Strongly-interacting few-fermion systems in a trap

J. Rotureau

C. Forssén, Chalmers **CHALMERS** E. J. Lindgren, ULB R. Lundmark, Chalmers A. G. Volosniev, Aarhus University N. T. Zinner, Aarhus University

Universality in few-body systems: Theoretical challenges and new directions, INT Program INT-14-1

Experimental realization of controllable, strongly-interacting quantum systems.

* Cold, dilute systems

$$
\boxed{\rho R^3\ll 1}
$$

R : range of the potential, Van der Waals length

* Detailed knowledge of underlying interaction is not important for these systems:

$$
\boxed{k \cot(\delta) = -\frac{1}{a_2}} \quad \text{ for } \quad k \ll 1/R
$$

$$
\boxed{V^{\delta}=\frac{2\pi\hbar^2}{\mu}a_2\delta(\mathbf{r})\frac{\partial}{\partial r}r}
$$

zero-range pseudopotential

Two particles in a Harmonic Oscillator (HO) trap

Busch et al, Found. Phys (1998)

For A>2, besides the unitary case at A=3, one has to rely on numerical approaches.

Outline

i) Derivation of an effective interaction for few-body systems in a trap

ii) 3-D systems of two-component identical fermions

iii) Fermionization of (distinguishable) fermions in 1-D

iv) Tunneling theory for two-particles

taken from Zürn et al, PRL 108 (2012)

Few (two-component) fermions in a 3D HO trap

$$
H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}
$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$
|\Psi\rangle = \sum_{i} c_i |u_1 \dots u_A\rangle_i \quad \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n + l + 3/2)\hbar\omega \end{cases}
$$

Few (two-component) fermions in a 3D HO trap

$$
H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}
$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$
|\Psi\rangle = \sum_{i} c_i |u_1 \dots u_A\rangle_i \quad \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n + l + 3/2)\hbar\omega \end{cases}
$$

Few (two-component) fermions in a 3D HO trap

$$
H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}
$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$
|\Psi\rangle = \sum_{i} c_i |u_1 \dots u_A\rangle_i \quad \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n + l + 3/2)\hbar\omega \end{cases}
$$

* Effective Field Theory : interaction tailored to the Hilbert space, improvable order by order.

Stetcu et al, PRA 76 (2007); J. R et al, PRA 82 (2010); S. Tölle et al J.Phys. G40 (2013)...

* Separable interaction fitted such that the exact two-body spectrum is reproduced in a truncated (twobody) space.

* Short-range interactions used with Monte Carlo techniques.

Y. Alhassid et al; PRL 100 (2008)

S. Chang et al, PRA 76 (2007); D. Blume et al, PRL 99 (2007); N.T. Zinner et al, PRA 80 (2009)....

Our approach : Unitary transformation of the exact two-body spectrum

$$
\frac{\Gamma(3/4 - E/2\hbar\omega)}{\Gamma(1/4 - E/2\hbar\omega)} = \frac{b}{2a_2}
$$

$$
\phi(r) = Are^{-\frac{r^2}{2b^2}}U\left(\frac{3/4 - E/2}{\hbar\omega}, 3/2, r^2/b^2\right)
$$

 $E^{(2)}$ and X matrices formed with the energies and eigenvectors in the infinite Hilbert space

$$
H^{(2)} = X^{\dagger} E^{(2)} X
$$

Our approach : Unitary transformation of the exact two-body spectrum

$$
\frac{\Gamma(3/4 - E/2\hbar\omega)}{\Gamma(1/4 - E/2\hbar\omega)} = \frac{b}{2a_2}
$$

$$
\phi(r) = Are^{-\frac{r^2}{2b^2}}U\left(\frac{3/4 - E/2}{\hbar\omega}, 3/2, r^2/b^2\right)
$$

 $E^{(2)}$ and X matrices formed with the energies and eigenvectors in the infinite Hilbert space

$$
H^{(2)} = X^{\dagger} E^{(2)} X
$$

Effective interaction in a two-body truncated space P: \rightarrow two-body energies

$$
H_P^{eff} = \frac{X_P^{\dagger}}{\sqrt{(X_P^{\dagger}X_P)}} E_P^{(2)} \frac{X_P}{\sqrt{(X_P^{\dagger}X_P)}}
$$

reproduced in P (by construction)

 \rightarrow eigenfunctions converge to "true" eigenfunctions as P grows

J.R; EPJD 67 (2013)

In Jacobi coordinates: $N_{3} = N_{a} + N_{b}$

A=4,5 fermions at Unitarity :

Fermionization of (distinguishable) fermions in 1-D

Experiment with the two lowest hyperfine states in ⁶Li

$$
|F = \frac{1}{2}, m_f = \frac{1}{2}
$$

$$
|F = \frac{1}{2}, m_f = -\frac{1}{2}
$$

1:10 asymmetric Opto- Magnetic trap.

taken from G. Zürn et al., PRL 108 (2012).

Experimental observation of fermionization

G. Zürn et al., PRL 108 (2012).

(2+1) fermions in 1D trap

* V(x₁-x₂)=g δ(x₁-x₂)

* no interaction between the 2 identical fermions (Pauli)

* Effective interaction from the Busch formula in 1D

J. Lindgren et al., arXiv:1304.2992 (2013), to be published in NJP.

S.E. Gharashi and D. Blume, PRL 111 (2013).

Density distribution for the $(2+1)$ g s and $1st$ excited state

Ground state 1

st excited state

* Interaction from weakly to strongly repulsive.

* For infinite repulsion, the total density is the same as for three identical (noninteracting) fermions.

Figure 4. Spin-resolved densities for the $3+1$, $6+1$, and $9+1$ systems, cf. Fig. 3. Panels (a), (c) and (e) show the distribution of the impurity particle, while panels (b), (d) and (f) show the majority density.

Tunneling theory for two particles escaping from the trap

-> How do the two atoms tunnel out ? -> How is the decay mechanism affected by the "pairing" interaction ?

taken from G. Zürn et al., PRL 108 (2012).

Tunneling theory for the two atoms escaping from the trap

-> How do the two atoms tunnel out ? -> How is the decay mechanism affected by the "pairing" interaction ?

> Similar questions as for the decay of some exotic nuclei by emission of two neutrons (protons) !

taken from G. Zürn et al., PRL 108 (2012). $A.$ Spyrou et al PRL 108 (2012)

$$
V(z) = pV_0 \left(1 - \frac{1}{1 + (z/z_R)^2}\right) - c_{B|state} \mu_B B' z
$$

Closed quantum systems Open quantum systems

infinite well

discrete states only, HO basis usually

exact treatment of the c.m, analytical solution…

(nuclei far from stability)

Newton Completeness relation
\n
$$
\sum_{b} |u_b\rangle\langle u_b| + \int_0^{+\infty} dk |u_k\rangle\langle u_k| = 1
$$

Newton Completeness relation
\n
$$
\sum_{b} |u_b\rangle\langle u_b| + \int_0^{+\infty} dk |u_k\rangle\langle u_k| = 1
$$

$$
\sum_{b}|u_{b}\rangle\langle u_{b}|+\int_{0}^{+\infty}dk|u_{k}\rangle\langle u_{k}|+\sum_{res}|u_{res}\rangle\langle u_{res}|
$$

Newton Completeness relation
\n
$$
\sum_{b} |u_b\rangle\langle u_b| + \int_0^{+\infty} dk |u_k\rangle\langle u_k| = 1
$$

$$
\sum_{b} |u_{b}\rangle\langle u_{b}| + \int_{0}^{+\infty} dk |u_{k}\rangle\langle u_{k}| + \sum_{res} |u_{res}\rangle\langle u_{res}|
$$

= 1 + $\sum_{res} |u_{res}\rangle\langle u_{res}| \neq 1$

Newton Completeness relation
\n
$$
\sum_{b} |u_b\rangle\langle u_b| + \int_0^{+\infty} dk |u_k\rangle\langle u_k| = 1
$$

$$
\sum_{b} |u_{b}\rangle\langle u_{b}| + \int_{0}^{\infty} dk |u_{k}\rangle' \int_{res} + \sum_{res} |u_{res}\rangle\langle u_{res}|
$$

= 1 + $\sum_{res} |u_{res}\rangle\langle v_{es}|$

Gamow states and completeness relations

T. Berggren, Nucl. Phys. A109, 265 (1968); Nucl. Phys. A389, 261 (1982) T. Lind, Phys. Rev. C47, 1903 (1993)

Berggren completeness relation

$$
\sum_{b} |u_b\rangle\langle u_b| + \sum_{res} |u_{res}\rangle\langle \tilde{u}_{res}| + \int_{L^+} dk |u_k\rangle\langle \tilde{u}_k| = 1
$$

Gamow Shell Model (GSM)

i) *discretization* of continuum contour

$$
\sum_{res} |u_{res}\rangle\langle\tilde{u}_{res}| + \sum_i |u_{ki}\rangle\langle\tilde{u}_{ki}| \simeq
$$

ii) construction of many-body basis

 $|SD_n\rangle = |u_1 \dots u_A\rangle$

iii) construction of Hamiltonian matrix

 $\langle SD_i|H|SD_i\rangle$

(complex-symmetric matrix)

iv) -> many-body bound,resonant and continuum states

N. Michel *et al,* PRL 89 (2002) ; PRC70 (2004) G. Hagen *et al*, PRC71 (2005) J.R *et al,* PRL 97 (2006) N. Michel *et al*, JPG (2009) G.Papadimitriou et al, PRC(R) 84 (2011)

Tunneling of a single atom

Resolution of the Schrödinger equation in the Berggren Basis

Tunneling of a single atom

Resolution of the Schrödinger equation in the Berggren Basis

-> calculated decay rates off by almost a factor 2 compared to experimental values

- -> No approximation in our approach
- -> Why such discrepancy ?

Some input parameters are extracted from experimental results using WKB method

We want to refit parameters without WKB

$$
\text{Minimization of} \quad \chi^2(B',p) \equiv \sum_{B \mid \text{state} \rangle} \left(\frac{\gamma_{B \mid \text{state}}^{\text{calc}} - \gamma_{B \mid \text{state}}^{\text{exp}}}{\sigma_{\gamma_{B \mid \text{state}}} } \right)^2
$$

Tunneling of the two atoms

Tunneling of the two atoms

-> Tunneling rate becomes smaller as the interaction becomes more attractive.

Tunneling of the two atoms

Strongly-interacting few-fermion systems in a trap

 \vee Derivation of effective interaction for few-atom systems in HO trap

 \blacktriangleright Applications for 3D/1D systems, excellent agreement with other numerical and exact approaches

 \checkmark Tunneling theory for two particles using the Berggren basis

Future plans:

Tunneling in heavier systems, repulsive interactions, excited states..