Efimov physics beyond universality with ultracold atoms

Richard Schmidt

Richard Schmidt, Steffen P. Rath, Wilhelm Zwerger

Eur. Phys. J. B 386 (2012)

INT Program 14-1: Workshop - Universality in Few-Body Systems 03/25/2014

DFG - FOR 801

Harvard University

ultracold quantum gases

atoms trapped by laser in harmonic confinement

- \rightarrow very low temperatures $\sim 100 \mathrm{nK}$ $\overline{\mathsf{L}}$ contact interactions
- **→ tunable interaction strength**

condensed matter system with *action, we are confident of*

e.g.
$$
S = \int \varphi^*[-i\hbar \partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_\Lambda (\varphi^* \varphi)^2(x)
$$

 \Rightarrow ideal for testing of many-body theories

"Quantum simulator"

ultracold quantum gases

atoms trapped by laser in harmonic confinement

- \rightarrow very low temperatures $\sim 100 \mathrm{nK}$ \rightarrow contact interactions
- **→ tunable interaction strength**

condensed matter system with *action, we are confident of*

e.g.
$$
S = \int \varphi^*[-i\hbar \partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_\Lambda (\varphi^* \varphi)^2(x)
$$

 \Rightarrow ideal for testing of many-body theories

"Quantum simulator"

Tuesday, March 25, 14

model Hamiltonian

$$
H = \sum_{\mathbf{p}} \epsilon_{\mathbf{p}} \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} + g \int_{x} \hat{c}^{\dagger}(\mathbf{x}) c^{\dagger}(\mathbf{x}) \hat{c}(\mathbf{x}) \hat{c}(\mathbf{x})
$$

ideal for many-body calculations

however:

‣ the better the experiments, the more important non-universal details become

‣ cold atoms beyond condensed matter-simulator:

- unique system to study interplay between few- and many-body physics
- exhibits also physics without counterparts in hard condensed-matter

model Hamiltonian

$$
H = \sum_{\mathbf{p}} \epsilon_{\mathbf{p}} \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} + g \int_{x} \hat{c}^{\dagger}(\mathbf{x}) c^{\dagger}(\mathbf{x}) \hat{c}(\mathbf{x}) \hat{c}(\mathbf{x})
$$

ideal for many-body calculations

however:

‣ the better the experiments, the more important non-universal details become

‣ cold atoms beyond condensed matter-simulator:

- unique system to study interplay between few- and many-body physics
- exhibits also physics without counterparts in hard condensed-matter

this talk:

Efimov physics combines all of these aspects

 \cdot low energy interactions characterized by tunable s-wave scattering length a

 \cdot low energy interactions characterized by tunable s-wave scattering length a

universality 1

‣ scattering length only parameter

 \cdot low energy interactions characterized by tunable s-wave scattering length a

2

universality

‣ scattering length only parameter

1 scale invariance

‣ at unitarity no scale is left

 $a\rightarrow\infty$

‣ powerful symmetry

 \cdot low energy interactions characterized by tunable s-wave scattering length a

2

‣ scattering length only parameter

1 scale invariance

‣ at unitarity no scale is left

 $a \rightarrow \infty$

‣ powerful symmetry

Efimov effect

three-body physics - Efimov 1970 EFIMOV,PHYS. LETT. 33 (1970)

bosons, pairwise resonant, *short-range* interactions

- ‣ favorable to build **three-body bound states** (trimers)
- ‣ trimers even in regime with no two-body bound state
- **EFIMOV, PHYS. LETT. 33 (1970) infinitely many trimers** EFIMOV, PHYS. LETT. 33 (1970)
- ‣ originally predicted for **nuclear matter**
- ‣ for the first time observed in **ultracold atoms** KRAEMER ET AL., NATURE 440 (2006)

three-body parameter

scale invariance *discrete* **scale invariance**

 $E^{(n)}/E^{(n+1)} = e^{2\pi/s_0} = 515.03$

 $s_0 \approx 1.00624... \rightarrow$ universal

energy spectrum

three-body parameter

three-body parameter

scale invariance *discrete* **scale invariance**

 $E^{(n)}/E^{(n+1)} = e^{2\pi/s_0} = 515.03$

 $s_0 \approx 1.00624... \rightarrow$ universal

RG fixed point **RG** limit cycle

regardless the interaction potential, close to resonance: only one parameter: a

three-body parameter

‣ determines where lowest trimer enters the atom threshold

universality and the set of the s

not only a as parameter, *three-body parameter* needed to fix overall trimer position

energy spectrum

origin of the three-body parameter

enhanced three-body loss

enhanced three-body loss

Observation of Efimov physics

enhanced three-body loss

‣ decay to deeply bound dimers: release of binding energy leads to loss from trap

Tuesday, March 25, 14

Observation of Efimov physics

enhanced three-body loss

experimental observation

the combined experimental effort until 2012

energy spectrum

experimental observation

the combined experimental effort until 2012

All experiments use ultracold atoms close to *Feshbach resonances*

Our goal:

■ test universality using simple Feshbach two-channel model [w/o fit parameters] using renormalization group methods RS, RATH,ZWERGER,EPJB 85 (2012)

effective action approach

Quantum field theory

UV scale $S=$ $\int \varphi^*[-i\hbar\partial_t - \frac{\nabla^2}{2m}]$ definition of theory:

$$
=\int \varphi^*[-i\hbar\partial_t-\frac{\nabla^2}{2m}]\varphi+\int_x g_\Lambda\,(\varphi^*\varphi)^2(x)
$$

effective action approach

Quantum field theory

effective action

UV

,
theory': **UV**
$$
S = \int \varphi^*[-i\hbar \partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_\Lambda (\varphi^* \varphi)^2(x)
$$

problem: keep track of build up of correlations, e.g.

$$
\text{,experiment}: \text{ IR} \qquad \Gamma[\phi]=\int \phi^*[-i\hbar\partial_t-\frac{\nabla^2}{2m}-\Sigma(\omega,\vec{q})]\phi+\int \Gamma^{(4)}(\{q_j\})(\phi^*\phi)^2+\boxed{\int \lambda_3(E)(\phi^*\phi)^3}
$$

 $\lambda_3(E)$: three-body scattering amplitude

- ‣ poles give bound state spectrum
- \blacktriangleright relates to hyperspherical wavefunction $f_n(R)$ in momentum space

functional renormalization group

Problem: How to obtain $\Gamma[\phi]$?

$$
\mathbf{U}\mathbf{V} \qquad \Gamma_{\Lambda} = S = \int \varphi^*[-i\hbar \partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_{\Lambda} (\varphi^* \varphi)^2(x)
$$

$$
\mathbf{IR} \qquad \Gamma_0 = \Gamma[\phi] = \int \phi^*[-i\hbar \partial_t - \frac{\nabla^2}{2m} - \Sigma(\omega, \vec{q})] \phi + \int \Gamma^{(4)}(\{q_j\}) (\phi^* \phi)^2 + \dots
$$

functional renormalization group

Tuesday, March 25, 14

functional RG

functional RG

functional renormalization group

Problem: How to obtain $\Gamma[\phi]$?		
UV	$\Gamma_A = S = \int \varphi^*[-i\hbar\partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_A (\varphi^*\varphi)^2(x)$	inclusions on momentum scales large than k:
\n \mathbb{P}_k \n	\n $\mathbb{P}_k[\phi] = \int \phi^*[-i\hbar\partial_t - \frac{\nabla^2}{2m} - \Sigma_k(\omega, \vec{q})]\phi + \int \Gamma_k^{(4)}(\{q_j\})(\phi^*\phi)^2 + \dots$ \n	
\n \mathbb{P}_k \n	\n $\Gamma_0 = \Gamma[\phi] = \int \phi^*[-i\hbar\partial_t - \frac{\nabla^2}{2m} - \Sigma(\omega, \vec{q})]\phi + \int \Gamma^{(4)}(\{q_j\})(\phi^*\phi)^2 + \dots$ \n	

exact RG equation
$$
WETIERICH, Phys. LETT. B 301 (1993)
$$

\n
$$
\partial_k \Gamma_k[\phi] = \frac{1}{2} \int \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_k R_k
$$

\nregularity controls inclusion of fluctuations of momenta q > k

Tuesday, March 25, 14

functional RG

functional RG

RG flow [illustration]

RG flow [illustration]

initial RG steps: determined by few-body physics

RG flow [illustration]

initial RG steps: determined by few-body physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions

build up of correlations: fermions vs. bosons

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions

Pauli principle: three-body correlations suppressed

Tuesday, March 25, 14

build up of correlations: fermions vs. bosons

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions identical bosons

Pauli principle: three-body correlations suppressed

no Pauli principle: three-body correlations important?

deep understanding of few-body physics needed for reliable many-body calculation!

 $S \sim \int g_{\Lambda} (\varphi^* \varphi)^2$

 $\Gamma_k \sim \int g_k (\phi^* \phi)^2 + \boxed{\lambda_3 (\phi^* \phi)^3}$

Tuesday, March 25, 14

Tuesday, March 25, 14

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10

• "minimal model": still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2 / 2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

‣ atom-atom interaction *solely* due to exchange of closed-channel molecule

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10

• "minimal model": still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)

‣ atom-atom interaction *solely* due to exchange of closed-channel molecule

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

\n
$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi
$$

\n
$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

\n
$$
g(r) : \text{conversion coupling}
$$

\nin EFT: usually zero-range model
\n
$$
g(r_2 - r_1) = g \delta(r_2 - r_1)
$$

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10

• "minimal model": still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)

‣ atom-atom interaction *solely* due to exchange of closed-channel molecule

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

\n
$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi
$$

\n
$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

\n
$$
g(r) : \text{conversion coupling}
$$

\nin EFT: usually zero-range model
\n
$$
g(r_2 - r_1) = g \delta(r_2 - r_1)
$$

here: finite range, due to Frank-Condon overlap

$$
g(r) = g e^{-r/\sigma}/r
$$

$$
\chi(r)
$$

Tuesday, March 25, 14

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

$$
g(r) = g e^{-r/\sigma}/r
$$

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2 / 2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

$$
g(r) = g(e^{-r/\sigma})/r
$$

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2 / 2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

$$
g(r) = g|e^{-r/\mathcal{O}}/r
$$

parameters from two-body physics Feshbach resonances

g from "width of Feshbach resonance" r^* **1**

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2 / 2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

$$
g(r) = g(e^{-r/\sigma})/r
$$

parameters from two-body physics Feshbach resonances

g from "width of Feshbach resonance" r^*

 B_{res} from Feshbach resonance position B_0 **2**

1

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$
S_{\psi, \text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi
$$

$$
S_{\phi, \text{kin}} = \int \phi^* [i\partial_t - \nabla^2 / 2 + E_M(B)] \phi
$$

$$
S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)
$$

$$
g(r) = g(e^{-r/\mathcal{O}}/r)
$$

parameters from two-body physics Feshbach resonances

g from "width of Feshbach resonance" r^* **1**

- B_{res} from Feshbach resonance position B_0
- σ determined from QdT calc. of resonance shift **3** GORAL ET AL., JPB 37 (2004) $\sigma = \bar{a} = 0.95 l_{\text{vdw}}$

$$
\qquad \qquad \blacktriangleright
$$

all model parameters are fixed, **no fit parameter**

2

Feshbach resonance strength

Strength of Feshbach resonance

$$
s_{\rm res} = \bar{a}/r^* \sim g^2
$$

 $\bar{a} = 0.95 l_{\text{vdw}}$

 $s_{\text{res}}, g^2 \ll 1$: closed-channel dominated resonance, 'narrow'

Feshbach resonance strength

$$
\mathcal{P}_{\phi}(E, \mathbf{q}) = -E + \mathbf{q}^{2}/2 + E_{M}(B) - \frac{g^{2}/(32\pi)}{\sigma \left[1 + \sigma\sqrt{-\frac{E}{2} + \frac{\mathbf{q}^{2}}{4} - i\epsilon}\right]^{2}}
$$

$$
\mathcal{P}_{\phi}(E, \mathbf{q}) = -E + \mathbf{q}^{2}/2 + E_{M}(B) - \frac{g^{2}/(32\pi)}{\sigma \left[1 + \sigma\sqrt{-\frac{E}{2} + \frac{\mathbf{q}^{2}}{4} - i\epsilon}\right]^{2}}
$$

closed channel $\sigma \left[1 + \sigma\sqrt{-\frac{E}{2} + \frac{\mathbf{q}^{2}}{4} - i\epsilon}\right]^{2}$
open channel / quantum

truncation for exact solution with RG

Systematic vertex expansion SIMILAR FRG FOR ZERO-RANGE: MOROZ, FLOERCHINGER, RS, WETTERICH, PRA 79 (2009)

‣ includes all possible correlations generated in three-body problem

$$
\Gamma_k = \sum_{n=0}^{\infty} \Gamma_k(n) = \Gamma_k(2) + \Gamma_k(3) + \Gamma_k(4) + \dots,
$$
\n
$$
\Gamma_k(2) = \int \psi^* [i\partial_t - \Delta] \psi + \int \phi^* [i\partial_t - \Delta - E_M(B) + \Sigma_{\phi,k}(\partial_t, \Delta)] \phi
$$
\n
$$
\Gamma_k(3) = g \int \chi(\mathbf{r}_2 - \mathbf{r}_1) \left[\phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t) + h.c. \right]
$$
\n
$$
\Gamma_k(4) = -\int \lambda_k^{(3)} (Q_1, Q_2, Q_3) \phi(Q_1) \psi(Q_2) \phi^*(Q_3) \psi^*(Q_4) \delta(Q_1 + Q_2 - Q_3 - Q_4)
$$
\n
$$
\downarrow \text{atom-dimer scattering vertex, mediates three-
$$

body scattering

truncation for exact solution with RG

Systematic vertex expansion SIMILAR FRG FOR ZERO-RANGE: MOROZ, FLOERCHINGER, RS, WETTERICH, PRA 79 (2009)

‣ includes all possible correlations generated in three-body problem

$$
\Gamma_k = \sum_{n=0}^{\infty} \Gamma_k(n) = \Gamma_k(2) + \Gamma_k(3) + \Gamma_k(4) + \dots,
$$
\n
$$
I/\mathcal{G}_{\phi}(\partial_t, \nabla^2)
$$
\n
$$
\Gamma_k(2) = \int \psi^* [i\partial_t - \Delta] \psi + \int \phi^* [i\partial_t - \Delta - E_M(B) + \Sigma_{\phi, k}(\partial_t, \Delta)] \phi
$$
\n
$$
\frac{\partial_k \Gamma_k[\phi] = \frac{1}{2} \int \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_k R_k}{\Gamma_k(3) = g \int \chi(\mathbf{r}_2 - \mathbf{r}_1) \left[\phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t) + h.c. \right]}
$$
\n
$$
\Gamma_k(4) = -\int \lambda_k^{(3)} (Q_1, Q_2, Q_3) \phi(Q_1) \psi(Q_2) \phi^*(Q_3) \psi^*(Q_4) \delta(Q_1 + Q_2 - Q_3 - Q_4)
$$
\n
$$
\mathbf{r}_k(4) = \frac{1}{2} \int \frac{1}{\Gamma_k^{(3)}(\mathbf{r}_2 - \mathbf{r}_1)} \mathbf{r}_k(\mathbf{r}_1 - \mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_1 - \mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_1 - \mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2 - \mathbf{r}_2) \mathbf{r}_k(\mathbf{r}_1 - \mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_1) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2 - \mathbf{r}_2) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r}_2) \mathbf{r}_k(\mathbf{r}_2 - \mathbf{r
$$

atom-dimer scattering vertex, mediates three- \blacktriangleright body scattering

rg flow equations

rg scheme chosen yields

- ‣ exact solution of three-body flow equations
	- IR: Lippmann-Schwinger and modified STM equation

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

flow suppressed by scattering length *a*

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

Tuesday, March 25, 14

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

 $\mathsf{exact}\ \mathsf{RG}\ \mathsf{flow}\ \mathsf{of}\ \lambda_k^{(3)}(q_1, q_2; E)$ -similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

Tuesday, March 25, 14

bound state spectrum

IR value of $\lambda_3(q_1,q_2;E)$ carries all information about three-body problem

bound state spectrum, pole expansion

$$
\lambda_3(q_1,q_2;E) \approx \frac{\mathcal{B}(q_1,q_2)}{E-E^{(n)}+i\Gamma^{(n)}} \quad \text{see e.g., Braaten, Hammer, Phys. Rep. 428 (2006)}
$$

energy spectrum

- ‣ spectrum reaches maximal extent for open-channel dominated resonances
- ‣ spectrum pushed towards unitarity point for closed-channel dom. resonances
- ‣ atom-dimer threshold: highly non-universal, model dependent

energy spectrum

exact results for non-universal corrections

exact results for non-universal corrections

crossover of observables

energy spectrum

exact results for non-universal corrections

crossover of observables

exact results for non-universal corrections

crossover of observables

Extended universality for 'narrow' resonances

in limit of closed channel dominated resonances $q\rightarrow 0$ an extended universality appears RS, PHD THESIS (2013) $S_{\rm c}$ imit of closed channel deminated resensages $\alpha \rightarrow 0$ an extended univers $\frac{1}{1}$ in the victor of character and the contribution of $g\to 0$ and calculated on the

prediction of *universal* deviations away from unitarity

ratios independent of form factor or regularization chosen! T

Extended universality for 'narrow' resonances 50 CHAPTER 2. EFIMOV PHYSICS BEYOND PHYSICS BEYOND UNIVERSITY PHYSICS BEYOND UNIVERSALITY PHYSICS BEYOND UNIVERSALITY the specific model or regulation specific model features as localization scheme chosen as \mathbf{r} \overline{y} . \overline{y} . \overline{y} and \overline{y} are \overline{y} and \overline{y} are \overline{y}

 $t\epsilon$ \overline{h} res [−] */*^a \overline{a} in limit of closed channel dominated resonances $g \to 0$ an extended universality appears
RS. PHD THESIS (2013) RS, PHD THESIS (2013) $S_{\rm c}$ imit of closed channel deminated resensages $\alpha \rightarrow 0$ an extended univers $\frac{1}{1}$ in the victor of character and the contribution of $g\to 0$ and calculated on the

prediction of *universal* **deviations away from unitarity** promonen erannreiten achienene ana_g nem ann **Divide 2.2: Approximation of universal deviations away from unitarity**

ratios independent of form factor or regularization chosen! **→** ratios independent of form factor or regulariza $\frac{2}{3}$. Tance 22.694 as n $\frac{2}{3}$. We find the decrease of the determinant scaling is from universal scaling in $\frac{2}{3}$ h $O(1)$ T

relatively well described by a the phenomenological formula **indication universal scaling of deviations with trimer level** [−] */*^a [−] quickly approach their universal ndication universal scaling of deviations with trimer level

$$
\frac{a_{-}^{(n+1)}}{a_{-}^{(n)}} \approx 22.694 + \gamma_1 e^{-\gamma_2 n}, \qquad \gamma_1 = 63(20) \text{ and } \gamma_2 = 2.7(3) \quad \text{RS, PHD THIS (2013)}
$$

Test of universality I

change microphysics \Box effect on observables?

Test of universality I \mathbf{v} Test of universality \mathbf{v}

Let us now address the question to which extent the properties of the lowest Efimov state, such

change microphysics \longrightarrow effect on observables? as the scaling of ^a[−] with ^lvdw and ^r [∗], cf. Eq. (2.78) and (2.82), depend on the microscopical

choice of atom-dimer conversion coupling 2.9. TEST OF UNIVERSALITY 51, THE STATE OF UNIVERSALITY 51, THE STATE OF UNIVERSALITY 51, THE STATE OF UNIVERS
2.9. TEST OF UNIVERSALITY 51, THE STATE OF UNIVERSALITY 51, THE STATE OF UNIVERSALITY 51, THE STATE OF UNIVERS

- ► deviations around 10% ‣ deviations around 10%
- →
•'Incao, Esry, Greene, PRL 108 **(**2 $\binom{7}{2}$ 12 Similar to study of varying single-channel potential by WANG, D'INCAO, ESRY, GREENE, PRL 108 (2012) strength sres. We compare the result using the result using the exponential form factor (dashed), cf. Section 2.3, $\frac{1}{2}$

Test of universality II by this scale, the effective atom-atom scattering is determined by the term re est of universality. II atom species by Babb and coworkers of atom species by Babb and coworkers of atom specie \sim short distribution of the three-body force is largely unknown and presumed by \sim \blacksquare af short distance behavior of the three-body force is largely unknown and presumed by \blacksquare $\mathbf u$ dependent on microscopic dependent on $\mathbf u$ major role $\mathbf v$

microscopic three-body force Influence of a three-body force. When studying the dipole-dipole interactions between neruscopic antee-body force atogoonig throe hody force ing to scopic three-body force for a microscopic three-body force for the scal-Here we want to study the consequences of a microscopic three-body force for the scal-

at short and intermediate interparticle distances.

▶ 3rd order pert. theory in dipole-dipole interaction: Axilrod-Teller three-body potential function of momenta which renders the exact solution of the three-body problem intractable. In order point the dry the diplomatic interest the interest sender the dot to day pro

 $W_{\text{AT}} = \gamma$ $1 + 3\cos\theta_{12}\cos\theta_{23}\cos\theta_{31}$ $r_{12}^3 r_{23}^3 r_{31}^3$ $1+3\cos\theta_{12}\cos\theta_{23}\cos\theta_{31}$ $W_{\text{AT}} = \gamma \frac{1}{1-\gamma}$ r_{12}° r_{23}° r_{31}° $1+3\cos\theta_{12}\cos\theta_{22}\cos\theta_{21}$ $W_{\text{AT}} = \gamma \frac{12}{r^3 r^3 r^3}$ $\frac{12^{7}23^{7}31}{2}$

to be highly dependent on microscopic dependent on microscopic details. Also exchange interactions α

the qualitative study assuming simplified three-body force **and interaction of the in**teraction (2.95) is known as the Axilrod-Teller potential \mathcal{I} $\frac{1}{2}$ three-atom interaction ∼ (*ψ*∗*ψ*) \blacktriangleright qualitative study assuming simplified three-body force

 \blacktriangleright even for infinite attraction only 10% change s ded region corresponds to the region of region $\mathcal{G}_\mathcal{A}$ minimizes with a microscopic three-body force with $\mathcal{G}_\mathcal{A}$ \mathfrak{p} for infinite attraction only 10% change \mathcal{S} is the region corresponding to the region obtained including a microscopic three-body force with \mathcal{S}

‣ similar to: single-channel model + Axilrod-Teller yields also 10% deviation kaller to: single-channel model + Axilrod-Teller vields also 10% deviation
Imilar to: single-channel model + Axilrod-Teller vields also 10% deviatio exponential form factor *and container in Foundation 2.7.*
Filment to: Simple-Critain ion in Section 2.7.2.7. *ilar to: single-channel model + Axilrod-Teller yields also 10% deviation D'Incao, Greene, Esry, JPB 42 (2009)* exponential form factor *χ* employed in Section 2.7.

Test of universality III t of universality in **an** cordinacioned by replacing the deep potential with a hard with

no true universality but consistent picture of an robust approximate universality *no true universality but consistent picture of an*
model winessality but consistent picture of an robust approximate universality interactions can still play an important role. One example is the vsch (n ϵ for the vsch (n ϵ) model, caused by a found for the vsch (n ϵ 6) model, caused by a found for the vsch (n ϵ 6) model, caused by a fou n a true universality but consistent picture of an and the three-body parameters. converges different limits depending on the different limits on the different limits on the different limits o \sum concl \sum of \sum

^a¯*/*a[−] as function of ^sres. While the solid line displays our result from Section 2.7 (˜

$$
a_{-} \approx -(7.5\ldots10.5)\,l_{\text{vdw}}
$$

outlook: the Florence puzzle

still follows single-channel prediction!

- ‣ narrow resonance: single-channel model insufficient
- ‣ but also: our ,pure' two-channel model insufficient

outlook: the Florence puzzle

still follows single-channel prediction!

the puzzle

- ‣ narrow resonance: single-channel model insufficient
- ‣ but also: our ,pure' two-channel model insufficient

possible solution

calculation with *realistic two-channel potential* including weak open-channel interaction [in *density channel]*

outlook: the Florence puzzle

still follows single-channel prediction!

the puzzle

- ‣ narrow resonance: single-channel model insufficient
- ‣ but also: our ,pure' two-channel model insufficient

possible solution

calculation with *realistic two-channel potential* including weak open-channel interaction [in *density channel]*

‣ even weak background scattering gives 3 body potential

short-range cutoff $\;\rightarrow$ l_{vdw}

‣ closed-channel scattering gives large *a*

only for large enough a : scaling with r^*

by the functional renormalization group as unified approach \mathbb{Z} for few- and many-body problems

 \triangleright the functional renormalization group as unified approach for few- and many-body problems

‣ derivation of an exact solution for Efimov physics for simple two-channel model

- ‣ we find rather robust universality of the three-body parameter for 'broad' resonances
- ‣ open question: closed channel dominated resonances have still to be understood in more detail

 \rightarrow the functional renormalization group as unified approach for few- and many-body problems

Thank you!

2.9. TEST OF UNIVERSALITY 53 separations ri j [17, 188]. The coefficient *γ* depends on the specific atoms chosen and it has [188]. The short distance behavior of the three-body force is largely unknown and presumed to be highly dependent on microscopic details. Also exchange interactions play a major role Here we want to study the consequences of a microscopic three-body force for the scaling of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated function of momenta which renders the exact solution of the three-body problem intractable. In order to, nonetheless, get some insight into the question how strong the influence of the three-body force is on the observable three-body physics, we introduce a phenomenological

FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼ ³ upon integrating out the composite molecular field *^φ*. (b) ^a¯*/*a[−] as function of sres. The shaded region corresponds to the result obtained including a microscopic three-body force with 3 = −0.1 (attraction) up to ∂

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we $\setminus\mathbf{D}$ ^a¯*/*a[−] as function of ^sres. While the solid line displays our result from Section 2.7 (˜

(b)theory

1 ∈ (α) in units of *σ*.

³ [cf. Eq. (2.58)] in our model (2.23). Integrating out the dimer field *φ* in the classical action yields an effective momentum dependent, microscopic

³ which is determined by the evaluation of the tree-level dia-

0 2 4 6 repulsive 3B-force

³ one finds a new,

 3° = 0), the 0

0.5 Δ /ε

−0.5

0.5

experiment

experiment

Signal

−2 −1 0 1 2

[−]1/(κ^F

 $\tilde{\mathcal{S}}^{\prime\prime} = \tilde{\mathcal{O}}(1)$ (replace) in units of a. Here we use the

atom-dimer contact interaction ˜

three-atom interaction ∼ (*ψ*∗*ψ*)

(a) (b)

exponential form factor *χ* employed in Section 2.7. As a result of the introduction of the microscopic atom-dimer force \hat{A}

 -3 -2 -1 0 1 2 3

gram shown in Fig. 2.26(a).

modified STM equation, $(f_1(x_1, y_2) = y_2(y_1, y_2) + \frac{1}{2}$ *λ*(Λ) ³ (q1, q2) − $dI_{\{g_{\ell}(q_{\ell},l)+2\}}$ ³ (q1, l)] *ζ*^E (l) fE (l, q2). (2.96)

theory

(a)

- 0.1 0.0 0.1

shedry **region corresponds to choice of**

• open question: closed channel dominated resonances have still to be understood in more detail