Efimov physics beyond universality with ultracold atoms

Richard Schmidt

Richard Schmidt, Steffen P. Rath, Wilhelm Zwerger

Eur. Phys. J. B 386 (2012)

INT Program 14-1: Workshop - Universality in Few-Body Systems 03/25/2014

DFG - FOR 801

Harvard University

ultracold quantum gases

atoms trapped by laser in harmonic confinement

- ➡ tunable interaction strength

condensed matter system with action, we are confident of

e.g.
$$S = \int \varphi^* [-i\hbar\partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_\Lambda (\varphi^* \varphi)^2 (x)$$

➡ ideal for testing of many-body theories

"Quantum simulator"

ultracold quantum gases

atoms trapped by laser in harmonic confinement

- ➡ tunable interaction strength

condensed matter system with action, we are confident of

e.g.
$$S = \int \varphi^* [-i\hbar\partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_\Lambda (\varphi^* \varphi)^2 (x)$$

➡ ideal for testing of many-body theories

"Quantum simulator"

model Hamiltonian

$$H = \sum_{\mathbf{p}} \epsilon_{\mathbf{p}} \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} + g \int_{x} \hat{c}^{\dagger}(\mathbf{x}) c^{\dagger}(\mathbf{x}) \hat{c}(\mathbf{x}) \hat{c}(\mathbf{x})$$

ideal for many-body calculations

however:

▶ the better the experiments, the more important non-universal details become

• cold atoms beyond condensed matter-simulator:

- unique system to study interplay between few- and many-body physics
- exhibits also physics without counterparts in hard condensed-matter

model Hamiltonian

$$H = \sum_{\mathbf{p}} \epsilon_{\mathbf{p}} \hat{c}_{\mathbf{p}}^{\dagger} \hat{c}_{\mathbf{p}} + g \int_{x} \hat{c}^{\dagger}(\mathbf{x}) c^{\dagger}(\mathbf{x}) \hat{c}(\mathbf{x}) \hat{c}(\mathbf{x})$$

ideal for many-body calculations

however:

▶ the better the experiments, the more important non-universal details become

• cold atoms beyond condensed matter-simulator:

- unique system to study interplay between few- and many-body physics
- exhibits also physics without counterparts in hard condensed-matter

this talk:

Efimov physics combines all of these aspects

• low energy interactions characterized by tunable s-wave scattering length a

• low energy interactions characterized by tunable s-wave scattering length a

1 universality

scattering length only parameter

• low energy interactions characterized by tunable s-wave scattering length a

2

(1) universality

scattering length only parameter

) scale invariance

▶ at unitarity no scale is left

 $a \to \infty$

powerful symmetry

• low energy interactions characterized by tunable s-wave scattering length a

2

scattering length only parameter

) scale invariance

▶ at unitarity no scale is left

 $a \to \infty$

powerful symmetry

Efimov effect

three-body physics - Efimov 1970 EFIMOV, PHYS. LETT. 33 (1970)

bosons, pairwise resonant, short-range interactions

- favorable to build three-body bound states (trimers)
- trimers even in regime with no two-body bound state
- infinitely many trimers EFIMOV, PHYS. LETT. 33 (1970)
- originally predicted for nuclear matter
- for the first time observed in ultracold atoms
 KRAEMER ET AL., NATURE 440 (2006)

three-body parameter

scale invariance

discrete scale invariance

 $E^{(n)}/E^{(n+1)} = e^{2\pi/s_0} = 515.03$

 $s_0 \approx 1.00624... \rightarrow universal$

energy spectrum

three-body parameter

three-body parameter

scale invariance

discrete scale invariance

 $E^{(n)}/E^{(n+1)} = e^{2\pi/s_0} = 515.03$

 $s_0 \approx 1.00624... \rightarrow universal$

RG fixed point

universality

regardless the interaction potential, close to resonance: only one parameter: a

three-body parameter a_{-}

In the determines where lowest trimer enters the atom threshold

RG limit cycle

Efimov universality

not only a as parameter, **three-body parameter** needed to fix overall trimer position

energy spectrum

origin of the three-body parameter

enhanced three-body loss

enhanced three-body loss

Observation of Efimov physics

enhanced three-body loss

Idecay to deeply bound dimers: release of binding energy leads to loss from trap

Tuesday, March 25, 14

Observation of Efimov physics

enhanced three-body loss

Idecay to deeply bound dimers: release of binding energy leads to loss from trap

Tuesday, March 25, 14

experimental observation

the combined experimental effort until 2012

Atom	$-a_{-}^{(1)}/r_{vdW}$	
⁶ Li	9.34	Heidelberg, Penn. State
$^{7}\mathrm{Li}$	9.17(31)	
$^{7}\mathrm{Li}$	8.13(34)	Bar-Ilan, Rice
$^{7}\mathrm{Li}$	8.25(37)	
^{39}K	23.3(1.4)	Florence
85 Rb	9.24(07)	JILA, Rice
$^{133}\mathrm{Cs}$	8.63(22)	
^{133}Cs	10.19(57)	Innsbruck
$^{133}\mathrm{Cs}$	9.48(79)	
^{133}Cs	9.46(28)	FROM C. CHIN 1111.1484v2

energy spectrum

experimental observation

the combined experimental effort until 2012

Atom –	$a_{-}^{(1)}/r_{vdW}$	
⁶ Li	9.34	Heidelberg, Penn. State
7 Li	9.17(31)	
$^{7}\mathrm{Li}$	8.13(34)	Bar-Ilan, Rice
7 Li	8.25(37)	
39 K	23.3(1.4)	Florence
$^{85}\mathrm{Rb}$	9.24(07)	JILA, Rice
^{133}Cs	8.63(22)	
^{133}Cs]	10.19(57)	Innsbruck
^{133}Cs	9.48(79)	
^{133}Cs	9.46(28)	FROM C. CHIN 1111.1484v2

All experiments use ultracold atoms close to Feshbach resonances

Our goal:

test universality using simple Feshbach two-channel model [w/o fit parameters] using renormalization group methods RS, RATH, ZWERGER, EPJB 85 (2012)

effective action approach

Quantum field theory

definition of theory: **UV scale**

$$S = \int \varphi^* \left[-i\hbar \partial_t - \frac{\nabla^2}{2m} \right] \varphi + \int_x g_\Lambda \left(\varphi^* \varphi \right)^2 (x)$$

effective action approach

Quantum field theory

effective action

,theory': UV

$$S = \int \varphi^* \left[-i\hbar \partial_t - \frac{\nabla^2}{2m} \right] \varphi + \int_x g_\Lambda \left(\varphi^* \varphi \right)^2 (x)$$

problem: keep track of build up of correlations, e.g.

,experir

ment': IR
$$\Gamma[\phi] = \int \phi^* [-i\hbar\partial_t - \frac{\nabla^2}{2m} - \Sigma(\omega, \vec{q})]\phi + \int \Gamma^{(4)}(\{q_j\})(\phi^*\phi)^2 + \int \lambda_3(E)(\phi^*\phi)^3$$

 $\lambda_3(E)$: three-body scattering amplitude

- poles give bound state spectrum
- ► relates to hyperspherical wavefunction $f_n(R)$ in momentum space

functional renormalization group

Problem: How to obtain $\Gamma[\phi]$?

$$\mathbf{UV} \qquad \Gamma_{\Lambda} = S = \int \varphi^* [-i\hbar\partial_t - \frac{\nabla^2}{2m}]\varphi + \int_x g_{\Lambda} \,(\varphi^*\varphi)^2(x)$$

$$\Gamma_0 = \Gamma[\phi] = \int \phi^* [-i\hbar\partial_t - \frac{\nabla^2}{2m} - \Sigma(\omega, \vec{q})]\phi + \int \Gamma^{(4)}(\{q_j\})(\phi^*\phi)^2 + \dots$$

functional renormalization group

functional renormalization group

EXACT RG equation WETTERICH, PHYS. LETT. B 301 (1993)

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \int \frac{1}{\Gamma_k^{(2)}[\phi] + R_k} \partial_k R_k$$
regulator controls inclusion of fluctuations of momenta q>k

Tuesday, March 25, 14

functional RG

RG flow [illustration]

RG flow [illustration]

initial RG steps: determined by few-body physics

RG flow [illustration]

initial RG steps: determined by few-body physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions

build up of correlations: fermions vs. bosons

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions

Pauli principle: three-body correlations suppressed

Tuesday, March 25, 14

build up of correlations: fermions vs. bosons

RG flow [illustration]

initial RG steps: determined by few-body physics

later stage: realm of many-body, IR physics

two-component fermions

Pauli principle: three-body correlations suppressed

identical bosons

no Pauli principle: three-body correlations important?

deep understanding of few-body physics needed for reliable many-body calculation!

MOROZ, FLOERCHINGER, RS, WETTERICH PRA 79 (2009) MOROZ, RS, ANN. PHYS. 325 (2010) REVIEW: FLOERCHINGER, MOROZ, RS, FEW-BODY. SYS. 51 (2011)

 $\Gamma_k \sim \int g_k (\phi^* \phi)^2 + \lambda_3 (\phi^* \phi)^3$ $S \sim \int g_{\Lambda}(\varphi^* \varphi)^2$

Tuesday, March 25, 14

Tuesday, March 25, 14

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10

• "minimal model": still traceable for many-body calculation

SEE ALSO: ZINNER ET AL. PRA 86 (2012)

 atom-atom interaction solely due to exchange of closed-channel molecule

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10

• "minimal model": still traceable for many-body calculation

$$S_{\psi,\text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi \qquad \mu(B - B_{\text{res}})$$

$$S_{\phi,\text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi$$

$$S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)$$

$$\int g(r) : \text{ conversion coupling}$$
in EFT: usually zero-range model
$$g(r_2 - r_1) = g \, \delta(r_2 - r_1)$$

SEE ALSO: ZINNER ET AL. PRA 86 (2012)

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10

• "minimal model": still traceable for many-body calculation

 atom-atom interaction solely due to exchange of closed-channel molecule

$$\begin{split} S_{\psi,\mathrm{kin}} &= \int \psi^* [i\partial_t - \nabla^2] \psi & \underset{}{\mu(B-B_{\mathrm{res}})} \\ S_{\phi,\mathrm{kin}} &= \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi \\ S_{\mathrm{int}} &= \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t) \\ & \int \\ g(r) : \text{ conversion coupling} \\ \text{ in EFT: usually zero-range model} \\ g(r_2 - r_1) &= g \, \delta(r_2 - r_1) \end{split}$$

SEE ALSO: ZINNER ET AL. PRA 86 (2012)

here: finite range, due to Frank-Condon overlap

$$g(r) = g \, e \underbrace{\frac{-r/\sigma}{\chi(r)}}^{r}$$

Tuesday, March 25, 14

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$S_{\psi,\text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi \qquad \mu(B - B_{\text{res}})$$

$$S_{\phi,\text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi$$

$$S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)$$

$$g(r) = g e^{-r/\sigma}/r$$

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$S_{\psi,\text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi \qquad \mu(B - B_{\text{res}})$$

$$S_{\phi,\text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi$$

$$S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)$$

$$g(r) = \mathbf{g} e^{-r/\mathbf{\sigma}}/r$$

parameters from two-body physics

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN ` 08, PRICOUPENKO ` 10, JONA-LASINIO ` 10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$S_{\psi,\text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi \qquad \mu(B - \underline{B_{\text{res}}})$$

$$S_{\phi,\text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi$$

$$S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)$$

$$g(r) = \underline{g} e^{-r/\underline{\sigma}}/r$$

parameters from two-body physics

) g from "width of Feshbach resonance" r^{st}

extend the "standard two-channel model" to finite range Similar: Massignan ` 08, Pricoupenko ` 10, Jona-Lasinio ` 10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

$$S_{\psi,\text{kin}} = \int \psi^* [i\partial_t - \nabla^2] \psi \qquad \mu(B - B_{\text{res}})$$

$$S_{\phi,\text{kin}} = \int \phi^* [i\partial_t - \nabla^2/2 + E_M(B)] \phi$$

$$S_{\text{int}} = \int g(\mathbf{r}_2 - \mathbf{r}_1) \phi(\frac{\mathbf{r}_1 + \mathbf{r}_2}{2}, t) \psi^*(\mathbf{r}_1, t) \psi^*(\mathbf{r}_2, t)$$

$$g(r) = \mathbf{g} e^{-r/\mathbf{\sigma}}/r$$

parameters from two-body physics

) g from "width of Feshbach resonance" r^{*}

2 $B_{\rm res}$ from Feshbach resonance position B_0

extend the "standard two-channel model" to finite range SIMILAR: MASSIGNAN ` 08, PRICOUPENKO ` 10, JONA-LASINIO ` 10 SEE ALSO: ZINNER ET AL. PRA 86 (2012)

parameters from two-body physics

) g from "width of Feshbach resonance" r^*

- $B_{\rm res}$ from Feshbach resonance position B_0
- 3) σ determined from QdT calc. of resonance shift $\sigma=ar{a}=0.95\,l_{
 m vdw}$ Goral et al., JPB 37 (2004)

Feshbach resonances $\sim 1/r^*$

Strength of Feshbach resonance

$$s_{\rm res} = \bar{a}/r^* \sim g^2$$

 $\bar{a} = 0.95 \, l_{\rm vdw}$

 $s_{\rm res}, g^2 \ll 1$: closed-channel dominated resonance, 'narrow'

$$\mathcal{P}_{\phi}(E,\mathbf{q}) = -E + \mathbf{q}^2/2 + E_M(B) - \frac{g^2/(32\pi)}{\sigma \left[1 + \sigma \sqrt{-\frac{E}{2} + \frac{\mathbf{q}^2}{4} - i\epsilon}\right]^2}$$

truncation for exact solution with RG

Tuesday, March 25, 14

systematic vertex expansion similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

Includes all possible correlations generated in three-body problem

$$\begin{split} \Gamma_{k} &= \sum_{n=0}^{\infty} \Gamma_{k}(n) = \Gamma_{k}(2) + \Gamma_{k}(3) + \Gamma_{k}(4) + ..., \\ \Gamma_{k}(2) &= \int \psi^{*}[i\partial_{t} - \Delta]\psi + \int \phi^{*}[i\partial_{t} - \Delta - E_{M}(B) + \sum_{\phi,k}(\partial_{t}, \Delta)]\phi \\ \Gamma_{k}(3) &= g \int \chi(\mathbf{r}_{2} - \mathbf{r}_{1}) \left[\phi(\frac{\mathbf{r}_{1} + \mathbf{r}_{2}}{2}, t)\psi^{*}(\mathbf{r}_{1}, t)\psi^{*}(\mathbf{r}_{2}, t) + h.c. \right] \\ \Gamma_{k}(4) &= -\int \frac{\lambda_{k}^{(3)}(Q_{1}, Q_{2}, Q_{3})}{k}\phi(Q_{1})\psi(Q_{2})\phi^{*}(Q_{3})\psi^{*}(Q_{4})\delta(Q_{1} + Q_{2} - Q_{3} - Q_{4}) \\ & \clubsuit \quad \text{atom-dimer scattering vertex, mediates three-} \end{split}$$

body scattering

truncation for exact solution with RG

systematic vertex expansion similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

Includes all possible correlations generated in three-body problem

$$\Gamma_{k} = \sum_{n=0}^{\infty} \Gamma_{k}(n) = \Gamma_{k}(2) + \Gamma_{k}(3) + \Gamma_{k}(4) + \dots, \qquad 1/\mathcal{G}_{\phi}(\partial_{t}, \nabla^{2})$$

$$\Gamma_{k}(2) = \int \psi^{*}[i\partial_{t} - \Delta]\psi + \int \phi^{*}[i\partial_{t} - \Delta - E_{M}(B) + \sum_{\phi,k}(\partial_{t}, \Delta)]\phi$$

$$\Gamma_{k}(3) = g \int \chi(\mathbf{r}_{2} - \mathbf{r}_{1}) \left[\phi(\frac{\mathbf{r}_{1} + \mathbf{r}_{2}}{2}, t)\psi^{*}(\mathbf{r}_{1}, t)\psi^{*}(\mathbf{r}_{2}, t) + h.c.\right]$$

$$\Gamma_{k}(4) = -\int \lambda_{k}^{(3)}(Q_{1}, Q_{2}, Q_{3})\phi(Q_{1})\psi(Q_{2})\phi^{*}(Q_{3})\psi^{*}(Q_{4})\delta(Q_{1} + Q_{2} - Q_{3} - Q_{4})$$

atom-dimer scattering vertex, mediates threebody scattering

rg flow equations

rg scheme chosen yields

- exact solution of three-body flow equations
 - → IR: Lippmann-Schwinger and modified STM equation

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

RG flow - gradient expansion

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

RG flow - gradient expansion

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

exact RG flow of $\lambda_k^{(3)}(q_1,q_2;E)$ similar FRG for zero-range: Moroz, Floerchinger, RS, Wetterich, PRA 79 (2009)

Tuesday, March 25, 14

bound state spectrum

IR value of $\lambda_3(q_1, q_2; E)$ carries all information about three-body problem

bound state spectrum, pole expansion

$$\lambda_3(q_1, q_2; E) pprox rac{\mathcal{B}(q_1, q_2)}{E - E^{(n)} + i\Gamma^{(n)}}$$
 see e.g.: Braaten, Hammer, Phys. Rep. 428 (2006)

energy spectrum

spectrum reaches maximal extent for open-channel dominated resonances

- spectrum pushed towards unitarity point for closed-channel dom. resonances
- ▶ atom-dimer threshold: highly non-universal, model dependent

energy spectrum

exact results for non-universal corrections

	level number					
l_{vdw}/r^*	n	0	1	2	$n \gg 1$	
100	$a_{-}^{(n+1)}/a_{-}^{(n)}$	17.083	21.827	22.654	22.694	
1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	22.869	22.650	22.690	22.694	
0.1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.230	22.964	22.71	22.694	
RS, Rath, Zwi	ERGER, EPJB 85 (20 12			1		
	univ. scaling $n \gg 1$					

energy spectrum

exact results for non-universal corrections

	level number					
l_{vdw}/r^*	n	0	1	2	$n \gg 1$	
100	$a_{-}^{(n+1)}/a_{-}^{(n)}$	17.083	21.827	22.654	22.694	
1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	22.869	22.650	22.690	22.694	
0.1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.230	22.964	22.71	22.694	
RS, RATH, ZWI	ERGER, EPJB 85 (20 12			1		
	univ. scaling $n \gg$					

crossover of observables

exact results for non-universal corrections

	level number					
l_{vdw}/r^*	n	0	1	2	$n \gg 1$	
100	$a_{-}^{(n+1)}/a_{-}^{(n)}$	17.083	21.827	22.654	22.694	
1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	22.869	22.650	22.690	22.694	
0.1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.230	22.964	22.71	22.694	
RS, Rath, Zwi	ERGER, EPJB 85 (20 12			1		
	univ. scaling $n \gg 1$					

crossover of observables

energy spectrum

exact results for non-universal corrections

	level number					
l_{vdw}/r^*	n n	0	1	2	$n \gg 1$	
100	$a_{-}^{(n+1)}/a_{-}^{(n)}$	17.083	21.827	22.654	22.694	
1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	22.869	22.650	22.690	22.694	
0.1	$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.230	22.964	22.71	22.694	
RS, RATH, ZWI	ERGER, EPJB 85 (20 12			1		
	univ. scaling $n \gg 1$					

crossover of observables

Extended universality for 'narrow' resonances

in limit of closed channel dominated resonances $g \to 0$ an extended universality appears RS, PHD THESIS (2013)

prediction of universal deviations away from unitarity

п	0	1	2	3	4	_
$a_{-}^{(n)}/r^{*}$	-10.90	-12.72	-12.89	-12.897	-12.899	
$\kappa^{(n)}r^*$	0.118	0.117	0.117	0.117	0.117	
$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.48	22.98	22.713	22.698	-	RS, PHD THESIS (2013)

 \rightarrow ratios independent of form factor or regularization chosen!

Extended universality for 'narrow' resonances

in limit of closed channel dominated resonances $g \to 0$ an extended universality appears RS, PHD THESIS (2013)

prediction of universal deviations away from unitarity

n	0	1	2	3	4	
$a_{-}^{(n)}/r^{*}$	-10.90	-12.72	-12.89	-12.897	-12.899	
$\kappa^{(n)}r^*$	0.118	0.117	0.117	0.117	0.117	
$a_{-}^{(n+1)}/a_{-}^{(n)}$	26.48	22.98	22.713	22.698	-	RS, PHD THESIS (2013)

 \hookrightarrow ratios independent of form factor or regularization chosen!

indication universal scaling of deviations with trimer level

$$\frac{a_{-}^{(n+1)}}{a_{-}^{(n)}} \approx 22.694 + \gamma_1 e^{-\gamma_2 n}, \qquad \gamma_1 = 63(20) \text{ and } \gamma_2 = 2.7(3) \text{ RS, PHD THESIS (2013)}$$

Test of universality I

change microphysics

effect on observables?

Test of universality I

change microphysics

effect on observables?

choice of atom-dimer conversion coupling

- deviations around 10%
- ▶ similar to study of varying single-channel potential by WANG, D'INCAO, ESRY, GREENE, PRL 108 (2012)

Test of universality II

microscopic three-body force

▶ 3rd order pert. theory in dipole-dipole interaction: Axilrod-Teller three-body potential

 $W_{\rm AT} = \gamma \frac{1 + 3\cos\theta_{12}\cos\theta_{23}\cos\theta_{31}}{r_{12}^3 r_{23}^3 r_{31}^3}$

qualitative study assuming simplified three-body force

even for infinite attraction only 10% change

▶ similar to: single-channel model + Axilrod-Teller yields also 10% deviation D'INCAO, GREENE, ESRY, JPB 42 (2009)

Test of universality III

no true universality but consistent picture of an robust approximate universality

$$a_{-} \approx -(7.5 \dots 10.5) l_{\mathrm{vdw}}$$

outlook: the Florence puzzle

still follows single-channel prediction!

the puzzle

- narrow resonance: single-channel model insufficient
- but also: our ,pure' two-channel model insufficient

outlook: the Florence puzzle

still follows single-channel prediction!

- narrow resonance: single-channel model insufficient
- ▶ but also: our ,pure' two-channel model insufficient

possible solution

calculation with *realistic two-channel potential* including weak open-channel interaction [in *density channel*]

outlook: the Florence puzzle

still follows single-channel prediction!

the puzzle

- narrow resonance: single-channel model insufficient
- but also: our ,pure' two-channel model insufficient

possible solution

calculation with *realistic two-channel potential* including weak open-channel interaction [in *density channel*]

 even weak background scattering gives 3body potential

short-range cutoff $\rightarrow l_{\rm vdw}$

 \blacktriangleright closed-channel scattering gives large a

only for large enough a: scaling with r^*

 the functional renormalization group as unified approach for few- and many-body problems

 the functional renormalization group as unified approach for few- and many-body problems

 derivation of an exact solution for Efimov physics for simple two-channel model

- we find rather robust universality of the three-body parameter for 'broad' resonances
- open question: closed channel dominated resonances have still to be understood in more detail

 the functional renormalization group as unified approach for few- and many-body problems

Thank you!

- we find rather robust universality of the three-body parameter for 'broad' resonances
- open question: closed channel dominated resonances have still to be understood in more detail