Weakly-bound and unbound few-body nucleonic systems

Takashi Nakamura Tokyo Institute of Technology

<u>Outline</u>

- 1 <u>Introduction----Drip Line and Neutron Halo</u> <u>RI-Beam Factory at RIKEN (new-generation RIB facility)</u>
- 2 Probes– Nuclear and Coulomb breakup (70~200 MeV/nucleon β=0.3~0.6)
- 3 Coulomb Breakup of ¹¹Li
- 4 Coulomb and nuclear Breakup of ²²C
- 5 <u>Unbound 3-body resonance states ²⁶O</u>

Neutron Drip Line– Boundary of Bound Nuclei

RIKEN RI Beam Factory (RIBF)

<u>SRC:</u> World Largest Cyclotron (K=2500 MeV)

Heavy Ion Beams up to ²³⁸U at 345MeV/u (Light Ions up to 440MeV/u) eg.

⁴⁸Ca beam (345 MeV/nucleon) ~10¹² particles/s
 ²³⁸U beam (345 MeV/nucleon) ~10¹¹ particles/s

Characteristic features of neutron-drip line nuclei

Neutron drip-line nuclei

Fermi levels between n and p—Very Different →Valence neutron – Weakly-Bound → 'Halo' can be formed (but not always) →Excitation/Coupling to the continuum – More significant Spectroscopy of Halo Nuclei →Breakup by 1n/2n emission

- ✓ Small Separation Energy $S_n < 1MeV << 8MeV$
- ✓ Extended ρ_n Distribution beyond Range of Nuclear Interaction

$$\langle r \rangle \rightarrow \infty \text{ for } S_n \rightarrow 0 \quad \left(\sqrt{\langle r^2 \rangle} \propto 1/S_n \right) \sim 0.1 \text{ nm for } S_n = 1 \text{ meV}$$

- ✓ Small Fermi Momentum → Small Kinetic Energy
- ✓ No (Small) Angular Momentum $\ell = 0, 1 \rightarrow$ No (Small) Centrifugal Barrier

Nuclear Stability At the Limit $\leftarrow \rightarrow$ Shell Evolution $\leftarrow \rightarrow$ Halo

PRL 112, 142501 (2014)

Deformation-Driven *p*-Wave Halos at the Drip Line: ³¹Ne

T. Nakamura,¹ N. Kobayashi,¹ Y. Kondo,¹ Y. Satou,^{1,2} J. A. Tostevin,³ Y. Utsuno,⁴ N. Aoi,⁵ H. Baba,⁵ N. Fukuda,⁵ J. Gibelin,⁶ N. Inabe,⁵ M. Ishihara,⁵ D. Kameda,⁵ T. Kubo,⁵ T. Motobayashi,⁵ T. Ohnishi,⁵ N. A. Orr,⁶ H. Otsu,⁵ T. Otsuka,⁷ H. Sakurai,⁵ T. Sumikama,⁸ H. Takeda,⁵ E. Takeshita,⁵ M. Takechi,⁵ S. Takeuchi,⁵ Y. Togano,^{1,5} and K. Yoneda⁵ ¹Department of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo 152-8551, Japan ²Department of Physics and Astronomy, Seoul National University, 599 Gwanak, Seoul 151-742, Republic of Korea ³Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom ⁴Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan ⁵RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan ⁶LPC-ENSICAEN, IN2P3-CNRS et Université de Caen, F-14050, Caen Cedex, France ⁷Center for Nuclear Study (CNS), the University of Science, Chiba 278-8510, Japan ⁸Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan ⁸Department of Physics, Tokyo University of Science, Chiba 278-8510, Japan

Strongly deformed although it is N=21 (close to 20)

Two-neutron Halo

⁹Li + n Barely Unbound $a = -22.4 \pm 4.8 fm$ Yu. Aksyustina PLB666,430(2008) n + n Barely Unbound $a = -18.9 \pm 0.4 fm$ ⁹Li + n+n Bound S_{2n} =0.369MeV

<u>Borromean Ring</u>

Dineutron Correlation?

A.B.Migdal predict strong-correlated dineutron system Sov.J.Nucl.Phys.238(1973).

BCS-like Pairing Correlation (long range)

Dineutron correlation

(short-range) @Weak-binding Low-density

M.Matsuo PRC73,044309(2006). A.Gezerlis, J.Carlson, PRC81,025803(2010)

2 Probes– Nuclear and Coulomb breakup at 70~200 MeV/nucleon (β=0.3~0.6)

Probe-1: Nuclear Breakup – Case of 1n Halo

1n knockout reaction of ³¹Ne (TN et al., PRL112, 142501 (2014).)

Y ray in coincidence → ³⁰Ne(2⁺) / ³⁰Ne(0⁺) Contribution
o_{-1n} and P_{//} distribution → ℓ of valence n, configuration
Theory: Eikonal Approximation

Coulomb Breakup and E1 Response--Case of 1n Halo

<u>Soft E1 Excitation of 1n halo—Sensitive to S_n, l , C²S</u>

3 <u>Coulomb Breakup of ¹¹Li</u> <u>--Case of 2n Halo</u>

TN et al. PRL96,252502(2006). + Unpublished data

Borromean Physics – Binding Mechanism?

- ¹⁰Li(= ⁹Li + n) Barely Unbound $a = -22.4 \pm 4.8 fm$ n + n Barely Unbound $a = -18.9 \pm 0.4 fm$ ⁹Li + n+n Bound S_{2n}=0.369 MeV
- Dineutron correlation?
- Mixing of 2n with different Parities?

 $\left|\Phi(^{11}\mathrm{Li}_{\mathrm{gs}})\right\rangle = \alpha \left|\Phi(^{9}\mathrm{Li}_{\mathrm{gs}})\otimes(s_{1/2})^{2}\right\rangle + \beta \left|\Phi(^{9}\mathrm{Li}_{\mathrm{gs}})\otimes(p_{1/2})^{2}\right\rangle + \dots$

Efimov state? (V.Efimov PLB33,563(1970).)

Coulomb Breakup and E1 Response--Case of 2n Halo

Soft E1 Excitation of 2n-halo—+dineutron-like correlation

Comparison with 3-body theory

Myo et al., PRC76,024305 (2007). Core polarization (Tensor correlation+Pauli Principle)

P(S²)~ 40% $\sqrt{\langle r_{c-2n} \rangle^2} = 5.38 \text{ fm} \langle \theta_{12} \rangle = 65 \text{ deg}$ Both Charge distribution & B(E1) are reproduced.

2n correlation density in ¹¹Li 2n density in ¹¹Li Courtesy of T.Myo

Cf. H.Esbensen and G.F.Bertsch, NPA542(1992)310

Correlations can be studied by three-body decay of ¹¹Li?

--Kinematically complete measurement

Prominent 2n-Halo?

Reaction cross section measurements $(<r_m^2>)^{1/2}=5.4(9) \text{ fm } \text{ c.f. } \sim 3.5 \text{ fm}^{11}\text{Li}$ K.Tanaka et al., PRL 104, 062701(2010).

S_{2n}= −0.14(46) MeV
L.Gaudefroy et al. PRL109,202503(2012).

□ N=16 Magicity?

A.Ozawa et al., PRL 84, 5493 (2000).

Efimov states?

I.Mazumdar et al. PRC61, 051303(R) If $a_{\rm 20C-n} \sim -100~{\rm fm}$

Coulomb Breakup of ²²C

Correlated: $\alpha |(2s_{1/2})^2 > +\beta |(1d_{3/2})^2 > +\gamma |(2p_{3/2})^2 > +\gamma |(1f_{7/2})^2 > \dots$ 1.05b62.5%24.2%4.7%3.8%Non-Correlated: $|(2s_{1/2})^2 >$ (s only)1.66b100% \rightarrow Kinematically Complete

Measurement of Coulomb Breakup

Experimental Setup--Coulomb/Nuclear Breakup of ²²C

RI Beam Spectra @ SAMURAI May/2012

⁴⁸Ca 150~200pnA (Max 250pnA)

High intense RIBF Beam

²²C: ~10/s (c.f. 10/hour K.Tanaka,PRL2010, RIPS@RIKEN)

Gain of ~3600!

Study of unbound nuclei ²⁵O and ²⁶O

Spokesperson <u>Yosuke Kondo</u>

Experimental study of <u>unbound</u> oxygen isotopes towards the possible <u>doubly magic nucleus</u> ²⁸O

Otherwise Oxygen is bound up to ²⁸O

G. Hagen et al., PRL108, 242501(2012). H. Hergert et al., PRL110, 242501(2013).

Study of unbound nuclei ^{25,26}O (Spokesperson: Y. Kondo)

One/two-proton removal reactions by using cocktail beams

<u>Summary</u>

Nuclear Halo : A weakly-bound nucleonic system

Diluted Nuclear Matter: Two-fold System, Borromean Binding Mechanism? Dineutron Correlation? Configuration Mixing? Three-body Effects?

Nuclear and Coulomb breakup :

→Powerful probes of weakly bound syatem

Coulomb Breakup of ¹¹Li

Characteristic E1 Response \rightarrow Dineutron Correlation 3 body breakup \rightarrow ⁹Li-n,nn correlation, 3-body effect?

5

Coulomb and nuclear Breakup of ²²C

²¹C resonance (s and d?), Strong E1 Transition

Unbound 3-body resonance states ²⁶O

Barely-unbound 3-body state, 1st Excited State: long life time?, 3-body correlation?

Near Future: Variety of unbound states along n-drip line $\rightarrow {}^{28}O$ (Possible unbound doubly magic nucleus, $\rightarrow {}^{24}O+4n$)

SAMURAI Dayone Experiment (May 2012)

First experimental campaign for the 3 physics programs 1.Coulomb breakup of ²²C and ¹⁹B (T. Nakamura)

2.Study of unbound states of ²²C, ²¹C, ¹⁹B, ¹⁸B (N. A. Orr)

3. Study of unbound nuclei ²⁵O and ²⁶O (Y. Kondo)

Collaborators

Tokyo Institute of Technology: <u>Y.Kondo, T.Nakamura</u>, N.Kobayashi, R.Tanaka, R.Minakata, S.Ogoshi, S.Nishi, D.Kanno, T.Nakashima LPC CAEN: <u>N.A.Orr</u>, J.Gibelin, F.Delaunay, F.M.Marques, N.L.Achouri, S.Leblond Tohoku University : T.Koabayshi, K.Takahashi, K.Muto RIKEN: K.Yoneda, T.Motobayashi ,H.Otsu, T.Isobe, H.Baba,H.Sato, Y.Shimizu, J.Lee, P.Doornenbal, S.Takeuchi, N.Inabe, N.Fukuda, D.Kameda, H.Suzuki, H.Takeda, T.Kubo Seoul National University: Y.Satou, S.Kim, J.W.Hwang Kyoto University : T.Murakami, N.Nakatsuka GSI : Y.Togano Univ. of York: A.G.Tuff GANIL: A.Navin Technische Universit" at Darmstadt: T.Aumann Rikkyo Univeristy: D.Murai Universit'e Paris-Sud, IN2P3-CNRS: M.Vandebrouck