Multi-Body Interacting Bosons

Dmitry Petrov

Laboratoire Physique Théorique et Modèles Statistiques (Orsay)

European Research Council Established by the European Commission

Outline

- Effective multi-body interactions
- Multi-body interacting systems. Why interesting?
- How to make (engineer) them?
- 3-body interacting dipolar molecules in bi-layers with tunneling
- 3- and 4-body interacting 39K in optical lattices

Effective multi-body interactions

Parasites which appear when we want to simplify our life:

Hammer et al., Rev. Mod. Phys. (2013)

Examples

Perturbative, second order, weak, attractive, but BREAKS INTEGRABILITY!

Weak, higher order in g/ω , but important due to high Landau level degeneracy!

Examples

Weak, high order in g/ω , but measurable Campbell et al.'06, Will et al.'10

LETTERS

Time-resolved observation of coherent multi-body interactions in quantum phase revivals

Sebastian Will^{1,2}, Thorsten Best¹, Ulrich Schneider^{1,2}, Lucia Hackermüller¹, Dirk-Sören Lühmann³ & Immanuel Bloch^{1,2,4}

$$\frac{E}{\text{Volume}} = g_2 \frac{n^2}{2!} + g_3 \frac{n^3}{3!} + g_4 \frac{n^4}{4!} + \dots$$

Bosons with $g_2 < 0$ is a bad combination, but if g_2 is small and if we add $g_3 > 0$...

Cubic-quintic GP (Schroedinger) equation in a trap, gas-liquid transition Gammal et al.'00-

$$-\nabla_{\vec{r}}^{2}/2 - |g_{2}|n(\vec{r}) + g_{3}n^{2}(\vec{r})/2 + V_{ext}(\vec{r}) - \mu]\psi(\vec{r}) = 0$$

Free space \rightarrow self-trapped droplet state Bulgac'02:

- Neglecting surface tension, flat density profile $n=3|g_2|/2g_3$
- Including surface tension \rightarrow surface modes

Staying dilute requires large g_3 and small g_2 close to zero crossing!

Above critical g_2 bosons pair – <u>topological transition</u>, not crossover! Nozieres&Saint James'82 Radzihovsky et al., Romans et al., Lee&Lee'04

Pairing on a lattice with three-body constraint:

Daley et al.'09-, Ng&Yang'11, Bonnes&Wessel'12,...

 g_3 is necessary! = Pauli pressure in the BCS-BEC crossover!

Bosons with dipolar interactions

L. Santos, M. Lewenstein, P. Zoller, G. Shlyapnikov C. Eberlein, S. Giovanazzi, O'Dell K. Góral, M. Brewekyk, K. Rzatenski S. Yi and L. You, S. Giovanazzi, A. Gorliz, T. Pfau

Roton-maxon structure

 $g_3 > 0$ stabilizes weakly interacting supersolid phase, Lu et al., to be published

Why interesting?

Local repulsive g_{k+1} is the ``parent" Hamiltonian for the *k*-th state of the Read-Rezayi series of quantum Hall states, Nayak et al., Rev. Mod. Phys. (2008)

- k=1 (2-body int.) \rightarrow Laughlin state (abelian anyons)
- k=2 (3-body int.) \rightarrow Moore-Read state (non-abelian anyons, some topologically protected operations)
- k=3 (4-body int.) \rightarrow Read-Rezayi state (non-abelian anyons, universal quantum computing)
- Ground state degeneracy protected by gap ~ g_{k+1} Important to maximize !

Some previous work

E. Braaten, H.-W. Hammer, and T. Mehen, Phys. Rev. Lett. 88, 040401 (2002).

N. R. Cooper, Phys. Rev. Lett. 92, 220405 (2004).

H. P. Büchler, A. Micheli, and P. Zoller, Nat. Phys. 3, 726 (2007).

A. J. Daley, J. M. Taylor, S. Diehl, M. Baranov, and P. Zoller, Phys. Rev. Lett. **102**, 040402 (2009).

M. Roncaglia, M. Rizzi, and J. I. Cirac, Phys. Rev. Lett. **104**, 096803 (2010).

L. Mazza, M. Rizzi, M. Lewenstein, and J. I. Cirac, Phys. Rev. A 82, 043629 (2010).

K. W. Mahmud and E. Tiesinga, Phys. Rev. A 88, 023602 (2013).

E. Kapit and S. H. Simon, Phys. Rev. B 88, 184409 (2013).

M. Hafezi, P. Adhikari, and J. M. Taylor, arXiv:1308.0225.

A. J. Daley and J. Simon, arXiv:1311.1783.

3-body interacting case: perturb. prosp.

$$E(N) = U_2 \frac{N(N-1)}{2!} + U_3 \frac{N(N-1)(N-2)}{3!} + U_4 \frac{N(N-1)(N-2)(N-3)}{4!} + \dots$$

Perturbative approach Johnson et al.'09

3-body interacting case: perturb. prosp.

$$E(N) = U_2 \frac{N(N-1)}{2!} + U_3 \frac{N(N-1)(N-2)}{3!} + U_4 \frac{N(N-1)(N-2)(N-3)}{4!} + \dots$$

Perturbative approach Johnson et al.'09

Dipoles on layers

Bilayer with tunneling

Vertex function and bound state

Vertex function for 2D scattering with weakly-bound state + dipolar tails: Baranov et al.'11 4π

S-wave scattering at finite collision energy

$$\Gamma(E,\vec{k},\vec{k}') \approx \frac{4\pi}{\ln(4t/E) + 4\pi/g_2 + i\pi} - 2\pi r_* |\vec{k} - \vec{k}'| - 4\tan \delta_s(q) \approx g_2 - 8r_*q$$

s-wave and on shell

Two-body zero crossing + dipolar tail \rightarrow rotonization, density wave, etc

<u>3-body coupling constant</u>

Large r_{\star} – dipolar frustration (cf. Volosniev et al.'12)

Small r_{\star} – large off shell contribution

Three-body repulsion and trimers

Frustration is good!

Lattice bosons with on-site Hamiltonian

$$H = \frac{\Delta}{2} (b_{\downarrow}^{+} b_{\downarrow} - b_{\uparrow}^{+} b_{\uparrow}) - \frac{\Omega}{2} (b_{\uparrow}^{+} b_{\downarrow} + b_{\downarrow}^{+} b_{\uparrow}) + \sum_{\sigma,\sigma'} \frac{g_{\sigma\sigma'}}{2} b_{\sigma}^{+} b_{\sigma'}^{+} b_{\sigma} b_{\sigma'}$$

Bilayer dipoles $\rightarrow \Delta = 0$, $\Omega = 2t$, $g_{\uparrow\uparrow} = g_{\downarrow\downarrow} > 0$, and $g_{\uparrow\downarrow} < 0$

Simple example

Couple them with RF (~50MHz) $\Omega = \text{Rabi frequency (~kHz)}$ $\Delta = \text{Detuning (~kHz)}$ $\sqrt{\Omega^2 + \Delta^2} = \text{spin splitting} \gg T$ \Box Spin is virtually excited during collisions!

 $g_{\sigma\sigma'} = ?$ \blacktriangleright D'Errico et al.'07, Lysebo&Veseth'10

Many thanks to A. Simoni and M. Lysebo for the data!

Optimization problem

Find E(2) and E(3) by diagonalizing $H = \frac{\Delta}{2} (b_{\downarrow}^{+} b_{\downarrow} - b_{\uparrow}^{+} b_{\uparrow}) - \frac{\Omega}{2} (b_{\uparrow}^{+} b_{\downarrow} + b_{\downarrow}^{+} b_{\uparrow}) + \sum_{\sigma, \sigma'} \frac{g_{\sigma\sigma'}}{2} b_{\sigma}^{+} b_{\sigma'}^{+} b_{\sigma} b_{\sigma'}$ U_2 and U_3 Find parameters for which $U_2 = 0$ and $U_3 \rightarrow max$ The result is: $U_{3, max} = \begin{vmatrix} \min(g_{\downarrow\downarrow}, g_{\uparrow\uparrow}), & |g_{\downarrow\downarrow} - g_{\uparrow\uparrow}| > -g_{\uparrow\downarrow} \\ \max(g_{\downarrow\downarrow}, g_{\uparrow\uparrow}) + g_{\uparrow\downarrow}, & |g_{\downarrow\downarrow} - g_{\uparrow\uparrow\uparrow}| < -g_{\uparrow\downarrow} \end{vmatrix}$ reached for $\Omega = 0$ && $\Delta = q_{\uparrow\downarrow} sign(q_{\downarrow\downarrow} - q_{\uparrow\uparrow})$ $U_{3 max} > 0$ requires $min(g_{\downarrow\downarrow}, g_{\uparrow\uparrow}) > 0$ && $-max(g_{\downarrow\downarrow}, g_{\uparrow\uparrow}) < g_{\uparrow\downarrow} < 0$

Nice window of B

lattice constant = 532 nm

$$V_0 = 15 E_R$$

on-site osc. freq. = $2\pi \times 35$ kHz
 $l_x = l_y = l_z = 86$ nm
tunneling amp. = $2\pi \times 30$ Hz
 $a_{\downarrow\downarrow} = 9.4$ nm $\rightarrow g_{\downarrow\downarrow} = 2\pi \times 3.05$ kHz
 $a_{\uparrow\uparrow} = 1.7$ nm $\rightarrow g_{\uparrow\uparrow} = 2\pi \times 0.55$ kHz
 $a_{\uparrow\downarrow} = -2.8$ nm $\rightarrow g_{\uparrow\downarrow} = -2\pi \times 0.91$ kHz

4-body interacting case

$$\Omega = 2\pi \times 1.7 \text{ kHz}$$

Perspectives

- Bosonic dipoles... Have to wait a bit...
- ³⁹K on a lattice
- collapse and revivals
- solitonic-like self-trapping
- Mott lobes Chen et al.'08

• Frustration is local, large-size off-shell effects are cooler! requires small *t* (bilayers) or small $\sqrt{\Omega^2 + \Delta^2}$ (RF coupling)

Thank you! Merci beaucoup!