,
for their Potential B). Nevertheless, one needs to keep in mind some distinctions,
viz.,Potential B by Bonn group can be obtained from UCT quasipotentials with help of
following transformations

◮ for boson propagators

[(p′ − p)2 − m2
b]

−1 −→ −[~p ′ − ~p)2 + m2
b]

−1

◮ for cutoff functions
[

Λ2
b − m2

b

Λ2
b − (p′ − p)2

]nb

−→
[

Λ2
b − m2

b

Λ2
b + (~p ′ − ~p)2

]nb

◮ omitting off–energy–shell correction in tensor–tensor term

fv
2

4m2
(Ep′ − Ep)

2ū(~p ′)[γ0γν − g0ν ]u(~p)ū(−~p ′)[γ0γν − g0ν ]u(−~p) −→ 0
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Table 1: The best–fit parameters for the two models. All masses are in MeV , and nb = 2
except for nρ = nω = 4.

Meson Potential B UCT

π g2
π/4π 14.4 14.574
Λπ 1700 2200
mπ 138.03 138.03

η g2
η/4π 3 2.1
Λη 1500 1200
mη 548.8 548.8

ρ g2
ρ/4π 0.9 1.3
Λρ 1850 1450

fρ/gρ 6.1 5.953
mρ 769 769

ω g2
ω/4π 24.5 25.325
Λω 1850 2143.8
mω 782.6 782.6

δ g2
δ/4π 2.488 2.923
Λδ 2000 2092.2
mδ 983 983

σ, T = 0, T = 1 g2
σ/4π 18.3773, 8.9437 16.081, 10.089
Λσ 2000, 1900 2012.4, 2200
mσ 720, 550 693.66, 562.07
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Figure 4: Neutron-proton phase parameters plotted versus nucleon kinetic energy in lab.
system. Solid curves calculated for Potential B. Dashed (dotted) - for UCT potential with
Potential B (UCT ) parameters from Table 1. The rhombs show original OBEP results.

44,1



Figure 5: Half–off–shell R–matrices at laboratory energy equal to 150 MeV(p0=265 MeV).
Other notations as in Fig.1.
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Figure 6: Off–shell potentials with the momentum p0 fixed as in Fig. 2. Other notations in Fig.
1.
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Clothing Procedure in the Theory of EM Interactions with Nuclei.
Deuteron Properties

The Deuteron Equation

Now, we consider a K (αc) eigenstate from the NN sector

| ψNN〉 =
∑

µ1µ2

∫

d~p1d~p2ψNN(~p1µ1, ~p2µ2)b
†(~p1µ1)b

†(~p2µ2) | Ω〉

In the approximation KI = K (2)
I , the eigenvalue equation has the form

[KF + KNN ] |ψNN〉 = E |ψNN〉

In turn the deuteron state at rest can be written as the superposition

∣

∣

∣
ψM

d

〉

=
∑

l=0,2

∞
∫

0

dq q2 |q(l1)1M〉ψd
l (q)

with coefficients ψd
l (q) = 〈q(l1)1M| ψNN〉 that satisfy the equations

ψd
l (p) =

1
Md − 2E~p

∑

l′

∞
∫

0

dq q2 V̄
J=1,S=1,T=0
l l′ (p, q)ψd

l′(q)

where Md = 2m − εd deuteron mass, εd deuteron binding energy.
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Figure 7: Deuteron wave functions ψd
0 (q) = u(q) and ψd

2 (q) = w(q). Solid curves for Bonn
Potential B. Dashed (dotted) - for UCT potential with Potential B (UCT ) parameters from Table 1.

In case of the UCT potential after parameters fitting we have for the deuteron binding
energy εd = 2.224 MeV and for the D-state probability PD = 5.494%
vs Bonn values εd = 2.223 MeV and PD = 4.986%).
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Deuteron Properties

In its most general form, the relativistic deuteron electromagnetic current can be
written as

〈P′M ′|Jµ(0)|PM〉 = −
{

G1(Q
2)[ξ∗M′(P′) · ξM(P)](P′ + P)µ

+ G2(Q
2)
[

ξM(P)[ξ∗M′(P′) · q]− ξ∗M′(P′)[ξM(P) · q]
]

−G3(Q
2)

1
2m2

d

[ξ∗M′(P′) · q][ξM(P) · q](P′ + P)µ
}

ξM(P)(ξM′(P′)) - polarizations of incoming (outgoing) deuteron.

GC(Q
2) = G1(Q

2) +
2
3
ηGQ(Q

2), GM(Q
2) = G2(Q

2),

GQ(Q
2) = G1(Q

2)−GM(Q
2)+(1+η)G3(Q

2), q = P′−P, Q2 = −q2, η =
Q2

4m2
d

At Q2 = 0, form factors GC , GM and GQ give charge, magnetic and quadrupole
moments of deuteron:

QC(0) = 1, QM(0) =
md

mp
µd , GQ(0) = m2

d Qd

49,1



For example, in case of deuteron magnetic moment we have

µd ∼ lim
η→0

〈P′M ′ = 1|Jx(0)|PM = 0〉
√
η
√

1 + η
= lim

η→0

〈P′M ′ = 1|Jx(0)|P = (md ,~0)M = 0〉
√
η
√

1 + η

Deuteron state in moving frame can be built up as

|P′M ′〉 = e−i~β(P′)~B|~0M ′〉

where boost operator
~B = ~BF + ~BI

contains interaction part and

~β = β~n, ~n =
~v
v
, tanhβ = v , ~v =

~P ′

md

Choosing ~P ′ = (0, 0, q) we have

µd ∼ 〈~0M ′ = 1|
(

Bz
F + Bz

I

)

Jx(0)|~0M = 0〉
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Current Operator

For brevity, we omit any addressing to the Fock–Weyl criterion to satisfy the gauge
independence principle, e.g., for reaction amplitude

T (γd → pn) = ǫµ〈pn; out |Jµ(0)|d〉

and local analog of Siegert theorem based on transformation property of current
density operator Jµ(x) with respect to Poincaré group (Shebeko Sov. J. Nucl. Phys.
90). For this illustration,

Jµ(0) = Jµ
N (0) + Jµ

M(0)

where, for instance, Jµ
N (0) = ψ̄(0)

1 + τ3

2
γµψ(0) and Jµ

M(0) = [~φ× ∂µ~φ]3. In CPR

J(0) = Jeff (0) ≡ WJc(0)W
† = Jc(0) + [R, Jc(0)] +

1
2
[R, [R, Jc(0)]] + ...

Jc(0) initial current in which “bare” operators are replaced by clothed ones. This
decomposition involves one–body, two–body and more complicated effective currents
if one uses terminology customary in the theory of meson exchange currents (MEC).
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Following clothing procedure current operator Jeff (0) can be written as

Jµ
eff (0) = Jµ

N (0) + Jµ
MEC(0) + · · · =

∫

d~p ′d~p Fµ
N(~p

′, ~p)b†
c (~p

′)bc(~p)

+

∫

d~p ′
1d~p ′

2d~p1d~p2 Fµ
MEC(~p

′
1 , ~p

′
2 ;~p1, ~p2)b

†
c (~p

′
1)b

†
c (~p

′
2)bc(~p1)bc(~p2) + · · ·

First term is contained nucleon form factors

〈~q ′, p[n]|Jµ
N (0)|~q, p[n]〉 =

e
(2π)3

ū(~q ′)
{

F p[n]
1 [(q′ − q)2]γµ

+ıσµν(q′ − q)νF p[n]
2 [(q′ − q)2]

}

u(~q),

second – so–called interaction (or meson exchange) currents
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Conclusions and Prospects

◮ Our departure point in describing EM interactions with nuclei (in general, bound
systems of charged particles) is to use the Fock-Weyl criterion and a
generalization of the Siegert theorem.
It has been shown how one can meet the gauge invariance principle in all orders
in the charge and construct the corresponding EM interaction operators in case
of nuclear forces arbitrarily dependent on velocity. Along the guideline we have
derived the conserved current density operator for a dicluster system (more
precisely, the system of two finite-size clusters with many-body interaction
effects included).
Being expressed through electric and magnetic field strengths and matrix
elements of the generalized electric and magnetic dipole moments of the system
single-photon transition amplitudes attain a manifestly gauge-independent (GI)
form.
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◮ Starting from a total Hamiltonian for interacting meson and nucleon fields, we
come to Hamiltonian and boost generator in CPR whose interaction parts
consist of new relativistic interactions responsible for physical (not virtual)
processes, particularly, in system of bosons (π−, η−, ρ−, ω−, δ− and
σ−mesons) and fermions (nucleons and antinucleons).
The corresponding quasipotentials (these essentially nonlocal objects) for binary
processes NN → NN, N̄N → N̄N, etc. are Hermitian and energy independent. It
makes them attractive for various applications in nuclear physics. They embody
the off–shell effects in a natural way without addressing to any off–shell
extrapolations of the S−matrix for the NN scattering.

◮ Using unitary equivalence of CPR to BPR, we have seen how in approximation
KI = K (2)

I NN scattering problem in QFT can be reduced to three –dimensional
LS–type equation for the T−matrix in momentum space. The equation kernel is
given by clothed two-nucleon interaction of class [2.2]. Such a conversion
becomes possible owing to property of K (2)

I to leave two–nucleon sector and its
separate subsectors to be invariant.

◮ Special attention has been paid to the elimination of auxiliary field components.
We encounter such a necessity for interacting vector and fermion fields when in
accordance with the canonical formalism the interaction Hamiltonian density
embodies not only a scalar contribution but nonscalar terms too. It has proved
(at least, for primary ρN and ωN couplings) that the UCT method allows us to
remove such noncovariant terms (sometimes called contact ones) directly in the
Hamiltonian.
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◮ Being concerned with constructing two–nucleon states from H and their
angular–momentum decomposition we have not used the so–called separable
ansatz, where every such state is a direct product of corresponding one–
nucleon (particle) states. The clothed two–nucleon partial waves have been built
up as common eigenstates of the field total angular–momentum generator and
its polarization (fermionic) part expressed through the clothed
creation/destruction operators and their derivatives in momentum space.

◮ Our calculations of deuteron magnetic and quadrupole moments have been
carried out using the clothed particle representation (CPR) of the Hamiltonian,
the boost and EM current density operators for the n-p system.
In the course of our current work we are trying to understand to what extent the
deuteron quenching in flight affects the deuteron electromagnetic form factors. In
our opinion, the exposed approach has promising prospects, e.g., in the theory
of decaying states (after evident refinements), certainly in quantum
electrodynamics see an attachment to this presentation and, we believe, in
quantum chromodynamics too. Such endeavors are under way.
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We have not tried to attain a global treatment of modern precision data. But a fair
agreement with the earlier analysis by Bonn group and reasonable treatment of
deuteron properties makes sure that our approach may be useful for a more
advanced analysis. In the context, to have a more convincing argumentation one
needs to do at least the following:
1) consider triple commutators [R, [R, [R,Vb]]] to extract two–boson–two–nucleon
interaction operators of the same class [2.2] in fourth order in coupling constants.
2) extend our approach for describing the NN scattering above pion production
threshold.
As a whole, the persistent clouds of virtual particles are no longer explicitly contained
in CPR, and their influence is included in properties of clothed particles (these
quasiparticles of UCT method). In addition, we would like to stress that problem of
mass and vertex renormalizations is intimately interwoven with constructing the
interactions between clothed nucleons. Renormalized quantities are calculated step
by step in course of clothing procedure unlike some approaches, where they are
introduced by ”hands”.
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Supplement 1: The UT Method in Scalar Field Model
From Appendix C in survey [3]in order to illustrate key points of clothing approach
with H = H0 + V ,

H = m0 B(0) +
∫

ωk a†(k)a(k)dk , ωk =

√

k 2 + µ2 ,

V = g
∫

ωk
[

B(k ) a(k ) + H.c.
]

h(k 2
)dk , h(k 2

) =
f (k 2

)
√

2(2πωk )3

B(k) ≡
∫

b†(p + k) b(p)dp = B†(−k) ,

where a(k) and b(p) are destruction operators for bosons and fermions, respectively,

[a(k), a†(k ′)] = δ(k − k ′) ,

{b(p), b†(p′)} = δ(p − p′) .

The cut-off factor f (x) is assumed to fall off rapidly enough for large x to make finite
all integrals involved.
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Generator of the corresponding unitary clothing transformation W is given by

R = −g
∫

[B(k)a(k)− H.c.] h(k 2) dk ≡ g(X † − X )

with

X =

∫

h(k 2)B(k)a(k)dk

and after simple algebra we find

W = exp[g(X † − X )] = exp(gX †) exp(−gX ) exp(−g2

2
[X ,X †])

so
H ≡ H(a, b) = K (ac, bc) ≡ WH(ac, bc)W † = KF + KI ,

KF = mBc(0) +
∫

ωk a†
c(k)ac(k)dk ≡ Kferm + Kboson ,

with radiative correction (renormalization) to bare fermion mass
m = m0 − g2 ∫ ωk h2(k 2)dk ,
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KI =

∫

dx
∫

dx ′ψ†
c(x) ψ†

c(x ′) Vff(| x − x ′ |) ψc(x) ψc(x ′) ,

Vff (| r |) = −g2
∫

ωk h2(k 2)eıkr dk ,

where in agreement with secondary quantization prescriptions we have introduced ψc

- field for clothed fermions in the Schrödinger picture assuming

ψc(x) =
1

√

(2π)3

∫

bc(p)eıpx dp

{ψc(x), ψ†
c(x ′)} = δ(x − x ′).

59,1



One should point out that new interaction Hamiltonian KI expressed through clothed
operators no longer contains any self–interaction and leads merely to an interaction
between pairs of clothed fermions.
At last, we have relations

a(k) = Wac(k)W † = ac(k)− gh(k 2)B†
c(k) ,

b†
c(p) = W †b†(p)W =

∫

F(p − p′)b†(p′)dp′ ,

F(q) =
1

(2π)3

∫

e−ıqx exp{−g
∫

exp[−ıkx ]
(

a†(k)− a†(−k)
)

h(k 2)dk}dx .

Factor F(q) characterizes boson distribution in a cloud.
In free case with ( g = 0) F(q) = δ(q).
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Supplement 2: Clothed Particle Approach vs Renormalized QED
A weird description of physical reality, inherent in the very popular interpretation of
departure points of different QFT models (including QED) with its postulate of ’bare’
particles (e.g., electrons) which were never observed having arbitrary (sometimes
infinite masses, etc.), seems to be unnecessary in the framework of clothing
procedure put forward by Greenberg and Schweber and developed in works of the
Dubna-Kharkov collaboration.
Why? Even if in the well-known renormalization program ultraviolet divergences were
removed from the S-operator,
they again appeared in the total Hamiltonian in form of infinite counterterms unlike
the clothing procedure exposed here.
Many prominent scientists, such as Dirac and Landau, concerned inconsistencies of
the renormalization approach. For example, Rohrlich wrote in his monograph ”The
theory of the electron”:
Thus, the present quantum electrodynamics is one of the strangest achievements of
the human mind. No theory has been confirmed by experiment to higher precision;
and no theory has been plagued by greater mathematical difficulties which have
withstood repeated attempts at their elimination.
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