Strongly-interacting few-fermion systems in a trap

J. Rotureau

In collaboration with,

C. Forssén, Chalmers CHALMERS
E. J. Lindgren, ULB
R. Lundmark, Chalmers
A. G. Volosniev, Aarhus University
N. T. Zinner, Aarhus University

Universality in few-body systems: Theoretical challenges and new directions, INT Program INT-14-1

European Research Council

Experimental realization of controllable, strongly-interacting quantum systems.

* Cold, dilute systems

$$\rho R^3 \ll 1$$

R : range of the potential, Van der Waals length

* Detailed knowledge of underlying interaction is not important for these systems:

$$k \cot(\delta) = -rac{1}{a_2}$$
 for $k \ll 1/R$

$$V^{\delta} = \frac{2\pi\hbar^2}{\mu} a_2 \delta(\mathbf{r}) \frac{\partial}{\partial r} r$$

zero-range pseudopotential

Two particles in a Harmonic Oscillator (HO) trap

Busch et al, Found. Phys (1998)

For A>2, besides the unitary case at A=3, one has to rely on numerical approaches.

<u>Outline</u>

i) Derivation of an effective interaction for few-body systems in a trap

ii) 3-D systems of two-component identical fermions

iii) Fermionization of (distinguishable) fermions in 1-D

iv) Tunneling theory for two-particles

taken from Zürn et al, PRL 108 (2012)

Few (two-component) fermions in a 3D HO trap

$$H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$|\Psi\rangle = \sum_{i} c_{i} |u_{1} \dots u_{A}\rangle_{i} \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n+l+3/2)\hbar\omega \end{cases}$$

Few (two-component) fermions in a 3D HO trap

$$H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$|\Psi\rangle = \sum_{i} c_{i} |u_{1} \dots u_{A}\rangle_{i} \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n+l+3/2)\hbar\omega \end{cases}$$

Few (two-component) fermions in a 3D HO trap

$$H = \sum_{i < j} \frac{(\vec{p_i} - \vec{p_j})^2}{2mA} + \frac{m\omega^2}{2A} \sum_{i < j} (\vec{r_i} - \vec{r_j})^2 + \sum_{i < j} V_{ij}$$

Resolution of the Schrödinger equation by expansion of the solution in a *finite* HO basis

$$|\Psi\rangle = \sum_{i} c_{i} |u_{1} \dots u_{A}\rangle_{i} \begin{cases} |u\rangle \equiv |nlj\rangle \\ E_{nl} = (2n + l + 3/2)\hbar\omega \end{cases}$$

* Effective Field Theory : interaction tailored to the Hilbert space, improvable order by order.

Stetcu et al, PRA 76 (2007); J. R et al, PRA 82 (2010); S. Tölle et al J.Phys. G40 (2013)...

* Separable interaction fitted such that the exact two-body spectrum is reproduced in a truncated (twobody) space.

* Short-range interactions used with Monte Carlo techniques.

Y. Alhassid et al; PRL 100 (2008)

S. Chang et al, PRA 76 (2007); D. Blume et al, PRL 99 (2007); N.T. Zinner et al, PRA 80 (2009)....

Our approach : Unitary transformation of the exact two-body spectrum

$$\frac{\Gamma(3/4 - E/2\hbar\omega)}{\Gamma(1/4 - E/2\hbar\omega)} = \frac{b}{2a_2}$$

$$\phi(r) = Are^{-\frac{r^2}{2b^2}} U\left(\frac{3/4 - E/2}{\hbar\omega}, 3/2, r^2/b^2\right)$$

E⁽²⁾ and X matrices formed with the energies and eigenvectors in the infinite Hilbert space

$$H^{(2)} = X^{\dagger} E^{(2)} X$$

Our approach : Unitary transformation of the exact two-body spectrum

$$\frac{\Gamma(3/4 - E/2\hbar\omega)}{\Gamma(1/4 - E/2\hbar\omega)} = \frac{b}{2a_2}$$

$$\phi(r) = Are^{-\frac{r^2}{2b^2}} U\left(\frac{3/4 - E/2}{\hbar\omega}, 3/2, r^2/b^2\right)$$

E⁽²⁾ and X matrices formed with the energies and eigenvectors in the infinite Hilbert space

$$H^{(2)} = X^{\dagger} E^{(2)} X$$

Effective interaction in a two-body truncated space P:

$$H_P^{eff} = \frac{X_P^{\dagger}}{\sqrt{(X_P^{\dagger}X_P)}} E_P^{(2)} \frac{X_P}{\sqrt{(X_P^{\dagger}X_P)}}$$

 \rightarrow two-body energies reproduced in P (by construction)

→ eigenfunctions converge to "true" eigenfunctions as P grows

J.R; EPJD 67 (2013)

A=4,5 fermions at Unitarity :

Fermionization of (distinguishable) fermions in 1-D

Experiment with the two lowest hyperfine states in ⁶Li

$$|F = \frac{1}{2}, m_f = \frac{1}{2}\rangle$$
$$|F = \frac{1}{2}, m_f = -\frac{1}{2}\rangle$$

1:10 asymmetric Opto- Magnetic trap.

taken from G. Zürn et al., PRL 108 (2012).

Experimental observation of fermionization

G. Zürn et al., PRL 108 (2012).

(2+1) fermions in 1D trap

* V(x₁-x₂)=g $\delta(x_1-x_2)$

* no interaction between the 2 identical fermions (Pauli)

* Effective interaction from the Busch formula in 1D

J. Lindgren et al., arXiv:1304.2992 (2013), to be published in NJP.

S.E. Gharashi and D. Blume, PRL 111 (2013).

Density distribution for the (2+1) g.s and 1st excited state

Ground state

1st excited state

* Interaction from weakly to strongly repulsive.

* For infinite repulsion, the total density is the same as for three identical (noninteracting) fermions.

Figure 4. Spin-resolved densities for the 3+1, 6+1, and 9+1 systems, cf. Fig. 3. Panels (a), (c) and (e) show the distribution of the impurity particle, while panels (b), (d) and (f) show the majority density.

Tunneling theory for two particles escaping from the trap

-> How do the two atoms tunnel out ?-> How is the decay mechanism affected by the "pairing" interaction ?

taken from G. Zürn et al., PRL 108 (2012).

Tunneling theory for the two atoms escaping from the trap

-> How do the two atoms tunnel out ?-> How is the decay mechanism affected by the "pairing" interaction ?

Similar questions as for the decay of some exotic nuclei by emission of two neutrons (protons) !

taken from G. Zürn et al., PRL 108 (2012).

$$V(z) = pV_0 \left(1 - \frac{1}{1 + (z/z_R)^2}\right) - c_{B|state\rangle} \mu_B B' z$$

Parameter	Value	Designation
V_{0_1}	$3.326\mu\mathrm{K\cdot k_B}$	Potential depth.
z_R	$9.975 \mu \mathrm{m}^2$	Rayleigh range of trapping beam.
μ_B	$6.7171388\cdot 10^5\mu{\rm K}\cdot{\rm k_B}/{\rm T}$	Bohr magneton.
B'	$18.92 \cdot 10^{-8} \mathrm{T}/\mu\mathrm{m}$	Magnetic field gradient.
$c_{B \text{state}}$	≈ 1	_

Closed quantum systems

infinite well

discrete states only, HO basis usually

exact treatment of the c.m, analytical solution...

Open quantum systems

(nuclei far from stability)

Newton Completeness relation

$$\sum_{b} |u_b\rangle \langle u_b| + \int_{0}^{+\infty} dk |u_k\rangle \langle u_k| = 1$$

Newton Completeness relation

$$\sum_{b} |u_b\rangle \langle u_b| + \int_{0}^{+\infty} dk |u_k\rangle \langle u_k| = 1$$

$$\sum_{b} |u_b\rangle \langle u_b| + \int_0^{+\infty} dk |u_k\rangle \langle u_k| + \sum_{res} |u_{res}\rangle \langle u_{res}|$$

Newton Completeness relation

$$\sum_{b} |u_b\rangle \langle u_b| + \int_{0}^{+\infty} dk |u_k\rangle \langle u_k| = 1$$

$$\sum_{b} |u_{b}\rangle\langle u_{b}| + \int_{0}^{+\infty} dk |u_{k}\rangle\langle u_{k}| + \sum_{res} |u_{res}\rangle\langle u_{res}|$$
$$= 1 + \sum_{res} |u_{res}\rangle\langle u_{res}| \neq 1$$

Newton Completeness relation
$$\sum_{b}|u_b
angle\langle u_b|+\int_{0}^{+\infty}dk|u_k
angle\langle u_k|=1$$

$$\sum_{b} |u_{b}\rangle \langle u_{b}| + \int_{0}^{\infty} dk |u_{k}\rangle \langle u_{k}| + \sum_{res} |u_{res}\rangle \langle u_{res}|$$
$$= 1 + \sum_{res} |u_{res}\rangle \langle u_{res}| \neq 1$$

Gamow states and completeness relations

T. Berggren, Nucl. Phys. A109, 265 (1968); Nucl. Phys. A389, 261 (1982) T. Lind, Phys. Rev. C47, 1903 (1993)

Berggren completeness relation

$$\sum_{b} |u_{b}\rangle \langle u_{b}| + \sum_{res} |u_{res}\rangle \langle \tilde{u}_{res}| + \int_{L^{+}} dk |u_{k}\rangle \langle \tilde{u}_{k}| = 1$$

Gamow Shell Model (GSM)

i) discretization of continuum contour

$$\sum_{res} |u_{res}\rangle \langle \tilde{u}_{res}| + \sum_{i} |u_{ki}\rangle \langle \tilde{u}_{ki}| \simeq$$

ii) construction of many-body basis

 $|SD_n\rangle = |u_1 \dots u_A\rangle$

iii) construction of Hamiltonian matrix

 $\langle SD_i | H | SD_j \rangle$

(complex-symmetric matrix)

iv) -> many-body bound, resonant and continuum states N. Michel *et al*, PRL 89 (2002) ; PRC70 (2004) G. Hagen *et al*, PRC71 (2005) J.R *et al*, PRL 97 (2006) N. Michel *et al*, JPG (2009) G.Papadimitriou et al, PRC(R) 84 (2011)

Tunneling of a single atom

Resolution of the Schrödinger equation in the Berggren Basis

Tunneling of a single atom

Resolution of the Schrödinger equation in the Berggren Basis

-> calculated decay rates off by almost a factor 2 compared to experimental values

- No approximation in our approach
- -> Why such discrepancy ?

Some input parameters are extracted from experimental results using WKB method

We want to refit parameters without WKB

$$\begin{array}{ll} \text{Minimization of} \quad \chi^2(B',p) \equiv \sum_{B | \text{state} \rangle} \left(\frac{\gamma_{B | \text{state} \rangle}^{\text{calc}} - \gamma_{B | \text{state} \rangle}^{\text{exp}}}{\sigma_{\gamma_{B | \text{state} \rangle}}} \right)^2 \end{array}$$

Tunneling of the two atoms

-30.96933 -300	8.45	19.19	-3.010 ± 0.215	2.20 ± 1.0
-41.52705 -				2.20 ± 1.0
		-	-3.932 ± 0.369	1. 84 ± 1.0
-45.04630 -	13.59	25.81	-4.484 ± 0.3	9.75 ± 0.3
-99.94647 -	37.02	(0.44)	(-9.829 - 1.)44)	2.14 ± 0.2
-104.16956 -	39.28	(0.56)	(-10.044 - 0.800)	1.93 ± 0.1
-110.50419 -4	42.79	(1.12)	$(-10.5, 5 \pm 0.768)$	1.23 ± 0.1
-123.87731 -	50.55	(0.34)	(-2.532 ± 0.921)	0.51 ± 0.0
Berg> Tunneling rate becc	ggren basis	approach ar as the inter	G. Zürn et	al., PRL 111 (2013). nore attractive.

Tunneling of the two atoms

-> Tunneling rate becomes smaller as the interaction becomes more attractive.

Tunneling of the two atoms

$\frac{g}{(nK)}$	$(\mathbf{k} \cdot \mathbf{k}_{\mathrm{B}} \cdot \boldsymbol{\mu}_{\mathrm{B}})$	$egin{split} E_{ ext{int}}^{ ext{calc}}\ /(ext{nK}\cdot ext{k}_{ ext{B}}) \end{split}$	$\gamma^{\rm calc}_{\rm total} \ / ({\rm s}^{-1})$	$egin{array}{c} m{E_{int}^{WKB}} \ /(nK\cdot k_B) \end{array}$	$\gamma_{\rm tot}^{\rm exp}$	$P_{\rm al} / ({\rm s}^{-1})$
-30.	.969 33	-8.45	(19.19)	$-3.010 \pm 0.$	215 22.2	0 ± 1.0
-41.	.52705	-		$-3.932 \pm 0.$	369 13.8	4 ± 1.0
-45.	.046 30	-13.53	25.81	$-4.484 \pm 0.$	307 9.70	± 0.3
-99.	.946 47	- 37.02	(0.44)	(-9.829 ± 1)	.044) 2.14	± 0.2
-104	4.16956	-39.28	(0.56)	$(-10.044 \pm$	0.860) 1.93	± 0.1
-110	0.50419	-42.79	(1.12)	$(-10.965 \pm$	0.768) 1.23	± 0.1
-123	3.87771	-50.55	(0.34)	$(-12.532 \pm$	0.921) 0.51	± 0.0
-> Tunne	E ling rate b	erggren bas ecomes sma	is approach	G. Z eraction bec	¥ ürn et al., F omes more	PRL 111 (2013). attractive
-> Tunne	E ling rate be For each	erggren bas ecomes sma g, the single	is approach ller as the interparticle pote	G. Z eraction bec ntial is slight	V Türn et al., F omes more	PRL 111 (2013). attractive
-> Tunne	Iing rate be For each	erggren bas ecomes sma g, the single -0.70385	is approach ller as the interport particle pote -30.96933	G. Z eraction bec ntial is slight -41.52705	¥ ürn et al., F omes more ly different <u>−45.046 30</u>	PRL 111 (2013). attractive
-> Tunne	ling rate by For each $\frac{g}{c_{B \uparrow}}$	erggren bas ecomes sma g, the single -0.70385 1.00457	is approach ller as the interparticle pote -30.96933 1.00407	G. Z eraction bec ntial is slight -41.52705 1.00356	v ürn et al., F omes more ly different <u>−45.046 30</u> 1.00311	PRL 111 (2013). attractive

Strongly-interacting few-fermion systems in a trap

✓ Derivation of effective interaction for few-atom systems in HO trap

✓ Applications for 3D/1D systems, excellent agreement with other numerical and exact approaches

✓ Tunneling theory for two particles using the Berggren basis

Future plans:

Tunneling in heavier systems, repulsive interactions, excited states..