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Seemingly Un-Connected Topics

o Efimov states-Three body universal states
recently experimentally observed

 Fields on fractals- essentially a theoretical
object of research

1/a<0

0

1/a=0

A+A+A

A+A+A

Energy

Inverse scattering length 1/a




Outline

= |ntroduction
e Some Efimov state properties
 Discrete scaling functions
« Hints on mathematical connections

= Efimov physics in terms of EFT
« Neumann series solution of integral equation
« Conditions for discrete scaling solution

= Scaling parameters and conditions on them
= Connecting to one dimensional physics

= |dentifying the fractal structure

= Wild speculations

= Summary



L

Efimov States

In 1970 Vitaly Efimov discovered that in the

limit where:
Two-body scattering length divergesd — 100

No two body bound state is found but there are
an infinite number of three body (trimer) states

“From questionable to pathological

to exotic to a hot topic”
Nature Physics 5, 533 (2009)
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The Experimental Search for Efimov States

e Experiments with “He atoms (T~0.3 mk)
 Nucleons: triton (pnn) and 3He (ppn)

« Halo Nuclel

e Cold atom physics 133Cs atoms 2005

Kraememr et al (Innsbruck)




Properties of Efimov Trimers

Universal three body physics Infinitely many bound states

The physics depends only E |
on the scattering length

and a further quantity called
the “Three body parameter”

Details of the short range
Interaction become
Irrelevant




Properties of Efimov Trimers

Discrete scaling: The scattering amplitude is a
binding energies 2 = g 2%/% log periodic function
sizes differ A =e™*

I! a(p)= Acos(soln£+5j




The Efimov Spectrum
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e Shows a discrete symmetry

a = 100

e |s Infinite
e Universal
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Defined by two parameters

The scaling parameter:

ls
Ay =€"""7"

The three body parameter:
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Quick Introduction to Discrete Scaling

Triadic Cantor Set Diamond Fractals Koch Curve

A fractal Is an iterative structure



Fractals Can be Very Fancy




Equation for Discrete Symmetry

e Equation for discrete symmetry

f (x)= g(x)+% f (ax)

a and b are scaling parameters
g(x) some initial function
 |ts solution iIs of the form

f(x)= x::ZG(Ian

Ina

where G Is a periodic function



Equation for Discrete Symmetry

Iterative Form
 Equation for discrete symmetry

F()=9(x)+ 1 f ()

* The equation can be iterated to give

f(x)= iob”g(a”x)




“Spectrum” and the Mellin Transform

lterative solution: f (X) = Zb‘”g(a” X)
n=0

T dx X f(X)

0

Mellin transform: M ()

S

Mellin transform of M. (S): I\/Ig(s) b:? 1

Iterative solution:

- |n(1/b)+ 2i 7
"~ Ina Ina

“Spectrum™: S,




Hints to the Connection to
Quantum Fields on a Fractal

Efimov States

Fields on fractals

Discrete Symmetry
Limit Cycle RG

Discrete Symmetry
Limit Cycle RG

Log Periodic Functions

Log Periodic Functions

Infinite Spectrum

Infinite “Spectrum”
(poles)




Efimov States through an Effective

Field Theory
e Three body Bosonic Theory

 Effective Field Theory in term of a “di-
baryon” two boson field “d”

+| : Vz + g + + +
L:W (lé’o‘ijW‘FAd d_ﬁ(d Wy + HC)+ hd dl// /4

* Dressing of the di-atom propagator “d”

P. F Bedaque, H. -W. Hammer and U. Van Kolck PRL 80, 463 (1999)




The Integral Equation

2

aad(p):K(p,k)+% J! qu(p,q)qz_iz_iga(q)

2 q2+pq+p2)
K(p,dq)=——1In
(P9) NEL (qz—pq+ p’

P. F Bedaque, H. -W. Hammer and U. Van Kolck PRL 80, 463 (1999)




Solution Asymptotic Homogeneous

Case

The asymptotic homogeneous equation:

for L <<p<<abut k-1

» 00 g° + po pzj
|
a(p)= \f ) 3@ r{cz_po e

Suggests an ansatz a(p) ~ p° this works If S satisfies

;)

=0 > [S=+iS, S,=1.0064
’\/>SCO j i

P. F Bedaque, H. -W. Hammer and U. Van Kolck PRL 80, 463 (1999)




Solution with Finite Cut-Off

e Returning to the equation with a finite cut-off»
The following solution Is obtained

a(p)zAcos(solni | 5)




Making a Connection to Fractals
Through the Integral Equation

2

a(p)= K(p,k)%foAqu(p,Q)qz _iz ——ala)

Writing out the formal solution in terms of a
Neumann series

a(p)=K(p. k)+im< =2

T

p)=["..[ K(p.q)K(a,. 3, )... K(g.k)dg,...dg,



Discrete Scale Self Similar Solution

o Aself similar discrete scaling solution

o0 , 2
a(p)=K(p,k) +Zi va(p) A==

p)=[".[ K(p. 0K (g, 0,)-.K(a. k)dg,...da,

=nZ:;/1”K(7/ p,k)

« Can be found if IOA dgK(p,g)K(a,k)=K(m k)




The Connection

It || "dak(p.aK(@k)=K(pk)

Then

2K (" p.k) o

a(p)=

ﬁMS
[N




Questions

* \What are the values of the scaling parameters?
* How to obtain the Efimov spectrum?
 \What is the fractal like structure?



Determining the Discrete Scaling Factor

e Performing a Mellin Transformation

M, (s)= | dop™*f (p)
on both sides of ’

J, kK (@ k)K (k, p)= K, p)

The scaling factor} Is determined through

7/_8 — Mpr(S) Mpr(S):IdppsK(l’ p)
0




The Connection Between the

Discrete

Scaling Parameters

Mellin transform of the condition  power solution for the integral eq.

[ dpK (g, p)K(p.k)=

|

K (50, k) 8 (f;j
\FSCO 2)

=0

a_s — M pr(S)

The two expressions are
equivalent when

In(1/b)

Instead of ¢ —
n

L M)

a’b=1

Ina

2715248, S, =1.0064

Ina




An Alternative Method to Obtain

the Scaling Factor
Discrete scale invariance

a,.(ap)=ba,(p)
Power like solution to homogeneous integral eq.

a,.(p)~ p°
a’b=1

Instead of S = In(l/b)+ 217 S:iISO SO — 10064

Ina Ina




Viewing Things in a Different Way

e Connecting to Bloch states

* Obtaining Efimov spectrum from Bohr-
Sommerfeld quantization.



A Connection to Bloch States

-] -2t

change coordinates to:  |X = In(p)

denoting : K=1Im

obtain a Bloch function —f(i/):ﬁ I_j
<

lattice constant |'=1n(a) - In(b)
wave number In(a)




Connecting to Bloch states
|n(1/b)+ 2i 7
Ina Ina

then we have |is, = — :EEZ; N Iif(ﬂ;

Instead of s =

only two values s =is,

associating the waye number to  k = i In(b)

we get S, =k+ i?g) In(a)
assoclating the lattice’constant as | =In(a)

SO S, can be considered as an effective crystal
momentum 2 M

Sy =k + ==




Importing Results from Functions with
Scaling Symmetry

Since the integral equation Is now a scaling
symmetry equation it’s solution is given by

f(X)= x::ZG(Ian a..(p)= pmg[ln(p)j m:—%’i)

Ina In(a) (a)
since | )
np| < . Inp _em
G[—In a} = n;OCn exp(Zmn—In aj Ina= ;

A

a.(p)= Ac:os.(s0 In> 4 5)




Spectrum from the Bhor-Sommerfeld

Quantization

S, plays the roll of effective momentum to obtain the
spectrum we can use the Bohr- Sommerfeld




What is the Fractal?

onal

Luke Rogers, Prof. of Mathematics
University of Connecticut



A Spiral
teR



Parameterization

@ -distance along the curve

—7

explis, In(jale” *e'")] = explis, (&/6,) In|a| — &5,]

|
Inja

g, = Im{lna}

Transform the plain wave eigenfunctions of the Laplacian

exp[ikx] = explikz]



The phase of a

The scaling parameters: b Is real but it seems that
a has a phase
Expressa = e'®*#™%* from g™ph =1 aiko _q

— O\

aé’osob -1 a—HOSOb -1

~

coshls,8, |=b



The phase of a

The scaling parameters : p Is real but it seems a
has a phase

2h=1— e—isoln(a)b _1

N

|sO Re{ln(a)}
oS Im{In(a)} _ _b \ =1
S, | Refin(a)j= 2"

S0
coshls, Im{In(a)}|=b S5 plays the roll of effective momentum



Wild Speculations

Actually the quantization is s j =(n+8)r

X

Where § results from the boundary conditions
and determines the three body parameter |x.

Nz

Sojd =(n—|—5)7z—> In(p) =—

| ™

K, =@ I In(>~<1)‘ EM) = —(e_Z”/So )”‘”* h'K:

T




Wild Speculations
Can the non-trivial phased - s, [ dX = (n+«J)r

Be connected top the Zak phase a non-trivial
geometric phase obtained in solid.

he phase Is called after it’s discoverer Prof.
Joshua Zak from the Technion.




Zak Phase

In 1989, Professor Zak identified
the geometrical phases in the
band theory of one-dimensional
solids. When a particle travels
"slowly" along the energy band
and completes a closed loop it
acquires a geometrical phase that
has significant physical
consequences for the properties
of materials, which can be
determined by the "quantum
geometry" of the crystal.




Summary

e Obtained a known result through a different
formalism.

 Sheds light on the connection between fields
on fractals and the Skorniakov-Ter-Martirosian
(SKM) equation.

e Obtained a physical realization of a “quantum
field” on a “fractal”.
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