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Outline of this talk 

I.  Current experiments with cold atoms 

II.  Two-Body problem 

III.  Three-body HHL Problem 
a)  The Born-Oppenheimer potential curve 
b)  Numerical results and comparison with more accurate methods 

IV.  Four-body HHHL Problem 
a)  The coordinates 
b)  The Born-Oppenheimer surface 
c)  Numerical results 

V.  Current & future work 



Atoms in waveguides 

¤  Tune the laser frequency a 
little to the red of an 
atomic transition 

¤  The “AC Stark shift” results 
in an effective potential 
energy well . 

Image from: Immanuel Bloch 
Nature Physics 1, 23 - 30 (2005)  

Assumption for this work:  Atoms remain 
confined to the lowest transverse mode, and 
the Olshanii formula is meaningful. 
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Low-energy (2-body) scattering in 1D 
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Some questions I want to answer: 

¤  What are the energy levels for the HHL and HHHL system? 

¤  What is the atom-dimer aAD scattering length for 
 H+HL à H+HL ? 

¤  What is the atom-trimer aAT scattering length for 
H+HHLàH+HHL ? 

¤  What are the specific mass ratios at which a new bound 
state appears (and aAD, aAT diverge)? 

¤  What are the specific mass ratios at which aAD or aAT is 
zero? 



Born-Oppenheimer approxiamtion for 
the 3-body problem 

Jacobi Coordinates: 
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In units of the HL binding energy: 

Ψ(x, y) = Φ(x; y)ψ(x)

Born-Oppenheimer factorization: 
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3-Body HHL problem 

… with this potential for x-dependent 
eigenvalues u(x). 

x� x1 � x2

Solve fixed-x Schrodinger  
equation along this line… 
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The nonadiabatic correction 
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Results for the HHL system 

These potential curves give  
the spectrum & aAD for  
one mass ratio 

For Li-Cs mixtures (mH/mL ≈ 22) 

(bosons λ=∞, 
or NI fermions) 

(bosons λ=0) 



Comparison with Kartavtsev, Malykh 
and Sofianos 

TABLE I. The values of the mass ratio β−1
= mH/mL for which the atom-dimer scattering length

is infinite (aAD → ∞, corresponding to the appearance of the nth
trimer state), or zero (aAD → 0),

are tabulated both the case of noninteracting bosonic H atoms (λ → 0) and fermionic H atoms

(λ → ∞). Results are compared to Ref. [23]. An asterisk (*) denotes an exact result.

λ = 0 λ = 0

n β−1|aAD→0 β−1|aAD→∞

This work Ref. [23] This work Ref. [23]

1 − − − −

2 1.357 0.971 3.255 2.86954

3 9.747 9.365 12.336 11.9510

4 23.333 22.951 26.602 26.218

5 42.142 41.762 46.055 45.673

6 66.168 65.791 70.695 70.317

7 95.404 95.032 100.523 100.151

8 129.845 129.477 135.539 135.170

9 169.488 169.120 175.742 175.374

10 214.331 213.964 221.133 220.765

λ = ∞ λ = ∞

n β−1|aAD→0 β−1|aAD→∞

This work Ref. [23] This work Ref. [23]

1 − 0
∗

1.170 1
∗

2 5.499 5.2107 7.694 7.3791

3 16.456 16.1197 19.373 19.0289

4 32.650 32.298 36.235 35.879

5 54.067 53.709 58.283 57.923

6 80.697 80.339 85.518 85.159

7 112.535 112.179 117.940 117.583

8 149.577 149.222 155.550 155.193

9 191.820 191.463 198.347 197.989

10 239.262 238.904 246.331 245.973

0.01%.

III. FOUR-BODY (HHHL) PROBLEM

Let us now turn to the calculation of four-body observables. The basic three-step recipe

for this calculation is as follows. First, the Born-Oppenheimer method is used to calculate

the 2D potential energy surface for the heavy particles in the extreme adiabatic approx-

imation (EAA). Next, this potential energy surface is inserted into a calculation of the

hyperradial adiabatic potential curves and couplings. Finally, the resulting set of coupled

hyperradial equations is solved for the bound-states and atom-trimer scattering length. The

entire procedure is then repeated for different values of β. If a sufficiently large number of

hyperradial curves and couplings are included in the final step, then the accuracy of the
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From KM&S 



4-Body HHHL coordinates 
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•  Heavy particle 
coordinates make the 
x-y plane 

•  Because H-particles are 
identical, only need 
 0< ϕ <π/6 (for a given 
parity) 

•  Solve the fixed (ρ, ϕ) 
Schrodinger equation 
(along the red line) 

•  Plot the eigenvalue 
 U(ρ, ϕ). 



Where are the interactions? 

z =






− ργ√
2
sin (φ+ π/3)

− ργ√
2
sin (φ− π/3)

ργ√
2
sin (φ)

x� x1 � x2

y� � x1 � x2
2

� x3�

z� � x1 � x2 � x3
3

� Γ� x4�

ϕ ρ 

R 

z

ργ/
√
2

Heavy particles 
have a definite 
ordering within this 
wedge 

δ- function spikes when: 
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The triple delta-function problem 

a b c 
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HHHL potential energy surface & 
curves (for mH/mL≈ 22) (Even parity) 
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Solve the fixed-ρ equation to  
get “hyperspherical” curves 

Bosons 

Fermions 



The energy landscape (mH/mL ≈ 22) 

Bosons 

Fermions 



The HHL Spectrum and the atom-trimer 
scattering length aAT  (Even Parity) 

Bosons Fermions 



The HHL Spectrum and the atom-trimer 
scattering length aAT  (Odd Parity) 

Bosons Fermions 

*preliminary results 

?	




Current and Future Work 

¤  Treat arbitrary heavy particle interactions. (not just the 
noninteracting, or infinitely repulsive cases.) 

¤  Construct an HHHL “phase diagram”. 

¤  Add harmonic confinement, compare with recent 
publications. 

¤  Work towards a fully 3D 3-body problem with a cigar-trap? 

¤  Other systems like HLL, HHLL, HLLL? 

¤  Thanks to Jose D’Incao and Jesper Levinson for helpful 
discussions.  Thanks also to C.H. Greene for early inspiration 
to start this problem. 

THANK YOU!     


