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Efimov effect in quantummagnets
Yusuke Nishida*, Yasuyuki Kato and Cristian D. Batista

Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is
the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale
invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the
subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic
Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We
locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the
universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where
the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus
opens up new avenues for universal few-body physics in condensed matter systems.

Sometimeswe observe that completely different systems exhibit
the same physics. Such physics is said to be universal and
its most famous example is the critical phenomena1. In the

vicinity of second-order phase transitions where the correlation
length diverges, microscopic details become unimportant and the
critical phenomena are characterized by only a few ingredients;
dimensionality, interaction range and symmetry of the order
parameter. Accordingly, fluids andmagnets exhibit the same critical
exponents. The universality in critical phenomena has been one of
the central themes in condensedmatter physics.

Similarly, we can also observe universal physics in the vicinity of
scattering resonances where the s-wave scattering length diverges.
Here low-energy physics is characterized solely by the s-wave
scattering length and does not depend on other microscopic details.
One of themost prominent phenomena in such universal systems is
the Efimov effect, which predicts the emergence of an infinite tower
of three-body bound states obeying discrete scale invariance:

En+1

En
! ⌦�2 (n! 1) (1)

with the universal scale factor ⌦ = 22.6944 (ref. 2). Because of its
universality and peculiarity, the Efimov effect has been the subject of
extensive research in chemical, atomic, nuclear and particle physics
for decades after the first prediction in 19703,4. In particular, the
recent experimental realization with ultracold atoms has greatly
stimulated this research area5.

In spite of such active research, the Efimov effect has not
attracted much attention in condensed matter physics so far.
However, because the Efimov effect is universal, it should emerge
also in condensed matter systems. In this article, we show that
collective excitations in quantum magnets (magnons) exhibit
the Efimov effect by tuning an easy-axis exchange or single-
ion anisotropy. We will locate anisotropy-induced two-magnon
resonances, compute the binding energies of three magnons and
find that they fit into the universal scaling law.We will also propose
several approaches to experimentally realize the Efimov effect in
quantummagnets, including frustrated cases. So far multi-magnon
bound states have been observed with different experimental
techniques, but mostly in quasi-one-dimensional compounds6–23.
Although the Efimov effect emerges only in three dimensions3,4,
the same spectroscopic measurements can be used to observe the
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emergent Efimov states of magnons. Our study thus opens up
new avenues for universal few-body physics in condensed matter
systems. Also, in addition to the Bose–Einstein condensation of
magnons24, the Efimov effect provides a novel connection between
atomic and magnetic systems.

Anisotropic Heisenberg model
To demonstrate the Efimov effect in quantummagnets, we consider
an anisotropicHeisenbergmodel on a simple cubic lattice:
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is a sum over six unit vectors;
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ê=±x̂,±ŷ,±ẑ

. Two types
of uniaxial anisotropies are introduced here: anisotropy in the
exchange couplings (Jz 6= J ) and single-ion anisotropy (D 6= 0)
which generally exist owing to the crystal field and spin–orbit
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We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital

angular momentum ‘ ¼ "1 and their binding energies obey a universal doubly exponential scaling EðnÞ
3 /

expð%2e3!n=4þ"Þ at large n. This ‘‘super Efimov effect’’ is found by a renormalization group analysis and

confirmed by solving the bound state problem. We also provide an indication that there are ‘ ¼ "2 four-

body resonances associated with every three-body bound state at EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ. These

universal few-body states may be observed in ultracold atom experiments and should be taken into

account in future many-body studies of the system.

DOI: 10.1103/PhysRevLett.110.235301 PACS numbers: 67.85.Lm, 03.65.Ge, 05.30.Fk, 11.10.Hi

Introduction.—Recently topological superconductors
have attracted great interest across many subfields in phys-
ics [1,2]. This is partially because vortices in topological
superconductors bind zero-energy Majorana fermions and
obey non-Abelian statistics, which can be of potential use
for fault-tolerance topological quantum computation [3,4].
A canonical example of such topological superconductors
is a p-wave paired state of spinless fermions in two
dimensions [5], which is believed to be realized in
Sr2RuO4 [6]. Previous mean-field studies revealed that a
topological quantum phase transition takes place across a
p-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless
fermions in two dimensions right at the p-wave resonance.
We predict that three such fermions form an infinite tower of
bound states of orbital angular momentum ‘ ¼ "1 and their
binding energies obey a universal doubly exponential scaling

EðnÞ
3 / expð%2e3!n=4þ"Þ (1)

at large n. Here " is a nonuniversal constant defined modulo
3!=4. This novel phenomenon shall be termed a super
Efimov effect, because it resembles the Efimov effect in
which three spinless bosons in three dimensions right at an
s-wave resonance form an infinite tower of ‘ ¼ 0 bound
states whose binding energies obey the universal exponential

scaling EðnÞ
3 / e%2!n=s0 with s0 ' 1:00624 [10] (see Table I

for comparison).While the Efimov effect is possible in other
situations [11,12], it does not take place in two dimensions or
with p-wave interactions [12–14]. We also provide an indi-
cation that there are ‘ ¼ "2 four-body resonances associ-
ated with every three-body bound state at

EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ; (2)

which also resembles the pair of four-body resonances in the
usual Efimov effect [15,16]. These universal few-body states

of resonantly interacting fermions in two dimensions should
be taken into account in future many-body studies beyond
the mean-field approximation.
Renormalization group analysis.—The above predic-

tions can be derived most conveniently by a renormaliza-
tion group (RG) analysis. The most general Lagrangian
density that includes up to marginal couplings consistent
with rotation and parity symmetries is
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Here and below, @ ¼ m ¼ 1, r" ( rx " iry, and sums
over repeated indices a ¼ " are assumed. c and#" fields
correspond to a spinless fermion and ‘ ¼ "1 composite
boson, respectively. The p-wave resonance is defined by
the divergence of the two-fermion scattering amplitude at
zero energy, which is achieved by tuning the bare detuning
parameter at "0 ¼ g2!2=ð2!Þ with ! being a momentum
cutoff.

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect.

Efimov effect Super Efimov effect

Three bosons Three fermions
Three dimensions Two dimensions
s-wave resonance p-wave resonance
‘ ¼ 0 ‘ ¼ "1
Exponential scaling Doubly exponential scaling

PRL 110, 235301 (2013) P HY S I CA L R EV I EW LE T T E R S
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1.  Universality of  Efimov effect  
          =>   Solid state physics

2.  Novel few-body universality 
          =>   Super Efimov effect
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R
22.7 × R

(22.7)2
 × R

. . .. . .

Few-body universality

Infinite bound states 
with exponential scaling

Universal !

Efimov effect  (1970) 

•  3 bosons 
•  3 dimensions 
•  s-wave resonance En ⇠ e�2⇡n
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Universal !

atomic 
physics

nuclear 
physics

•  nucleons 
•  halo nucleus 
•  …

•  helium atoms 
•  cold atoms 
•  …

Infinite bound states 
with exponential scaling

Efimov effect  (1970) 

•  3 bosons 
•  3 dimensions 
•  s-wave resonance En ⇠ e�2⇡n
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condensed 
matter

nuclear 
physics

atomic 
physics

x  electrons (fermions with long-range repulsion) 

•  bosonic collective excitations !?

Efimov effect in solid states ?

Universal !

Infinite bound states 
with exponential scaling

Efimov effect  (1970) 

•  3 bosons 
•  3 dimensions 
•  s-wave resonance En ⇠ e�2⇡n
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Efimov effect in 
quantum magnets
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r+ê + JzS
z
rS

z
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fully polarized state (B➔∞)

Spin-boson correspondence

No boson = vacuum

N spin-flips N bosons = magnons

⇔

⇔
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r+ê + JzS
z
rS

z
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Quantum magnet 9

Anisotropic Heisenberg model on a 3D lattice

N spin-flips N bosons = magnons

⇔

xy-exchange coupling 
⇔  hopping

single-ion anisotropy 
⇔  on-site attraction

z-exchange coupling 
⇔  neighbor attraction
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r+ê) +D(Sz

r )
2 �BSz

r

#

Quantum magnet 10

Anisotropic Heisenberg model on a 3D lattice

xy-exchange coupling 
⇔  hopping

single-ion anisotropy 
⇔  on-site attraction

z-exchange coupling 
⇔  neighbor attraction

Tune these couplings to induce 
scattering resonance between two magnons 

=>  Three magnons show the Efimov effect
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hopping

Two-magnon resonance 11

Schrödinger equation for two magnons}
neighbor/on-site attraction
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XXX

ê
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Scattering length between two magnons

Two-magnon resonance  (as➔∞)

•  Jz/J = 2.94  (spin-1/2) 

•  Jz/J = 4.87  (spin-1, D=0) 

•  D/J = 4.77  (spin-1, ferro Jz=J>0) 

•  D/J = 5.13  (spin-1, antiferro Jz=J<0) 

•  . . .

as
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At the resonance, three magnons form bound states 
with binding energies En

n En/J
p

En�1/En

0 �2.09 ⇥ 10�1 —
1 �4.15 ⇥ 10�4 22.4
2 �8.08 ⇥ 10�7 22.7

n En/J
p

En�1/En

0 �5.16 ⇥ 10�1 —
1 �1.02 ⇥ 10�3 22.4
2 �2.00 ⇥ 10�6 22.7

n En/J
p

En�1/En

0 �5.50 ⇥ 10�2 —
1 �1.16 ⇥ 10�4 21.8

n En/J
p

En�1/En

0 �4.36 ⇥ 10�3 —
1 �8.88 ⇥ 10�6 22.2

•  Spin-1/2 •  Spin-1, D=0

•  Spin-1, Jz=J>0 •  Spin-1, Jz=J<0
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At the resonance, three magnons form bound states 
with binding energies En

n En/J
p

En�1/En

0 �2.09 ⇥ 10�1 —
1 �4.15 ⇥ 10�4 22.4
2 �8.08 ⇥ 10�7 22.7

n En/J
p

En�1/En

0 �5.16 ⇥ 10�1 —
1 �1.02 ⇥ 10�3 22.4
2 �2.00 ⇥ 10�6 22.7

Universal scaling law by ~ 22.7 

confirms they are Efimov states !

•  Spin-1/2 •  Spin-1, D=0



/ 38Three-magnon spectrum 15
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      whose anisotropy is close to the critical value 

      E.g.  Ni-based organic ferromagnet with D/J~3  (critical 4.8) 
      R. Koch et al., Phys. Rev. B 67, 094407 (2003)

Toward experimental realization16
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C.f.  TDAE-C60

!

      of  three magnons with

•  absorption spectroscopy 

•  inelastic neutron scattering 

•  electron spin resonance 
     [see Y.N., PRB88, 224402 (2013)]

!

      with pressure to induce 
      the two-magnon resonance

1.  Find a good compound

3.  Observe the Efimov states

2.  Tune the exchange coupling

Find interested experimentalists !
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condensed 
matter

atomic 
physics

Efimov effect:  universality,  discrete scale 

                               invariance,  RG limit cycle

nuclear 
physics

•  exchange anisotropy 

•  single-ion anisotropy 

•  spatial anisotropy 

•  frustration

Efimov effect in quantum magnets induced by

Atomic vs magnetic systems
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Efimov effect in quantummagnets
Yusuke Nishida*, Yasuyuki Kato and Cristian D. Batista

Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is
the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale
invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the
subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic
Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We
locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the
universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where
the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus
opens up new avenues for universal few-body physics in condensed matter systems.

Sometimeswe observe that completely different systems exhibit
the same physics. Such physics is said to be universal and
its most famous example is the critical phenomena1. In the

vicinity of second-order phase transitions where the correlation
length diverges, microscopic details become unimportant and the
critical phenomena are characterized by only a few ingredients;
dimensionality, interaction range and symmetry of the order
parameter. Accordingly, fluids andmagnets exhibit the same critical
exponents. The universality in critical phenomena has been one of
the central themes in condensedmatter physics.

Similarly, we can also observe universal physics in the vicinity of
scattering resonances where the s-wave scattering length diverges.
Here low-energy physics is characterized solely by the s-wave
scattering length and does not depend on other microscopic details.
One of themost prominent phenomena in such universal systems is
the Efimov effect, which predicts the emergence of an infinite tower
of three-body bound states obeying discrete scale invariance:

En+1

En
! ⌦�2 (n! 1) (1)

with the universal scale factor ⌦ = 22.6944 (ref. 2). Because of its
universality and peculiarity, the Efimov effect has been the subject of
extensive research in chemical, atomic, nuclear and particle physics
for decades after the first prediction in 19703,4. In particular, the
recent experimental realization with ultracold atoms has greatly
stimulated this research area5.

In spite of such active research, the Efimov effect has not
attracted much attention in condensed matter physics so far.
However, because the Efimov effect is universal, it should emerge
also in condensed matter systems. In this article, we show that
collective excitations in quantum magnets (magnons) exhibit
the Efimov effect by tuning an easy-axis exchange or single-
ion anisotropy. We will locate anisotropy-induced two-magnon
resonances, compute the binding energies of three magnons and
find that they fit into the universal scaling law.We will also propose
several approaches to experimentally realize the Efimov effect in
quantummagnets, including frustrated cases. So far multi-magnon
bound states have been observed with different experimental
techniques, but mostly in quasi-one-dimensional compounds6–23.
Although the Efimov effect emerges only in three dimensions3,4,
the same spectroscopic measurements can be used to observe the
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emergent Efimov states of magnons. Our study thus opens up
new avenues for universal few-body physics in condensed matter
systems. Also, in addition to the Bose–Einstein condensation of
magnons24, the Efimov effect provides a novel connection between
atomic and magnetic systems.

Anisotropic Heisenberg model
To demonstrate the Efimov effect in quantummagnets, we consider
an anisotropicHeisenbergmodel on a simple cubic lattice:
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. Two types
of uniaxial anisotropies are introduced here: anisotropy in the
exchange couplings (Jz 6= J ) and single-ion anisotropy (D 6= 0)
which generally exist owing to the crystal field and spin–orbit
interaction. Spin operators S±

r

⌘ Sx
r

± iSy
r

and Sz
r

obey the usual
commutation relations [S+

r

,S�
r

0 ] = 2Sz
r

�
r,r0 , [Sz

r

,S±
r

0 ] = ±S±
r

�
r,r0 and

the identity (S+
r

)2S+1 = (S�
r

)2S+1 = 0 for a spin S representation.
J , Jz > 0 corresponds to a ferromagnetic coupling and J ,Jz < 0 to
an antiferromagnetic coupling. In the latter case, by rotating spins
by ⇡ along the z-axis (S±
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) only for sites with odd-valued
x+y+z , we can choose J >0, which is assumed fromnowon.

The ground state for a sufficiently large magnetic field B < 0
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New link between atomic and magnetic systems

Efimov effect:  universality,  discrete scale 

                               invariance,  RG limit cycle

Atomic vs magnetic systems

Atomic BEC  (1995           )

Efimov effect  (2006           )

Magnon BEC  (1999           )

Efimov effect  (201?           )?

Unitary magnon gas ?!
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Novel universality: 
Super Efimov effect
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Infinite bound states 
with exponential scaling

Efimov effect  (1970) 
•  3 bosons 
•  3 dimensions 
•  s-wave resonance

Efimov effect in other systems ? 

s-wave p-wave d-wave 

3D O

2D

1D

En ⇠ e�2⇡n

No, only in 3D with s-wave resonance

s-wave p-wave d-wave 

3D O x x

2D x x x

1D x x

Y.N. & S.Tan,  
Few-Body Syst 

Y.N. & D.Lee 
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22Few-body universality

Infinite bound states 
with exponential scaling

Efimov effect  (1970) 
•  3 bosons 
•  3 dimensions 
•  s-wave resonance

Different universality in other systems ? 

En ⇠ e�2⇡n

Yes, super Efimov effect in 2D with p-wave !

Y.N. & S.Tan,  
Few-Body Syst 

Y.N. & D.Lee 
Phys Rev A

s-wave p-wave d-wave 

3D O x x

2D x !!! x

1D x x
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Super Efimov effect 
•  3 fermions 
•  2 dimensions 
•  p-wave resonance 
!

Efimov effect 
•  3 bosons 
•  3 dimensions 
•  s-wave resonance 
!

 exponential scaling

23Few-body universality

Super Efimov Effect of Resonantly Interacting Fermions in Two Dimensions
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We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital

angular momentum ‘ ¼ "1 and their binding energies obey a universal doubly exponential scaling EðnÞ
3 /

expð%2e3!n=4þ"Þ at large n. This ‘‘super Efimov effect’’ is found by a renormalization group analysis and

confirmed by solving the bound state problem. We also provide an indication that there are ‘ ¼ "2 four-

body resonances associated with every three-body bound state at EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ. These

universal few-body states may be observed in ultracold atom experiments and should be taken into

account in future many-body studies of the system.
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Introduction.—Recently topological superconductors
have attracted great interest across many subfields in phys-
ics [1,2]. This is partially because vortices in topological
superconductors bind zero-energy Majorana fermions and
obey non-Abelian statistics, which can be of potential use
for fault-tolerance topological quantum computation [3,4].
A canonical example of such topological superconductors
is a p-wave paired state of spinless fermions in two
dimensions [5], which is believed to be realized in
Sr2RuO4 [6]. Previous mean-field studies revealed that a
topological quantum phase transition takes place across a
p-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless
fermions in two dimensions right at the p-wave resonance.
We predict that three such fermions form an infinite tower of
bound states of orbital angular momentum ‘ ¼ "1 and their
binding energies obey a universal doubly exponential scaling

EðnÞ
3 / expð%2e3!n=4þ"Þ (1)

at large n. Here " is a nonuniversal constant defined modulo
3!=4. This novel phenomenon shall be termed a super
Efimov effect, because it resembles the Efimov effect in
which three spinless bosons in three dimensions right at an
s-wave resonance form an infinite tower of ‘ ¼ 0 bound
states whose binding energies obey the universal exponential

scaling EðnÞ
3 / e%2!n=s0 with s0 ' 1:00624 [10] (see Table I

for comparison).While the Efimov effect is possible in other
situations [11,12], it does not take place in two dimensions or
with p-wave interactions [12–14]. We also provide an indi-
cation that there are ‘ ¼ "2 four-body resonances associ-
ated with every three-body bound state at

EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ; (2)

which also resembles the pair of four-body resonances in the
usual Efimov effect [15,16]. These universal few-body states

of resonantly interacting fermions in two dimensions should
be taken into account in future many-body studies beyond
the mean-field approximation.
Renormalization group analysis.—The above predic-

tions can be derived most conveniently by a renormaliza-
tion group (RG) analysis. The most general Lagrangian
density that includes up to marginal couplings consistent
with rotation and parity symmetries is

L ¼ c y
!
i@t þ

r2

2

"
c þ#y

a

!
i@t þ

r2

4
% "0

"
#a

þ g#y
ac ð%iraÞc þ gc yð%ir%aÞc y#a

þ v3c
y#y

a#ac þ v4#
y
a#

y
%a#%a#a

þ v0
4#

y
a#

y
a#a#a: (3)

Here and below, @ ¼ m ¼ 1, r" ( rx " iry, and sums
over repeated indices a ¼ " are assumed. c and#" fields
correspond to a spinless fermion and ‘ ¼ "1 composite
boson, respectively. The p-wave resonance is defined by
the divergence of the two-fermion scattering amplitude at
zero energy, which is achieved by tuning the bare detuning
parameter at "0 ¼ g2!2=ð2!Þ with ! being a momentum
cutoff.

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect.

Efimov effect Super Efimov effect

Three bosons Three fermions
Three dimensions Two dimensions
s-wave resonance p-wave resonance
‘ ¼ 0 ‘ ¼ "1
Exponential scaling Doubly exponential scaling

PRL 110, 235301 (2013) P HY S I CA L R EV I EW LE T T E R S
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n=2 cn (m")n

24P-wave scattering in 2D

V(r)
Two fermions with short-range potential

scattering “length” effective “range”

collision energy

=>  Effective range expansion

p+k/2

p-k/2

q+k/2

q-k/2

Cf.  H.-W. Hammer & D. Lee 

Ann. Phys. 325, 2212 (2010)
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25P-wave scattering in 2D

V(r)
Two fermions with short-range potential

=>  Effective range expansion

p+k/2

p-k/2

q+k/2

q-k/2

collision energy

resonance 
(a➔∞)

low-energy 
(ε➔0)

Cf.  H.-W. Hammer & D. Lee 

Ann. Phys. 325, 2212 (2010)
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} }�iT ! �
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m2 ln
⇣
� ⇤2
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⌘ ⇥
i

E � k2

4m + i0+

26P-wave scattering in 2D
Two fermions with short-range potential

=>  Effective range expansion

p+k/2

p-k/2

q+k/2

q-k/2

→

propagator of  dimer

V(r)

ig ig

= (ig)2 p·q 

“running” coupling
(logarithmic decrease toward low-energy p/Λ→0)

- iT
resonance

low-energy

"
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27P-wave scattering in 2D
Two fermions with short-range potential

V(r)
p+k/2

p-k/2

q+k/2

q-k/2

→ ig ig-iT
resonance

low-energy

dimer field Φ± couples to two fermions ψ                     

with orbital angular momentum L=±1

=>  Low-energy effective field theory
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}marginal coupling

) g2(s) =
1
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s
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! ⇡

s

28RG in 2-body sector
Low-energy effective field theory
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toward low-energy s→∞

RG equation
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renormalized by

29RG in 3-body sector
3-body problem  ⇔  fermion+dimer scattering

marginal coupling

}

irrelevant

=>  RG equation

L
3�body

= v3

XXX

a=±
 †�†

a�a + · · ·

dv3

ds
=

16

3⇡
g4 �

11

3⇡
g2v3 +

2

3⇡
v2
3
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30RG in 3-body sector
3-body problem  ⇔  fermion+dimer scattering

}
marginal coupling @ low-energy limit s→∞

irrelevant
L

3�body

= v3

XXX

a=±
 †�†

a�a + · · ·

}
non-universal

diverges at 

En / ⇤
2

m
e�2e3⇡n/4+✓

=>  characteristic energy scales

Super Efimov effect !
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resonance (a➔∞)

31Confirmation by model

} }
�±(p) = (p

x

± ip
y

) e�p2/(2⇤2)

Spinless fermions 
with a separable potential

=>  solve STM equation numerically

�n = ln ln (mEn/⇤
2)�1/23-body binding energies

Za(p) = �
ZZZ dq

2⇡
(p + 2q)�a e�(5p2+5q2+8p·q)/(8⇤2)

p2 + q2 + p · q + 2

⇥
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b=±(2p + q)b Zb(q)

( 3
4 q2 + 2) e( 3

4 q2+2)/⇤2 E1[( 3
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resonance (a➔∞)

�n = ln ln (mEn/⇤
2)�1/2

32Confirmation by model

} }
�±(p) = (p

x

± ip
y

) e�p2/(2⇤2)

3-body binding energies

=>  doubly exponential scaling

n �n �n � �n�1 3 7.430 2.352

0 0.5632 — 4 9.785 2.355

1 2.770 2.207 5 12.141 2.356

2 5.078 2.308 1 — 2.35619

Spinless fermions 
with a separable potential

Super Efimov effect !

mEn/⇤
2 / e�2e3⇡n/4+✓
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4-body problem  ⇔  dimer+dimer scattering
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L=±2 tetramers attached to every trimer 

with resonance energy

34RG in 4-body sector
4-body problem  ⇔  dimer+dimer scattering
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Super Efimov effect 
•  3 fermions 
•  2 dimensions 
•  p-wave resonance 
!

 “doubly” exponential

Efimov effect 
•  3 bosons 
•  3 dimensions 
•  s-wave resonance 
!

 exponential scaling
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We study a system of spinless fermions in two dimensions with a short-range interaction fine-tuned to a

p-wave resonance. We show that three such fermions form an infinite tower of bound states of orbital

angular momentum ‘ ¼ "1 and their binding energies obey a universal doubly exponential scaling EðnÞ
3 /

expð%2e3!n=4þ"Þ at large n. This ‘‘super Efimov effect’’ is found by a renormalization group analysis and

confirmed by solving the bound state problem. We also provide an indication that there are ‘ ¼ "2 four-

body resonances associated with every three-body bound state at EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ. These

universal few-body states may be observed in ultracold atom experiments and should be taken into

account in future many-body studies of the system.
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Introduction.—Recently topological superconductors
have attracted great interest across many subfields in phys-
ics [1,2]. This is partially because vortices in topological
superconductors bind zero-energy Majorana fermions and
obey non-Abelian statistics, which can be of potential use
for fault-tolerance topological quantum computation [3,4].
A canonical example of such topological superconductors
is a p-wave paired state of spinless fermions in two
dimensions [5], which is believed to be realized in
Sr2RuO4 [6]. Previous mean-field studies revealed that a
topological quantum phase transition takes place across a
p-wave Feshbach resonance [7–9].

In this Letter, we study few-body physics of spinless
fermions in two dimensions right at the p-wave resonance.
We predict that three such fermions form an infinite tower of
bound states of orbital angular momentum ‘ ¼ "1 and their
binding energies obey a universal doubly exponential scaling

EðnÞ
3 / expð%2e3!n=4þ"Þ (1)

at large n. Here " is a nonuniversal constant defined modulo
3!=4. This novel phenomenon shall be termed a super
Efimov effect, because it resembles the Efimov effect in
which three spinless bosons in three dimensions right at an
s-wave resonance form an infinite tower of ‘ ¼ 0 bound
states whose binding energies obey the universal exponential

scaling EðnÞ
3 / e%2!n=s0 with s0 ' 1:00624 [10] (see Table I

for comparison).While the Efimov effect is possible in other
situations [11,12], it does not take place in two dimensions or
with p-wave interactions [12–14]. We also provide an indi-
cation that there are ‘ ¼ "2 four-body resonances associ-
ated with every three-body bound state at

EðnÞ
4 / expð%2e3!n=4þ"%0:188Þ; (2)

which also resembles the pair of four-body resonances in the
usual Efimov effect [15,16]. These universal few-body states

of resonantly interacting fermions in two dimensions should
be taken into account in future many-body studies beyond
the mean-field approximation.
Renormalization group analysis.—The above predic-

tions can be derived most conveniently by a renormaliza-
tion group (RG) analysis. The most general Lagrangian
density that includes up to marginal couplings consistent
with rotation and parity symmetries is

L ¼ c y
!
i@t þ

r2

2

"
c þ#y

a

!
i@t þ

r2

4
% "0

"
#a

þ g#y
ac ð%iraÞc þ gc yð%ir%aÞc y#a

þ v3c
y#y

a#ac þ v4#
y
a#

y
%a#%a#a

þ v0
4#

y
a#

y
a#a#a: (3)

Here and below, @ ¼ m ¼ 1, r" ( rx " iry, and sums
over repeated indices a ¼ " are assumed. c and#" fields
correspond to a spinless fermion and ‘ ¼ "1 composite
boson, respectively. The p-wave resonance is defined by
the divergence of the two-fermion scattering amplitude at
zero energy, which is achieved by tuning the bare detuning
parameter at "0 ¼ g2!2=ð2!Þ with ! being a momentum
cutoff.

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect.

Efimov effect Super Efimov effect

Three bosons Three fermions
Three dimensions Two dimensions
s-wave resonance p-wave resonance
‘ ¼ 0 ‘ ¼ "1
Exponential scaling Doubly exponential scaling
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Are there other “physics” phenomena 

with doubly-exponential scaling ?

Efimov vs super Efimov
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condensed 
matter

atomic 
physics

Efimov effect:  universality,  discrete scale 

                               invariance,  RG limit cycle

nuclear 
physics

✓  Efimov effect in quantum magnets 
Y.N, Y.K, C.D.B, Nature Physics 9, 93-97 (2013)

✓  Novel universality:  Super Efimov effect 
Y.N, S.M, D.T.S, Phys Rev Lett 110, 235301 (2013)


