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model Hamiltonian

‣ the better the experiments, the more important non-universal details become

however:

‣cold atoms beyond condensed matter-simulator:

• unique system to study interplay between few- and many-body physics

• exhibits also physics without counterparts in hard condensed-matter

ideal for many-body calculations

Tuesday, March 25, 14



model Hamiltonian

‣ the better the experiments, the more important non-universal details become

however:

‣cold atoms beyond condensed matter-simulator:

• unique system to study interplay between few- and many-body physics

• exhibits also physics without counterparts in hard condensed-matter

Efimov physics combines all of these aspects

this talk:

ideal for many-body calculations
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two-body universality

1/a

Econtinuum

bound state

at small scattering energies: 

universal dimer �B =
~2

ma2

“no matter the details of                  “ 

‣ low energy interactions characterized by tunable s-wave scattering length

energy spectrum
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two-body universality

1/a

Econtinuum

bound state

at small scattering energies: 

universal dimer �B =
~2

ma2

“no matter the details of                  “ 

‣ low energy interactions characterized by tunable s-wave scattering length

energy spectrum

RG fixed point3

universality

‣ scattering length only parameter

1 scale invariance
‣ at unitarity no scale is left

‣ powerful symmetry

2

Tuesday, March 25, 14



Efimov effect

three-body physics - Efimov 1970
bosons, pairwise resonant, short-range interactions

515.03

EFIMOV, PHYS. LETT. 33 (1970)

‣ favorable to build three-body bound states (trimers)

‣ trimers even in regime with no two-body bound state
‣ infinitely many trimers
‣ originally predicted for nuclear matter
‣ for the first time observed in ultracold atoms

KRAEMER ET AL., NATURE 440 (2006)

EFIMOV, PHYS. LETT. 33 (1970)
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three-body parameter

energy spectrum

1/a�

scale invariance discrete scale invariance

s0 ⇡ 1.00624... universal
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three-body parameter

Efimov universality universality
regardless the interaction potential, 
close to resonance: only one 
parameter: a

not only a as parameter,
three-body parameter needed 

to fix overall trimer position 

three-body parameter
‣ determines where lowest trimer enters the atom threshold

energy spectrum

1/a�

scale invariance discrete scale invariance

s0 ⇡ 1.00624... universal

RG fixed point RG limit cycle
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origin of the three-body parameter
1/a�

quantum mechanics
THREE-BODY POTENTIAL

: short range regularization

RG scale

�3

quantum field theory

large momentum (UV) regularization:

three-body parameter

SEE E.G. D‘INCAO, GREENE, ESRY, JPB 42 (2009)

how to observe Efimov physics, how to measure       ?

short-range sensitive: non-universal
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Observation of Efimov physics in cold atoms

enhanced three-body loss

deeply bound molecules

E!mov trimer

en
er

gy

optical dipole trap
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Observation of Efimov physics in cold atoms

enhanced three-body loss

deeply bound molecules

‣ decay to deeply bound dimers: release of binding energy leads to loss from trap

E!mov trimer

lo
ss

 ra
te

ṅ = �L3n
3

BEDAQUE, HAMMER, VAN KOLCK, PRL 82 (1999)
BRAATEN, HAMMER,  PRL 87 (2001) 

optical dipole trap
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Observation of Efimov physics in cold atoms

enhanced three-body loss

deeply bound molecules

‣ decay to deeply bound dimers: release of binding energy leads to loss from trap

E!mov trimer

lo
ss

 ra
te

new trimer decay channel opens up

ṅ = �L3n
3

BEDAQUE, HAMMER, VAN KOLCK, PRL 82 (1999)
BRAATEN, HAMMER,  PRL 87 (2001) 

optical dipole trap
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deeply bound molecules

Observation of Efimov physics

enhanced three-body loss
‣ decay to deeply bound dimers: release of binding energy leads to loss from trap

lo
ss

 ra
te

ṅ = �L3n
3
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KRAEMER ET AL., NATURE 440 (2006)

BEDAQUE, HAMMER, VAN KOLCK, PRL 82 (1999)
BRAATEN, HAMMER,  PRL 87 (2001) 

Tuesday, March 25, 14



deeply bound molecules

Observation of Efimov physics

enhanced three-body loss
‣ decay to deeply bound dimers: release of binding energy leads to loss from trap

lo
ss

 ra
te

ṅ = �L3n
3

Heidelberg 2008
6Li : three-component fermions

fRG computation vs. experiment
FLOERCHINGER, RS, WETTERICH, PRA 79 (2009)

SIMILAR RESULTS: BRAATEN ET AL., PRL 103 (2009)
NAIDON, UEDA, PRL 103 (2009)

OTTENSTEIN ET AL., PRL 101 (2008)
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1/a�

energy spectrum

experimental observation

result:

three-body parameter universal?

FROM C. CHIN 1111.1484V2

Florence

Innsbruck 

JILA, Rice

Heidelberg, Penn. State 

Bar-Ilan, Rice

the combined experimental effort until 2012

BERNINGER ET AL., PRL 107 (2011)
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experimental observation

result:

three-body parameter universal?

FROM C. CHIN 1111.1484V2

Florence

Innsbruck 

JILA, Rice

Heidelberg, Penn. State 

Bar-Ilan, Rice

the combined experimental effort until 2012

All experiments use ultracold atoms close to Feshbach resonances
Our goal:

➡ test universality using simple Feshbach two-channel model [w/o fit parameters] 
using renormalization group methods RS, RATH, ZWERGER, EPJB 85 (2012)

BERNINGER ET AL., PRL 107 (2011)
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effective action approach

UV scale S =
Z

�⇤[�i~⇥
t

� r
2

2m
]� +

Z

x

g� (�⇤�)2(x)
definition 
of theory:

Z[J ] =
Z

D�e�S[�]�
R

J�

Quantum field theory
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�[�] =
Z

�⇤[�i~⇤t �
⇥2

2m
� ⇥(⇥, ⌅q)]� +

Z
�(4)({qj})(�⇤�)2 + . . .

effective action

f(q) =
1

�1/a� iq + . . .

spectral functions, rf response, scattering amplitudes, 
Fermi liquid parameters...

effective action approach

UV scale S =
Z

�⇤[�i~⇥
t

� r
2

2m
]� +

Z

x

g� (�⇤�)2(x)
definition 
of theory:

Z[J ] =
Z

D�e�S[�]�
R

J�

IR scaleexperiment:

 - generating functional of 1PI correlation functions

Quantum field theory

access to:
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effective action

UV

IR �[�] =
Z

�⇤[�i~⇤t �
⇥2

2m
� ⇥(⇥, ⌅q)]� +

Z
�(4)({qj})(�⇤�)2 + . . .

S =
Z

�⇤[�i~⇥
t

� r
2

2m
]� +

Z

x

g� (�⇤�)2(x),theory‘:

,experiment‘:
Z

�3(E)(⇥⇤⇥)3

problem: 
keep track of build up of correlations, e.g.

: three-body scattering amplitude

‣ relates to hyperspherical wavefunction            in momentum space

‣ poles give bound state spectrum

this talk
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functional renormalization group

UV

IR �[�] =
Z
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�0 =
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How to obtain         ?�[�]Problem:
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functional renormalization group

UV

IR �[�] =
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x

g� (�⇤�)2(x)

functional R
G

�0 =

�⇤ =

How to obtain         ?�[�]Problem:

�k �k[�] =
Z
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⇥2

2m
� ⇥k(⇥, ⌅q)]� +

Z
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de!ne: interpolating effective action

includes successively 
fluctuations on 
momentum scales 
large than k:

�
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functional renormalization group

UV
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functional R
G

�0 =

�⇤ =

How to obtain         ?�[�]Problem:

regulator controls inclusion of 
#uctuations of momenta q>k

WETTERICH, PHYS. LETT. B 301 (1993)exact RG equation
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1
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build up of correlations: fermions vs. bosons
RG flow [illustration]

RG scale k
g

UVIR
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build up of correlations: fermions vs. bosons

two-component fermions

initial RG steps: 
determined by few-body physics

later stage: 
realm of many-body, IR physics

RG flow [illustration]

RG scale k
g

UVIR
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build up of correlations: fermions vs. bosons

two-component fermions

initial RG steps: 
determined by few-body physics

later stage: 
realm of many-body, IR physics

RG flow [illustration]

RG scale k
g

UVIR

Pauli principle: 
three-body correlations suppressed
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build up of correlations: fermions vs. bosons

two-component fermions identical bosons

no Pauli principle: 
three-body correlations important?

deep understanding of few-body physics needed 
for reliable many-body calculation!

initial RG steps: 
determined by few-body physics

later stage: 
realm of many-body, IR physics

RG flow [illustration]

RG scale k
g

UVIR

Pauli principle: 
three-body correlations suppressed
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RG flow of the three-body problem
MOROZ, FLOERCHINGER, RS, WETTERICH PRA 79 (2009)

MOROZ, RS, ANN. PHYS. 325 (2010)
REVIEW: FLOERCHINGER, MOROZ, RS, FEW-BODY. SYS. 51 (2011)
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RG flow of the three-body problem

k

�3 fermions

MOROZ, FLOERCHINGER, RS, WETTERICH PRA 79 (2009)
MOROZ, RS, ANN. PHYS. 325 (2010)

REVIEW: FLOERCHINGER, MOROZ, RS, FEW-BODY. SYS. 51 (2011)

fermions: !xed point

scale invariance preserved 
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RG flow of the three-body problem

2�

s0

bosons: Limit cycle!

scale invariance broken 

k

�3 fermions

divergencies                      signal 
bound states

1/a�

MOROZ, FLOERCHINGER, RS, WETTERICH PRA 79 (2009)
MOROZ, RS, ANN. PHYS. 325 (2010)

REVIEW: FLOERCHINGER, MOROZ, RS, FEW-BODY. SYS. 51 (2011)

bosons
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RG flow of the three-body problem

2�

s0

bosons: Limit cycle!

scale invariance broken 

k

�3 fermions

divergencies                      signal 
bound states

1/a�

MOROZ, FLOERCHINGER, RS, WETTERICH PRA 79 (2009)
MOROZ, RS, ANN. PHYS. 325 (2010)

REVIEW: FLOERCHINGER, MOROZ, RS, FEW-BODY. SYS. 51 (2011)

bosons

large momentum regularization:
three-body parameter

why does the three-body parameter appear to be universal?

Back to the question:
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Two-channel model

S�,kin =
Z

�⇤[i⇥t �r2]�

S�,kin =
Z

�⇤[i⇥t �r2/2 + EM (B)]�

Sint =
Z

g(r2 � r1)�(
r1 + r2

2
, t)⇥⇤(r1, t)⇥⇤(r2, t)

extend the „standard two-channel model“ to finite range

‣ atom-atom interaction solely due to exchange
   of closed-channel molecule

g g

‣ “minimal model”: still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)
SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10
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‣ atom-atom interaction solely due to exchange
   of closed-channel molecule

g g

: conversion coupling
in EFT: usually zero-range model

g(r)

g(r2 � r1) = g �(r2 � r1)

time

‣ “minimal model”: still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)
SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10
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Two-channel model
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2
, t)⇥⇤(r1, t)⇥⇤(r2, t)

extend the „standard two-channel model“ to finite range

‣ atom-atom interaction solely due to exchange
   of closed-channel molecule

g g

here: finite range, due to Frank-Condon overlap

g(r) = g e�r/�/r

�(r)

}

: conversion coupling
in EFT: usually zero-range model

g(r)

g(r2 � r1) = g �(r2 � r1)

time

‣ “minimal model”: still traceable for many-body calculation SEE ALSO: ZINNER ET AL. PRA 86 (2012)
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extend the „standard two-channel model“ to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10

g(r) = g e�r/�/r

parameters from two-body physics Feshbach resonances
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•      from „width of Feshbach resonance“      r⇤g

•         from Feshbach resonance positionBres
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Two-channel model

S�,kin =
Z

�⇤[i⇥t �r2]�

S�,kin =
Z

�⇤[i⇥t �r2/2 + EM (B)]�

Sint =
Z

g(r2 � r1)�(
r1 + r2

2
, t)⇥⇤(r1, t)⇥⇤(r2, t)

extend the „standard two-channel model“ to finite range SIMILAR: MASSIGNAN `08, PRICOUPENKO `10, JONA-LASINIO `10

g(r) = g e�r/�/r

parameters from two-body physics Feshbach resonances

sc
at

te
rin

g 
len

gt
h

magnetic field B

a(B) = � ~2

r⇤µ (B �B0)

⇠ 1/r⇤

all model parameters are fixed, no fit parameter

•      from „width of Feshbach resonance“      r⇤g

•     determined from QdT calc. of resonance shift �
GORAL ET AL., JPB 37 (2004)

•         from Feshbach resonance positionBres

SEE ALSO: ZINNER ET AL. PRA 86 (2012)

g g

1

2

3
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truncation for exact solution with RG
systematic vertex expansion

�k =
1X

n=0

�k(n) = �k(2) + �k(3) + �k(4) + ...,

�k(4) = �
Z

⇥(3)
k (Q1, Q2, Q3)⇤(Q1)⌅(Q2)⇤⇤(Q3)⌅⇤(Q4)�(Q1 + Q2 �Q3 �Q4)

SIMILAR FRG FOR ZERO-RANGE: MOROZ, FLOERCHINGER, RS, WETTERICH, PRA 79 (2009)

�k(2) =
Z

⇥⇤[i⇤t �⇥]⇥ +
Z

�⇤[i⇤t �⇥� EM (B) + ⇤�,k(⇤t,⇥)]�

�k(3) = g

Z
⇥(r2 � r1)


�(

r1 + r2

2
, t)⇤⇤(r1, t)⇤⇤(r2, t) + h.c.

�

}1/G�(�t,�2)

‣ includes all possible correlations generated in three-body problem

atom-dimer scattering vertex, mediates three-
body scattering
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⇥(r2 � r1)


�(

r1 + r2

2
, t)⇤⇤(r1, t)⇤⇤(r2, t) + h.c.

�

rg scheme chosen yields
‣ exact solution of three-body flow equations

 IR: Lippmann-Schwinger and modified STM equation

}1/G�(�t,�2)

⇥k�k[�] =
1
2

Z
1

�(2)
k [�] + Rk

⇥kRk

‣ includes all possible correlations generated in three-body problem

atom-dimer scattering vertex, mediates three-
body scattering

rg flow equations
�(3)

k⌃�,k
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RG flow - limit cycle

ln
(q

1
/�

)

ln(q2/�)

exact RG flow of �(3)
k (q1, q2;E)

ln(k/�)
�3

RG flow - gradient expansion

FLOERCHINGER, RS, MOROZ, WETTERICH, PRA 79 (2009)
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bound state spectrum

- 0.5 0.0 0.5 1.0

- 1.5

- 1.0

- 0.5

0.0

open channel 
dominated 

- 1.0 - 0.5 0.0 0.5 1.0

- 1.5

- 1.0

- 0.5

0.0

closed channel 
dominated

‣ atom-dimer threshold: highly non-universal, model dependent

�3(q1, q2;E) ⇥ B(q1, q2)
E � E(n) + i�(n)

‣ spectrum reaches maximal extent for open-channel dominated resonances

‣ spectrum pushed towards unitarity point for closed-channel dom. resonances

bound state spectrum, pole expansion

energy spectrum

carries all information about three-body problemIR value of

SEE E.G.: BRAATEN, HAMMER, PHYS. REP. 428 (2006)
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approach of universality
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level number
lvdw/r⇤ n 0 1 2 n� 1

100 a(n+1)
� /a(n)

� 17.083 21.827 22.654 22.694
1 a(n+1)

� /a(n)
� 22.869 22.650 22.690 22.694

0.1 a(n+1)
� /a(n)

� 26.230 22.964 22.71 22.694

univ. scaling n� 1

energy spectrum
exact results for non-universal corrections

RS, RATH, ZWERGER, EPJB 85 (2012)
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Extended universality for ‘narrow’ resonances

ratios independent of form factor or regularization chosen!

prediction of universal deviations away from unitarity

RS, PHD THESIS (2013)
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in limit of closed channel dominated resonances            an extended universality appears
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50 CHAPTER 2. EFIMOV PHYSICS BEYOND UNIVERSALITY

a(n)− = ξ
(n) r ∗ as in Eq. (2.80). In Table 2.2 we show ξ (n) and η(n) for various n and similar to

Section 2.7 we find deviations from the universal scaling, Eq. (2.81), for low n. We find that
the values ξ (n) and η(n) turn out to be new universal numbers for all n which do not depend on
the specific model or regularization scheme chosen as long as the model features a large value
of r ∗, see also Section 2.9.

n 0 1 2 3 4

ξ (n)e−
nπ
s0 -10.90 -12.72 -12.89 -12.897 -12.899

η(n)e
nπ
s0 0.118 0.117 0.117 0.117 0.117

a(n+1)
− /a(n)− 26.48 22.98 22.713 22.698 -

TABLE 2.2: Approach of universal scaling of the lowest Efimov states in the limit r ∗Λ# 1.

In Table 2.2 we also quantify how the ratios a(n+1)
− /a(n)− quickly approach their universal

value 22.694 as n →∞. We find that the decrease of the deviations from universal scaling is
relatively well described by a the phenomenological formula

a(n+1)
−

a(n)−
≈ 22.694+ γ1e−γ2n , (2.86)

where γ1 = 63(20) and γ2 = 2.7(3). The large error in the numerical constants is due to the
very large momentum grid needed in the regime r ∗ →∞.

Since we find that the deviations from the universal scaling, Eq. (2.81), itself is again univer-
sal, we conjecture that there exists a universal relation of a form similar to Eq. (2.86) governing
the approach of a(n+1)

− /a(n)− towards the universal value 22.694 with universal numbers γi .

2.9 Test of universality

Let us now address the question to which extent the properties of the lowest Efimov state, such
as the scaling of a− with lvdw and r ∗, cf. Eq. (2.78) and (2.82), depend on the microscopical
details of our model (2.23). We will test two possible sources of such non-universal correc-
tions: first, a modification of the form factor determining the atom-molecule conversion and,
secondly, non-universal corrections due to a non-zero three-body force.

Form of the atom-molecule conversion coupling χ (r ). Our original idea was, cf. Sec-
tion 2.2, that the apparent universality of the three-body parameter is due to the fact that in
all experiments having measured a−, ultracold atoms close to a Feshbach resonance have been
used. This led us to the assumption that it is the Feshbach mechanism itself which causes the
observed, apparent universality. In order to support this picture we introduced the simple
two-channel model (2.23) with the specific, physically motivated form factor χ (r ) ∼ e r/σ/r .
This choice is, however, by far not the only, unique choice and we may use the freedom of
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tions: first, a modification of the form factor determining the atom-molecule conversion and,
secondly, non-universal corrections due to a non-zero three-body force.

Form of the atom-molecule conversion coupling χ (r ). Our original idea was, cf. Sec-
tion 2.2, that the apparent universality of the three-body parameter is due to the fact that in
all experiments having measured a−, ultracold atoms close to a Feshbach resonance have been
used. This led us to the assumption that it is the Feshbach mechanism itself which causes the
observed, apparent universality. In order to support this picture we introduced the simple
two-channel model (2.23) with the specific, physically motivated form factor χ (r ) ∼ e r/σ/r .
This choice is, however, by far not the only, unique choice and we may use the freedom of
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tion 2.2, that the apparent universality of the three-body parameter is due to the fact that in
all experiments having measured a−, ultracold atoms close to a Feshbach resonance have been
used. This led us to the assumption that it is the Feshbach mechanism itself which causes the
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choosing different form factors χ to test the degree of universality involved in the solution of
the corresponding three-body problem.

Specifically, we study here the results for a Gaussian form factor often employ in litera-
ture [149, 150, 153],

χ (q) = e−q2σ2/2, (2.87)

which in coordinate space yields χ (r ) ∼ e r 2/(2σ2). Using this form factor the solution of the
two-body problem is slightly modified. In particular we find
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which gives, upon expansion of the scattering amplitude f (k), the identifications
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r ∗ =
32π

g 2
, (2.91)

and by comparing the resonance shift with the quantum defect calculation by Julienne and
coworkers [157], as described in Section 2.3, we find

σ =
2
%
π

ā. (2.92)

The three-body problem is solved analogous to Section 2.5-2.7 with the Gaussian form
factor (2.87) used in the corresponding expressions. Subsequently the three-body bound state
spectrum can be determined. As a measure for the extent of universality we concentrate on
the dependence of a(n)− on r ∗ and lvdw. In Fig. 2.25 we show the crossover of ā/a− from the
closed- to the open-channel dominated limit (solid line) and compare the results to the one
obtained in Section 2.7 (dashed line).

In the limit of open-channel dominated resonances, sres' 1, we find

a− =−7.40 lvdw. (2.93)

This shows that, while the functional form of the scaling of a− with lvdw for open-channel
dominated resonances is universal, the specific prefactor is a non-universal quantity which,
however, is of the order of ( (10)lvdw. Comparing the result Eq. (2.93) with the result derived

WANG, D'INCAO, ESRY, GREENE, PRL 108 (2012)‣ similar to study of varying single-channel potential by
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FIGURE 2.25: Inverse threshold scattering length a− in units of ā as functions of the resonance
strength sres. We compare the result using the exponential form factor (dashed), cf. Section 2.3,
to the Gaussian form factor in Eq. (2.87) (solid).

in Section 2.7 we conjecture that in the limit of open-channel dominated resonances the typical
deviations from the experimentally observed scaling around the mean value a− ≈ −9.45lvdw
can be expected to be at the 10% level. This is also consistent with the findings of Wang
et al. [143] who find similar non-universal deviations using a variation of the depths of the
two-body potentials employed in their single-channel model calculation.

Similarly to Section 2.7, we find for closed-channel dominated resonances, sres # 1, that
a− scales with the resonance width r ∗ according to

a− =−0.118 r ∗. (2.94)

Contrary to the relation (2.93) this scaling turns out to be independent of the microscopic
model chosen. It is the same for the exponential, the Gaussian, as well as a delta-function like
form factor employed in the effective range model in Section 2.8. For all Efimov states we
recover exactly the results shown in Table 2.2. The underlying reason for this new, extended
universality can be found by inspection of the expression for the effective range in the various
models, cf. Eqn. (2.34), (2.85), and (2.89). When r ∗ is large, the effective range re is dominated
by this scale, the effective atom-atom scattering is determined by the term re =−2r ∗, and the
observable physics becomes independent of the microscopical details.

Influence of a three-body force. When studying the dipole-dipole interactions between
neutral atoms in third-order perturbation theory, one finds that they induce a microscopic
three-body interaction (or force)

WAT = γ
1+ 3cosθ12 cosθ23 cosθ31

r 3
12 r 3

23 r 3
31

, (2.95)

where θi j , ri j are the angles and sides of the triangle spanned by the three atoms. The in-
teraction (2.95) is known as the Axilrod-Teller potential [187] and it is valid at large atomic

RS, RATH, ZWERGER, EPJB 85 (2012)

RS, PHD THESIS (2013)

‣ deviations around 10%

Tuesday, March 25, 14



Test of universality II
microscopic three-body force

‣ similar to: single-channel model + Axilrod-Teller yields also 10% deviation

RS, RATH, ZWERGER, EPJB 85 (2012)
RS, PHD THESIS (2013)

‣ even for infinite attraction only 10% change

‣ 3rd order pert. theory in dipole-dipole interaction: Axilrod-Teller three-body potential

52 CHAPTER 2. EFIMOV PHYSICS BEYOND UNIVERSALITY

- 1.5 - 1.0 - 0.5 0.0 0.5 1.0 1.5
- 0.14

- 0.12

- 0.10

- 0.08

- 0.06

- 0.04

- 0.02

0.00
Gaussian

Exponential

FIGURE 2.25: Inverse threshold scattering length a− in units of ā as functions of the resonance
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by this scale, the effective atom-atom scattering is determined by the term re =−2r ∗, and the
observable physics becomes independent of the microscopical details.
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where θi j , ri j are the angles and sides of the triangle spanned by the three atoms. The in-
teraction (2.95) is known as the Axilrod-Teller potential [187] and it is valid at large atomic
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
been calculated to high precision for various mixtures of atom species by Babb and coworkers
[188]. The short distance behavior of the three-body force is largely unknown and presumed
to be highly dependent on microscopic details. Also exchange interactions play a major role
at short and intermediate interparticle distances.

Here we want to study the consequences of a microscopic three-body force for the scal-
ing of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated
function of momenta which renders the exact solution of the three-body problem intractable.
In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).

0 2 4 6

- 0.15

- 0.10

- 0.05

0.00

attractive 3B-force

repulsive 3B-force

no 3B-force
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)
3 (q1, q2)−

∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the

shaded region corresponds to choices of λ̃(Λ)3 ∈ (−0.1 . . . 0.01) in units of σ .
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)
3 (q1, q2)−

∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the

shaded region corresponds to choices of λ̃(Λ)3 ∈ (−0.1 . . . 0.01) in units of σ .
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at short and intermediate interparticle distances.

Here we want to study the consequences of a microscopic three-body force for the scal-
ing of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated
function of momenta which renders the exact solution of the three-body problem intractable.
In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).

0 2 4 6

- 0.15

- 0.10

- 0.05

0.00

attractive 3B-force

repulsive 3B-force

no 3B-force

(a) (b)

FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)
3 (q1, q2)−

∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the

shaded region corresponds to choices of λ̃(Λ)3 ∈ (−0.1 . . . 0.01) in units of σ .
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FIGURE 2.25: Inverse threshold scattering length a− in units of ā as functions of the resonance
strength sres. We compare the result using the exponential form factor (dashed), cf. Section 2.3,
to the Gaussian form factor in Eq. (2.87) (solid).

in Section 2.7 we conjecture that in the limit of open-channel dominated resonances the typical
deviations from the experimentally observed scaling around the mean value a− ≈ −9.45lvdw
can be expected to be at the 10% level. This is also consistent with the findings of Wang
et al. [143] who find similar non-universal deviations using a variation of the depths of the
two-body potentials employed in their single-channel model calculation.

Similarly to Section 2.7, we find for closed-channel dominated resonances, sres # 1, that
a− scales with the resonance width r ∗ according to

a− =−0.118 r ∗. (2.94)

Contrary to the relation (2.93) this scaling turns out to be independent of the microscopic
model chosen. It is the same for the exponential, the Gaussian, as well as a delta-function like
form factor employed in the effective range model in Section 2.8. For all Efimov states we
recover exactly the results shown in Table 2.2. The underlying reason for this new, extended
universality can be found by inspection of the expression for the effective range in the various
models, cf. Eqn. (2.34), (2.85), and (2.89). When r ∗ is large, the effective range re is dominated
by this scale, the effective atom-atom scattering is determined by the term re =−2r ∗, and the
observable physics becomes independent of the microscopical details.

Influence of a three-body force. When studying the dipole-dipole interactions between
neutral atoms in third-order perturbation theory, one finds that they induce a microscopic
three-body interaction (or force)

WAT = γ
1+ 3cosθ12 cosθ23 cosθ31

r 3
12 r 3

23 r 3
31

, (2.95)

where θi j , ri j are the angles and sides of the triangle spanned by the three atoms. The in-
teraction (2.95) is known as the Axilrod-Teller potential [187] and it is valid at large atomic

vhs
vdW result. The average of the experimental values differs

from the present vhs
vdW result by less than 3%.

Previous treatments have failed to predict the universal-
ity of the three-body parameter for various reasons. In
treatments using zero-range interactions, for instance, the

three-body parameter enters as a free parameter to cure the
Thomas collapse [32], preventing any statement about its
universality. Finite range models devoid of a van der Waals
tail, like those used in some of our own treatments [18]
[corresponding to the results for vsch with n ¼ 2 and 3 in
Figs. 4(a) and 4(b)], have failed for lack of substantial
suppression of the probability density in the two-body
wells. Such models, however, are more appropriate to
describe light nuclei having few bound states and shallow
attraction. In contrast to Ref. [18], other models [24,33–38]
have found better agreement with experiments. Our analy-
sis of these treatments, however, indicates that the two-
body models used have many of the characteristics of our
vhs
vdW, therefore satisfying the prerequisite for a universal

three-body parameter. A recent attempt [39] to explain this
universality used an ad hoc hyperradial potential that bore
little resemblance to ours [see Fig. 3(b)]. This ad hoc three-
body potential displayed strong attraction at short distances
in contrast to our key finding, which to reiterate, is that a
cliff of attraction for two bodies produces a universal
repulsive barrier in the three-body system.
In summary, our theoretical examination shows that the

three-body parameter controlling much of universal
Efimov physics can also be a universal parameter under
certain circumstances which should be realized in most
ultracold neutral atom experiments. Provided the under-
lying two-body short-range interaction supports a large
number of bound states, or it has some other property
leading to the suppression of the wave function at short
distances, three-body properties associated with Efimov
physics can be expected to be universal. This surprising
new scenario could not have been, and was not, anticipated
from the simple model calculations to date. Ironically,
increasing the complexity of the model simplified the

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  2  4  6  8  10-2

-1

 0

 0  2  4  6

FIG. 3 (color online). (a) Efimov potential obtained from the
different two-body potential models used here. The reasonably
good agreement between the results obtained using models
supporting many bound states (vsch, va

! and vb
!) and vhs

vdW

[obtained by replacing the deep potential well with a hard wall
but having only one (zero-energy) bound state] supports our
conclusion that the inside-the-well suppression of the wave
function is the main physical mechanism behind the universality
of the three-body effective potentials. The differences between
these potentials are seen to cause differences of a few percent in
the three-body parameter. (b) Comparison between the effective
potential proposed by Ref. [39] (green dashed curve) and the
one (red solid curve) constructed to describe our findings:
2"r2vdWWu

# ðRÞ=@2$%ðs20þ1=4Þ=X2%b3=X
3%b4=X

4%b5=X
5þ

b16=X
16, where X ¼ R=rvdW and b3 ¼ 2:334, b4 ¼ 1:348, b5 ¼

44:52, b16 ¼ 4:0' 104.
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FIG. 4 (color online). Values for the three-body parameter (a) $( and (b) a
%
3b as functions of the number n of two-body s-wave bound

states for each of the potential models studied here. (c) Experimental values for a%3b for 133Cs [3] (red: ', þ, h, and *), 39K [4]
(magenta: 4), 7Li [5] (blue: )) and [6,7] (green: j and *), 6Li [8,9] (cyan: m and 5) and [10,11] (brown: . and r), and 85Rb [12]
(black: r). The gray region specifies a band where there is a +15% deviation from the vhs

vdW results. The inset of (a) shows the
suppression parameter %in

p (Eq. (S.5) in Ref. [26]) which can be roughly understood as the degree of sensitivity to nonuniversal
corrections. Since %in

p is always finite—even in the large n limit—nonuniversal effects associated with the details of the short-range
interactions can still play an important role. One example is the large deviation in $( found for the vsch (n ¼ 6) model, caused by a
weakly bound g-wave state. For n > 10 we expect $( and a%3b to lie within the range of +15% established for n , 10.
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Figure 4: Pair correlation at unitarity for potentials decaying
faster than any power law. Top: the Pöschl-Teller potential;
bottom: the Gaussian potential. In each graph, the solid
curves correspond in order of opacity to potential depths sup-
porting respectively 1, 2, 10, and 120 s-wave bound states.
The dashed lines show the universal pair correlation limit in
Eq. (5). The distance is scaled in units of 1

2re in the main
graphs, while it is shown in unscaled units of r0 in the insets.
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Figure 5: Binding wave number  of the ground-state Efimov
trimer calculated from the separable model in Eqs. (1) and
(2) for pair correlations corresponding to different two-body
interactions, as a function of the depth of these potentials as
measured by the number of s-wave two-body bound states.
The dashed lines indicate from top to bottom the values ob-
tained for the universal pair correlation in Eq. (4) with n = 4
and n = 6, and the universal pair correlation in Eq. (5), re-
spectively. This figure shows how the three-body parameter
converges differently and to different limits depending on the
class of two-body interaction.

potentials [43]. In this sense, the three-body parameter
is universally determined by the effective range of these
potentials, and stems from the universal pair correlation

limit:

u0(r) =

(
0 for r <

1
2re

1� r
a for r � 1

2re
. (5)

Figure 5 shows the trimer binding wave number  for
some of these potentials, namely, the Gaussian poten-
tial, the Pöschl-Teller potential with ↵ = 1, the Yukawa
potential, the Morse potential with r0 = 1 [31], as well
as the neutron-neutron interaction potential in the 1

S0

channel [38]. While none of these calculations correspond
to a particular physical system, they capture the essence
of the Efimov physics occurring in the symmetric chan-
nel of nuclear systems, such as the tritium nucleus. Each
potential was scaled to reach unitarity, corresponding to
different possible depths of the potential. One can see in
Fig. 5 that as the depth of the potentials is increased, 
converges to the value  = 0.2190(1)⇥ ( 12re)

�1 obtained
for the two-body correlation in Eq. (5). The convergence
is, however, very slow, because very deep potentials (sup-
porting hundreds of bound states) are required for the
pair correlation to approach Eq. (5).

Finally, one should note that there is a notable ex-
ception to these considerations. One might think that
the square-well potential, which often lends itself to sim-
ple analytical treatments [39], is a useful model potential
to investigate the physics of the three-body parameter.
However, it turns out to be a special case which does not
belong to the two classes discussed above. Even though
it decays faster than any power law, it does not belong to
the second class because of its absence of tail. In particu-
lar, the two-body wave function near unitarity shows no
progressive drop of probability in the well, only steady
oscillations which get faster as the depth of the well in-
creases, and therefore does not converge to the function
in Eq. (5). From this we conclude that this potential is
not expected to reveal any universality of the three-body
parameter.

To summarise, we have pointed out how the Efimov
three-body parameter is deeply connected to the zero-
energy two-body correlation. This allows us to identify
the two-body effective range as the relevant length scale
setting the three-body parameter for the class of physi-
cal interactions which suppress two-body probability at
short distance. However, it also shows that, unlike what
was suggested in Ref. [25], this suppression of two-body
probability does not lead to a single universal value of the
three-body parameter in units of the effective range. In-
deed we find two qualitatively distinct subclasses of inter-
actions for which the value of the three-body parameter is
universally determined. One corresponds to short-range
two-body potentials decaying as a power law, relevant
to atomic interactions, for which the three-body univer-
sality stems from the two-body universality. The other
corresponds to very deep two-body potentials decaying
faster than any power law, which lead to an abrupt two-
body suppression. Typical interactions in nuclear physics
decay faster than any power law but support only a few
bound states, so that their three-body parameter does

NAIDON ET AL. 1403.0294 (2014)

SEE ALSO: ZINNER ET AL. PRA 86 (2012)

Tuesday, March 25, 14



outlook: the Florence puzzle

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

observation

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

still follows single-channel prediction!

‣ narrow resonance: single-channel model insufficient

‣ but also: our ,pure‘ two-channel model insufficient

the puzzle39K ROY ET AL., PRL 111 (2013)

1/a�

Tuesday, March 25, 14



outlook: the Florence puzzle

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

observation

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

still follows single-channel prediction!

‣ narrow resonance: single-channel model insufficient

‣ but also: our ,pure‘ two-channel model insufficient

the puzzle

calculation with realistic two-channel potential
including weak open-channel interaction
[in density channel]

possible solution

39K ROY ET AL., PRL 111 (2013)

1/a�

Tuesday, March 25, 14



outlook: the Florence puzzle

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

observation

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2

still follows single-channel prediction!

‣ narrow resonance: single-channel model insufficient

‣ but also: our ,pure‘ two-channel model insufficient

the puzzle

calculation with realistic two-channel potential
including weak open-channel interaction
[in density channel]

possible solution

3B
-P

O
TE

N
TI

A
L

‣ even weak background scattering gives 3-
body potential

idea
given by open channel 

short-range cutoff
‣ closed-channel scattering gives large a

lvdw

given by closed channel 

only for large enough     : scaling with

39K ROY ET AL., PRL 111 (2013)

1/a�

Tuesday, March 25, 14



summary
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
been calculated to high precision for various mixtures of atom species by Babb and coworkers
[188]. The short distance behavior of the three-body force is largely unknown and presumed
to be highly dependent on microscopic details. Also exchange interactions play a major role
at short and intermediate interparticle distances.

Here we want to study the consequences of a microscopic three-body force for the scal-
ing of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated
function of momenta which renders the exact solution of the three-body problem intractable.
In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)
3 (q1, q2)−

∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the

shaded region corresponds to choices of λ̃(Λ)3 ∈ (−0.1 . . . 0.01) in units of σ .
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
been calculated to high precision for various mixtures of atom species by Babb and coworkers
[188]. The short distance behavior of the three-body force is largely unknown and presumed
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)
3 (q1, q2)−

∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with
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exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
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0
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
been calculated to high precision for various mixtures of atom species by Babb and coworkers
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to be highly dependent on microscopic details. Also exchange interactions play a major role
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In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).
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FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
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been calculated to high precision for various mixtures of atom species by Babb and coworkers
[188]. The short distance behavior of the three-body force is largely unknown and presumed
to be highly dependent on microscopic details. Also exchange interactions play a major role
at short and intermediate interparticle distances.

Here we want to study the consequences of a microscopic three-body force for the scal-
ing of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated
function of momenta which renders the exact solution of the three-body problem intractable.
In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).

0 2 4 6

- 0.15

- 0.10

- 0.05

0.00

attractive 3B-force

repulsive 3B-force

no 3B-force

(a) (b)

FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
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