Efimov States as Fields on a Fractal

Ehoud Pazy, Physics Department, NRCN

INT Program, Universality in Few-Body Systems, 29.4.2014

Seemingly Un-Connected Topics

- Efimov states-Three body universal states recently experimentally observed
- Fields on fractals- essentially a theoretical object of research

Outline

Introduction

- Some Efimov state properties
- Discrete scaling functions
- Hints on mathematical connections
- Efimov physics in terms of EFT
 - Neumann series solution of integral equation
 - Conditions for discrete scaling solution
- Scaling parameters and conditions on them
- Connecting to one dimensional physics
- Identifying the fractal structure
- Wild speculations
- Summary

Efimov States

In 1970 Vitaly Efimov discovered that in the limit where:

Two-body scattering length diverges $\mathcal{A} \to \pm \infty$ No two body bound state is found but there are an infinite number of three body (trimer) states

"From questionable to pathological to exotic to a hot topic" *Nature Physics* **5**, 533 (2009)

The Experimental Search for Efimov States

- Experiments with ⁴He atoms (T~0.3 mk)
- Nucleons: triton (pnn) and ³He (ppn)
- Halo Nuclei
- Cold atom physics ¹³³Cs atoms 2005

Kraememr et al (Innsbruck)

Properties of Efimov Trimers

Universal three body physics

The physics depends only on the scattering length and a further quantity called the "Three body parameter"

> Details of the short range interaction become irrelevant

Infinitely many bound states

Properties of Efimov Trimers

Discrete scaling: binding energies $\lambda^{-2} = e^{-2\pi/s_0}$ sizes differ $\lambda = e^{\pi/s_0}$

The scattering amplitude is a log periodic function

 $a(p) = A\cos\left(s_0\ln\frac{p}{\Lambda} + \delta\right)$

The Efimov Spectrum

$$E_T^{(n)} \to \left(e^{-2\pi/s_0} \right)^{n-n^*} \frac{\hbar^2 \kappa_*^2}{m}$$

 $n \rightarrow \infty$ $a = \pm \infty$

Shows a discrete symmetry
Is infinite
Universal

Defined by two parameters

The scaling parameter: $\lambda_0 = e^{\pi/s_0}$

The three body parameter:

Quick Introduction to Discrete Scaling

Triadic Cantor Set

Diamond Fractals

Koch Curve

A fractal is an iterative structure

Fractals Can be Very Fancy

Equation for Discrete Symmetry

• Equation for discrete symmetry

$$f(x) = g(x) + \frac{1}{b}f(ax)$$

a and b are scaling parameters g(x) some initial function

• Its solution is of the form

$$f(x) = x^{\frac{\ln b}{\ln a}} G\left(\frac{\ln x}{\ln a}\right)$$

where G is a periodic function

Equation for Discrete Symmetry Iterative Form

• Equation for discrete symmetry

$$f(x) = g(x) + \frac{1}{b}f(ax)$$

• The equation can be iterated to give

$$f(x) = \sum_{n=0}^{\infty} b^{-n} g(a^n x)$$

"Spectrum" and the Mellin Transform

Iterative solution:

$$f(x) = \sum_{n=0}^{\infty} b^{-n} g(a^n x)$$

Mellin transform:

$$M_f(s) \equiv \int_0^\infty dx \quad x^{s-1}f(x)$$

Mellin transform of Iterative solution:

$$M_f(s) = M_g(s) \frac{ba^s}{ba^s - 1}$$

"Spectrum":

$$s_n = \frac{\ln(1/b)}{\ln a} + \frac{2i\pi n}{\ln a}$$

Hints to the Connection to Quantum Fields on a Fractal

Efimov States	Fields on fractals
Discrete Symmetry Limit Cycle RG	Discrete Symmetry Limit Cycle RG
Log Periodic Functions	Log Periodic Functions
Infinite Spectrum	Infinite "Spectrum" (poles)

Efimov States through an Effective Field Theory

- Three body Bosonic Theory
- Effective Field Theory in term of a "dibaryon" two boson field "d"

$$L = \psi^{+} \left(i \partial_{0} + \frac{\nabla^{2}}{2M} \right) \psi + \Delta d^{+} d - \frac{g}{\sqrt{2}} \left(d^{+} \psi \psi + H.c \right) + h d^{+} d \psi^{+} \psi$$

• Dressing of the di-atom propagator "d"

P. F Bedaque, H. –W. Hammer and U. Van Kolck PRL 80, 463 (1999)

The Integral Equation

$$a_{ad}(p) = K(p,k) + \frac{2}{\pi} \int_0^{\Lambda} dq K(p,q) \frac{q^2}{q^2 - k^2 - i\varepsilon} a(q)$$

$$K(p,q) = \frac{2}{\sqrt{3}q} \ln \left(\frac{q^2 + pq + p^2}{q^2 - pq + p^2} \right)$$

P. F Bedaque, H. –W. Hammer and U. Van Kolck PRL 80, 463 (1999)

Solution Asymptotic Homogeneous Case

The asymptotic homogeneous equation:

for
$$\frac{1}{a_2} << p << \Lambda$$
 but $k \sim \frac{1}{a_2}$

$$a(p) = \frac{4}{\sqrt{3}\pi} \int_0^\infty \frac{dq}{q} a(q) \ln\left(\frac{q^2 + pq + p^2}{q^2 - pq + p^2}\right)$$
Suggests an ansatz $a(p) \sim p^s$ this works if S satisfies
$$1 - \frac{8}{\sqrt{3}} \frac{\sin\left(\frac{\pi s}{6}\right)}{\sec\left(\frac{\pi s}{2}\right)} = 0 \quad \longrightarrow \quad S = \pm iS_o \quad S_0 = 1.0064$$

P. F Bedaque, H. –W. Hammer and U. Van Kolck PRL 80, 463 (1999)

Solution with Finite Cut-Off

• Returning to the equation with a finite cut-off > The following solution is obtained

$$a(p) = A\cos\left(s_0 \ln\frac{p}{\Lambda} + \delta\right)$$

Making a Connection to Fractals Through the Integral Equation $a(p) = K(p,k) + \frac{2}{\pi} \int_0^{\Lambda} dq K(p,q) \frac{q^2}{q^2 - k^2 - i\varepsilon} a(q)$

Writing out the formal solution in terms of a Neumann series

$$a(p) = K(p,k) + \sum_{n=1}^{\infty} \lambda^n \psi_n(p) \qquad \lambda = \frac{2}{\pi}$$
$$\psi_n(p) = \int_0^{\Lambda} \dots \int_0^{\Lambda} K(p,q_1) K(q_1,q_2) \dots K(q,k) dq_1 \dots dq_n$$

Discrete Scale Self Similar Solution

• A self similar discrete scaling solution

$$a(p) = K(p,k) + \sum_{n=1}^{\infty} \lambda^n \psi_n(p) \qquad \lambda = \frac{2}{\pi}$$
$$\psi_n(p) = \int_0^{\Lambda} \dots \int_0^{\Lambda} K(p,q_1) K(q_1,q_2) \dots K(q,k) dq_1 \dots dq_n$$
$$a(p) = \sum_{n=1}^{\infty} \lambda^n K(\gamma^n p,k)$$

• Can be found if $\int_{0}^{\Lambda} dq K(p,q) K(q,k) = K(\gamma p,k)$

The Connection

If
$$\int_0^\Lambda dq K(p,q) K(q,k) = K(\gamma p,k)$$

Then

 $a(p) = \sum_{n=1}^{\infty} \lambda^n K(\gamma^n p, k) \qquad \begin{array}{c} \gamma \leftrightarrow a \\ \lambda^{-1} \leftrightarrow b \end{array}$

Questions

- What are the values of the scaling parameters?
- How to obtain the Efimov spectrum?
- What is the fractal like structure?

Determining the Discrete Scaling Factor

• Performing a Mellin Transformation $M_f(s) \equiv \int_{0}^{\infty} dp p^{s-1} f(p)$ on both sides of

$$\int_0^\Lambda dk K(q,k) K(k,p) = K(\gamma q,p)$$

The scaling factor γ is determined through

$$\gamma^{-s} = M_{K \times p}(s) \qquad M_{K \times p}(s) = \int_{0}^{\infty} dp p^{s} K(1, p)$$

The Connection Between the Discrete Scaling Parameters

An Alternative Method to Obtain the Scaling Factor

Discrete scale invariance

$$a_{sc}(ap) = ba_{sc}(p)$$

Power like solution to homogeneous integral eq.

$$a_{sc}(p) \sim p^{s}$$

$$a^{-s}b = 1$$
Instead of $s_n = \frac{\ln(1/b)}{\ln a} + \frac{2i\pi n}{\ln a} S = \pm iS_0$

$$S_0 = 1.0064$$

Viewing Things in a Different Way

- Connecting to Bloch states
- Obtaining Efimov spectrum from Bohr-Sommerfeld quantization.

A Connection to Bloch States

$$f(p) = p^{-m} G\left(\frac{\ln(p)}{\ln(a)}\right) \qquad m = \frac{\ln(b)}{\ln(a)}$$

change coordinates to:

$$\widetilde{x} = \ln(p)$$

denoting :
$$k = im$$

obtain a Bloch function
$$f(\tilde{x}) = e_{t}^{ik\tilde{x}}G\left(\frac{\tilde{x}}{l}\right)$$

lattice constant $l = \ln(a)$
wave number $k = i \frac{\ln(b)}{\ln(a)}$

Connecting to Bloch states
Instead of
$$s_n = \frac{\ln(1/b)}{\ln a} + \frac{2i\pi n}{\ln a}$$
 only two values $s_n = \pm is_0$
then we have $is_0 = -\frac{\ln(b)}{\ln(a)} + \frac{2\pi i n}{\ln(a)}$
associating the wave number to $k = i \frac{\ln(b)}{\ln(a)}$
we get $s_0 = k + \frac{2\pi n}{\ln(a)}$
associating the lattice constant as $l = \ln(a)$
so s_0 can be considered as an effective crystal
momentum $a = k + \frac{2\pi n}{2\pi n}$

$$s_0 = k + \frac{2\pi n}{l}$$

Importing Results from Functions with Scaling Symmetry

Since the integral equation is now a scaling symmetry equation it's solution is given by

$$f(x) = x^{\frac{\ln b}{\ln a}} G\left(\frac{\ln x}{\ln a}\right) \quad a_{sc}(p) = p^m G\left(\frac{\ln(p)}{\ln(a)}\right) \quad m = -\frac{\ln(\lambda)}{\ln(a)}$$

since
$$G\left[\frac{\ln p}{\ln a}\right] = \sum_{n=-\infty}^{\infty} C_n \exp\left(2\pi i n \frac{\ln p}{\ln a}\right) \quad \ln a = \frac{2\pi n}{s_0}$$
$$a_{sc}(p) \approx A \cos\left(s_0 \ln \frac{p}{\Lambda} + \delta\right)$$

Spectrum from the Bhor-Sommerfeld Quantization

 S_3 plays the roll of effective momentum to obtain the spectrum we can use the Bohr-Sommerfeld

quantization

 $\widetilde{x} = \ln(p)$

$$s_0 \int_{\widetilde{x}_1}^{\widetilde{x}} d\widetilde{x} = n\pi \longrightarrow \ln(p) = \frac{n\pi}{s_0}$$

 $E_T^{(n)} = -(e^{-2\pi/s_0})^{n-n^*} \frac{\hbar^2 \kappa_*^2}{-1}$ M

What is the Fractal?

Luke Rogers, Prof. of Mathematics University of Connecticut

A Spiral

 a^{t} $t \in R$

Parameterization

Transform the plain wave eigenfunctions of the Laplacian

 $\exp[ikx] \Rightarrow \exp[ikz]$

The phase of a

The scaling parameters: b is real but it seems that *a* has a phase Express $a = e^{i\theta_0 + 2\pi n/s_0 + l}$ from $a^{\pm is_0}b = 1$ $e^{ils_0} = 1$ $a^{\theta_0 s_0} b =$ $a^{-\theta_0 s_0} b = 1$ $\cosh[s_0\theta_0] = b$

The phase of a

The scaling parameters : *b* is real but it seems *a* has a phase

Wild Speculations

Actually the quantization is $s_0 \int_{\widetilde{x}_1}^x d\widetilde{x} = (n+\delta)\pi$

Where δ results from the boundary conditions and determines the three body parameter κ_*

$$s_0 \int_{\widetilde{x}_1}^{\widetilde{x}} d\widetilde{x} = (n+\delta)\pi \longrightarrow \ln(p) = \frac{n\pi}{s_0}$$

$$\kappa_* = e^{-\pi\delta/s_0} \ln(\widetilde{x}_1) \longmapsto E_T^{(n)} = -(e^{-2\pi/s_0})^{n-n^*} \frac{\hbar^2 \kappa_*^2}{m}$$

Wild Speculations Can the non-trivial phase $\delta - s_0 \int d\tilde{x} = (n + \delta)\pi$

Be connected top the Zak phase a non-trivial geometric phase obtained in solid. The phase is called after it's discoverer Prof. Joshua Zak from the Technion.

Zak Phase

In 1989, Professor Zak identified the geometrical phases in the band theory of one-dimensional solids. When a particle travels "slowly" along the energy band and completes a closed loop it acquires a geometrical phase that has significant physical consequences for the properties of materials, which can be determined by the "quantum geometry" of the crystal.

Summary

- Obtained a known result through a different formalism.
- Sheds light on the connection between fields on fractals and the Skorniakov-Ter-Martirosian (SKM) equation.
- Obtained a physical realization of a "quantum field" on a "fractal".