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Seemingly Un-Connected Topics 

• Efimov states-Three body universal states 
recently experimentally observed 

• Fields on fractals- essentially a theoretical 
object of research  
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Efimov States 

In 1970 Vitaly Efimov discovered that in the  
limit where: 
Two-body scattering length diverges 
No two body bound state is found but there are 
an infinite number of three body (trimer) states 

 

 

a → ±∞

“From questionable to pathological  
to exotic to a hot topic”  
Nature Physics 5, 533 (2009) 



The Experimental Search for Efimov States 

• Experiments with 4He atoms (T~0.3 mk) 
• Nucleons: triton (pnn) and 3He (ppn) 
• Halo Nuclei  
• Cold atom physics 133Cs atoms 2005 

 Kraememr et al (Innsbruck) 



Properties of Efimov Trimers 

Universal three body physics 
 
The physics depends only  
on the scattering length  
and a further quantity called 
the “Three body parameter” 
 

  Details of the short range  
interaction become       

irrelevant   
 

Infinitely many bound states 
 



Properties of Efimov Trimers 

Discrete scaling: 

binding energies  

sizes differ  

 

The scattering amplitude is a   
log periodic function 
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The Efimov Spectrum  
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• Shows a discrete symmetry 
• Is infinite 
• Universal   
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Defined by two parameters 

The scaling parameter: The three body parameter: *κ



Quick Introduction to Discrete Scaling 

Diamond Fractals Koch Curve Triadic Cantor Set 

A fractal is an iterative structure 



Fractals Can be Very Fancy 



Equation for Discrete Symmetry 

• Equation for discrete symmetry 
 
 

a and b are scaling parameters 
        some initial function 
• Its solution is of the form 

 
 

 
where       is a periodic function 
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Equation for Discrete Symmetry 
Iterative Form 

• Equation for discrete symmetry 

 

 

 

• The equation can be iterated to give  
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“Spectrum” and the Mellin Transform 
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Iterative solution: 

Mellin transform: 

Mellin transform of 
Iterative solution: 

“Spectrum”: 



Hints to the Connection to 
Quantum Fields on a Fractal 
Efimov States Fields on fractals 

Discrete Symmetry 
Limit Cycle RG 

Discrete Symmetry 
Limit Cycle RG 

 

 
Log Periodic Functions 

 

 
Log Periodic Functions 

 

Infinite Spectrum 
 

Infinite “Spectrum” 
(poles) 

 



Efimov States through an Effective 
Field Theory 

• Three body  Bosonic Theory 

• Effective Field Theory in term of a “di-
baryon” two boson field “d” 

 

 

 

• Dressing of the di-atom propagator “d” 
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The Integral Equation  

 

aad p( )= K p,k( )+
2
π

dq
0

Λ∫ K p,q( ) q2

q2 − k 2 − iε
a q( )

K p,q( )=
2

3q
ln

q2 + pq + p2

q2 − pq + p2

 

 
 

 

 
 

P. F Bedaque, H. –W. Hammer and U. Van Kolck PRL , 463 (1999) 



Solution Asymptotic  Homogeneous 
Case 

The asymptotic homogeneous equation: 

for                    but   
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S = ±iSo S0 =1.0064

P. F Bedaque, H. –W. Hammer and U. Van Kolck PRL , 463 (1999) 



Solution with Finite Cut-Off 

• Returning to the equation with a finite cut-off ›  

    The following solution is obtained   
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Making a Connection to Fractals 
Through the Integral Equation  
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Neumann series 



Discrete Scale Self Similar Solution 

• A self similar discrete scaling solution 
 
 
 
 
 

• Can be found if  
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dqK p,q( )
0

Λ∫ K q,k( )= K γp,k( )



The Connection 

If 

 

Then 
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Questions 

• What are the values of the scaling parameters? 

• How to obtain the Efimov spectrum? 

• What is the fractal like structure? 

 



Determining the Discrete Scaling Factor 

• Performing a Mellin Transformation 
  
on both sides of 
 
 
The scaling factor    is determined through 
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The Connection Between the 
Discrete Scaling Parameters 

The two expressions are  
      equivalent when  
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An Alternative Method to Obtain 
the Scaling Factor 

Discrete scale invariance 

 

 

Power like solution to homogeneous integral eq. 
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S = ±iS0

 

S0 =1.0064



Viewing Things in a Different Way 

• Connecting to Bloch states 

•  Obtaining Efimov spectrum from Bohr-
Sommerfeld quantization. 

 



A Connection to Bloch States 
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Connecting to Bloch states 
Instead of                              only two values 
 
then we have 
 
associating the wave number to  
we get  
associating the lattice constant as   
so        can be considered as an effective crystal 
momentum 
 
 

( )
a

ni

a

b
sn ln

2

ln

/1ln π
+=

0issn ±=

( )
( ) )ln(

2

ln

ln
0 a

in

a

b
is

π
+−=

( )
( )a

b
ik

ln

ln
=

)ln(

2
0 a

n
ks

π
+=

)ln(al =

l

n
ks

π2
0 +=

0s



Importing Results from Functions with 
Scaling Symmetry  

Since the integral equation is now a scaling 
symmetry equation it’s solution is given by 

 

 

since 
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Spectrum from the Bhor-Sommerfeld 
Quantization  

S3 plays the roll of effective momentum to obtain the 
spectrum we can use the Bohr-Sommerfeld 
quantization 
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What is the Fractal? 

It is essentially one-dimensional 

Luke Rogers, Prof. of Mathematics 
University of Connecticut 



A Spiral 

Rtat ∈



Parameterization 
-distance along the curve 
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 The phase of a 

The scaling parameters:     is real but it seems that   

                                            has a phase 
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The phase of a 

The scaling parameters :     is real but it seems       
has a phase 
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Wild Speculations 

Actually the quantization is 

 

Where    results from the boundary conditions 
and determines the three body parameter    

( )πδ+=∫ nxds
x

x

~
~

~
0

1

δ
*κ

( )πδ+=∫ nxds
x

x

~
~

~
0

1 0

)ln(
s

n
p

π
=

( ) ( )
m

eE
nnsn

T

2
*

2
/2

*

0
κπ −−−=( )1*

~ln0 xe sπδκ −=



Wild Speculations 
Can the non-trivial phase   - 

 

Be connected top the Zak phase a non-trivial 

geometric phase obtained in solid. 

The phase is called after it’s discoverer Prof. 

Joshua Zak from the Technion. 
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Zak Phase 
In 1989, Professor Zak identified 
the geometrical phases in the 
band theory of one-dimensional 
solids. When a particle travels 
"slowly" along the energy band 
and completes a closed loop it 
acquires a geometrical phase that 
has significant physical 
consequences for the properties 
of materials, which can be 
determined by the "quantum 
geometry" of the crystal. 



Summary 

• Obtained a known result through a different 
formalism. 

• Sheds light on the connection between fields 
on fractals and the Skorniakov-Ter-Martirosian 
(SKM) equation. 

• Obtained a physical realization of a “quantum 
field” on a “fractal”. 
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