Mass dependent energies and scattering lengths for three and fourparticle two-component systems under 1D confinement

Nirav P. Mehta

Trinity University

Department of Physics and Astronomy

Outline of this talk

- I. Current experiments with cold atoms
- II. Two-Body problem
- III. Three-body HHL Problem
 - a) The Born-Oppenheimer potential curve
 - b) Numerical results and comparison with more accurate methods
- IV. Four-body HHHL Problem
 - a) The coordinates
 - b) The Born-Oppenheimer surface
 - c) Numerical results
- V. Current & future work

Atoms in waveguides

- Tune the laser frequency a little to the red of an atomic transition
- The "AC Stark shift" results in an effective potential energy well.

Image from: Immanuel Bloch Nature Physics 1, 23 - 30 (2005)

 $C \approx 1.4603$

Assumption for this work: Atoms remain confined to the lowest transverse mode, and the Olshanii formula is meaningful.

$$a = -\frac{a_{\perp}^2}{2a_{3D}} \left(1 - C\frac{a_{3D}}{a_{\perp}}\right)$$

Low-energy (2-body) scattering in 1D

$$\begin{aligned}
& \int \psi(x) \rightarrow \begin{cases} \sin(kx+\delta) \text{ odd} \\ \cos(kx+\delta) \text{ even} \end{cases} & \text{For } V(x) = g\delta(x), \\
& a = -1/(\mu g) \\
& V(x) = \frac{-1}{\mu a} \delta(x)
\end{aligned}$$

$$\begin{aligned}
& V(x) = \frac{-1}{\mu a} \delta(x) \\
& \text{For one heavy (H)} \\
& \text{and one light (L):} \\
& \beta = \frac{m_L}{m_H} \\
& \mu_{HL} = m_H \frac{\beta}{1+\beta}
\end{aligned}$$

 $B_2 = \frac{1}{m_H a^2} \frac{\beta + 1}{2\beta}$

Some questions I want to answer:

- What are the energy levels for the HHL and HHHL system?
- What is the atom-dimer a_{AD} scattering length for H+HL → H+HL ?
- What is the atom-trimer a_{AT} scattering length for H+HHL→H+HHL ?
- What are the specific mass ratios at which a new bound state appears (and a_{AD} , a_{AT} diverge)?
- What are the specific mass ratios at which a_{AD} or a_{AT} is zero?

Born-Oppenheimer approxiamtion for the 3-body problem

In units of the HL binding energy:

1 1 0

Jacobi Coordinates:

$$\begin{split} [\hat{T}_{\rm H} + \hat{V}_{\rm HH}] \Psi & \begin{cases} -\frac{1}{2\mu_3} \frac{\partial^2 \Psi}{\partial x^2} + g_3 \lambda \delta(2x_0) \Psi \\ & \\ \hat{H}_{\rm ad} \Psi & \begin{cases} -\frac{1}{2\mu_3} \frac{\partial^2 \Psi}{\partial y^2} + g_3 \left[\delta(y + x_0) + \delta(y - x_0) \right] \Psi \\ & \\ & = E \Psi \end{split}$$

$$\mu_{3} = \frac{1+\beta}{2\sqrt{\beta(2+\beta)}}$$
Born-Oppenheimer factorization:

$$g_{3} = -2\sqrt{2} \left(\frac{\beta}{2+\beta}\right)^{1/4}$$

$$\frac{\Psi(x,y) = \Phi(x;y)\psi(x)}{\left[\frac{-1}{2\mu_{3}}\frac{\partial^{2}}{\partial y^{2}} + g_{3}\left(\delta(y+x_{0}) + \delta(y-x_{0})\right)\right]}\Phi(x;y) = u(x)\Phi(x;y),$$

$$\left(\frac{-1}{2\mu_3}\frac{\partial^2}{\partial x^2} + g_3\lambda\delta(2x_0) + u(x) + \frac{\tilde{Q}(x)}{2\mu_3}\right)\psi(x) = E\psi(x) \qquad \qquad \tilde{Q}(x) = \left\langle\frac{\partial\Phi}{\partial x}\left|\frac{\partial\Phi}{\partial x}\right\rangle_y$$

3-Body HHL problem

The nonadiabatic correction

Results for the HHL system

For Li-Cs mixtures ($m_H/m_L \approx 22$)

Comparison with Kartavtsev, Malykh and Sofianos

TABLE I. The values of the mass ratio $\beta^{-1} = m_H/m_L$ for which the atom-dimer scattering length is infinite $(a_{AD} \to \infty)$, corresponding to the appearance of the n^{th} trimer state), or zero $(a_{AD} \to 0)$, are tabulated both the case of noninteracting bosonic H atoms $(\lambda \to 0)$ and fermionic H atoms $(\lambda \to \infty)$. Results are compared to Ref. [23]. An asterisk (*) denotes an exact result.

	$\lambda = 0$		$\lambda = 0$		n	$\lambda = \infty$		$\lambda = \infty$	
n	$\beta^{-1} _{a_{AD}\to 0}$		$\beta^{-1} _{a_{AD}\to\infty}$			$\beta^{-1} _{a_{AD}\to 0}$		$\beta^{-1} _{a_{AD}\to\infty}$	
	This work	Ref. [23]	This work	Ref. [23]		This work	Ref. [23]	This work	Ref. [23]
1	_	_	_	–жэ	₫.	том 135 , вы	п. 3,0*2009	1.170	1*
2	1.357	0.971	3.255	2.86954	2_{F}	5.499 E_3/E_{th}	5.2107	7.694	7.3791
3	9.747	9.365	12.336	11.9510	3	16.456	16.1197	19.373	19.0289
4	23.333	22.951	26.602	26.218	4	$32.650 \\ a$	32.298	36.235	35.879
5	42.142	41.762	46.055	45.673	5	54.067	53.709	58.283	57.923
6	66.168	65.791	70.695	70.317	62	80.697	80.339	85.518	85.159
7	95.404	95.032	100.523	100.151	7	112.535	112.179	117.940	117.583
8	129.845	129.477	135.539	135.170	8	149.577	149.222	155.550	155.193
9	169.488	169.120	175.742	175.374	$9 \\ 3$	191.820	191.463	198.347	197.989
10	214.331	213.964	221.133	220.765	10	239.262	238.9044	246.331	245.973_{8}
									$\sqrt{m/m_1}$

Table. The even-parity critical values of the mass ratio n-(marked by A = 0) and the nth three-body bound state ar values of the interaction strength between the

O. I. Kartavtsev, A. V. Malykh, and S. A. Sofianos, ZhETF 135, 419 (2009) two-body threshold energy (a) and the (2+1)-scattering length A (b). Presented are should live body bound-state energies to the two-identical bosons with zero (solid lives) and infinite (dash-dotted lives) interaction-strength b. The dash-dotted lives

4-Body HHHL coordinates

- Heavy particle coordinates make the x-y plane
- Because H-particles are identical, only need 0< φ < π /6 (for a given parity)
- Solve the fixed (ρ, φ)
 Schrodinger equation (along the red line)
- Plot the eigenvalue $U(\rho, \varphi)$.

Where are the interactions?

The triple delta-function problem

$$Ae^{\kappa z} \qquad Be^{-\kappa z} + Ce^{\kappa z} \qquad De^{-\kappa z} + Ee^{\kappa z} \qquad Fe^{-\kappa z}$$

$$(-\frac{\partial^2}{\partial z^2} + g_a \delta(z-a) + g_b \delta(z-b) + g_c \delta(z-c) = -\kappa^2 \Phi(z)$$

$$g_a g_c(g_b - 2\kappa)e^{2\kappa(a+b)} - g_a g_b(g_c + 2\kappa)e^{2\kappa(a+c)} \qquad g_a = g_b = g_c = 2\mu_4 g_4,$$

$$+ (g_a + 2\kappa)(g_b + 2\kappa)(g_c + 2\kappa)e^{2\kappa(b+c)} \qquad \kappa^2 = -2\mu_4 U(\rho, \phi) > 0,$$

$$- g_b g_c e^{4b\kappa}(g_a + 2\kappa) = 0 \qquad a = z_1, \ b = z_2 \ \text{and} \ c = z_3$$

HHHL potential energy surface & curves (for $m_{\rm H}/m_{\rm I} \approx 22$) (Even parity)

The energy landscape $(m_H/m_L \approx 22)$

The HHL Spectrum and the atom-trimer scattering length a_{AT} (Even Parity)

The HHL Spectrum and the atom-trimer scattering length a_{AT} (Odd Parity)

Current and Future Work

- Treat arbitrary heavy particle interactions. (not just the noninteracting, or infinitely repulsive cases.)
- Construct an HHHL "phase diagram".
- Add harmonic confinement, compare with recent publications.
- Work towards a fully 3D 3-body problem with a cigar-trap?
- Other systems like HLL, HHLL, HLLL?
- Thanks to Jose D'Incao and Jesper Levinson for helpful discussions. Thanks also to C.H. Greene for early inspiration to start this problem.

THANK YOU!