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Introduction 
Quantum Mixtures in CondMat
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Mixtures of fermionic/bosonic atoms 

(3He-4He, ultracold gases, neutron stars, Quark-Gluon Plasma, ...) 

!
Spinor gases, SU(N) invariant systems, ... 

!
Quantum magnets, quantum Hall systems, and spin-liquids 

!
Unconventional and multi-band superconductors 

!
Despite different microscopic origins, at low energies these systems can be described by 
emergent many-body theories exhibiting a significant degree of universality.



Universality in Quantum Mixtures
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20 orders of magnitude difference in temperature

Coulomb 
 plasma

but similar transport properties! 
!

example: 
(shear viscosity/entropy density) close to Tc:



Quantum simulation 
with ultracold atoms
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chemical composition 
!
temperature 
interaction strength 

!
periodic potentials 
physical dimension 
atom-light coupling 

!
exotic couplings 
   (x-wave, spin-orbit, …) 
dynamics 
!
disorder 

!
periodic driving 
  (shaken optical lattices, …) 

!



Attractive Fermi Mixtures
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N=N : BCS-BEC crossover
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N=N N>N
SF-normal transition

Zwierlein et al., Nature 2005

Population-imbalanced 
attractive Fermi Mixtures



Very imbalanced 
attractive Fermi mixtures
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N>>N

polarons

Schirotzek et al., PRL 2009
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Repulsive Fermi Mixtures

repulsion vs. Fermi pressure

Repulsion

?
Stoner’s Itinerant Ferromagnetism 

!
predicted in 1933, not yet realized..



Outline of this talk

s-wave p-wave
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IFM

one impurity (↓)

ideal Fermi sea at T<<TF  (↑)



Motivation

10

Understanding the properties of a single impurity in a Fermi gas provides insight on: 
•phase diagram of imbalanced Fermi gases 
•coherence properties of fundamental quasiparticles 
•their decay mechanisms 

!
With p-wave interactions, superfluids may be polar, chiral, topological, ... 
!
Routes towards Itinerant Ferromagnetism? 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a detailed review on: 
• theoretical methods 
• experimental probes and results 
• mass imbalance 
• reduced dimensionality 
• decay processes



s-wave p-wave
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IFM

one impurity (↓)

ideal Fermi sea at T<<TF  (↑)



Many-body systems
(from Richard Mattuck’s book) 
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Quasi-Particles
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a QP is a “free particle” with: 
@ q. numbers (charge, spin, ...) 
@ renormalized mass 
@ chemical potential  
@ shielded interactions 
@ lifetime

Landau’s idea: 
why care about real particles? 

 
Of importance are the excitations, which 

behave as quasi-particles!
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The impurity problem
repulsive  
polaron

Molecule-Hole

Attractive 
polaron

Switch on 
interactions
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The impurity problem

molecule-hole continuum

repulsive 
polaron

attractive 
polaron

new quantum toy! 
a gas with strong repulsive interactions 

!
(intrinsically metastable, due to the existence 

of weakly-bound lower-lying states) 
At zero momentum of 

the impurity:

K impurity in a Li Fermi gas

m#/m" = 40/6

kFR
⇤ ⇠ 1



The polaron: 
a dressed impurity
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(and a similar variational w.f. may be written for the molecule)
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Quasiparticle properties
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self-consistent equation 
for the molecule energy:



Comparison with 
Diagrammatic QMC
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Narrow Feshbach Resonances
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Scattering amplitude: f = �
⇥
a�1 + ik +R⇤k2 + . . .

⇤�1

a FR is broad if
most heteronuclear FR are narrow

kFR
⇤ ⌧ 1R⇤ ⌧ RV dW or

close to resonance:
(Petrov, PRL 2004)
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many-body + narrow FR + bg scatt.
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Bruun, Jackson & Kolomeitsev, PRA 2005 
PM & Stoof, PRA 2008
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Bruun, Jackson & Kolomeitsev, PRA 2005 
PM & Stoof, PRA 2008
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RF spectroscopy
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RF spectroscopy
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low power RF:

high power RF:
repulsive pol.

attractive pol.
molecule+hole 

continuum

high power is needed to 
couple to the MH continuum, 

due to a small FC overlap

repulsive polarons exist 
as well-defined quasiparticles 

even in the strongly-interacting regime

• Kohstall, Zaccanti, Jag, Trenkwalder, PM, Bruun, Schreck & Grimm, Nature (2012) 
• P. Massignan, EPL (2012)
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exp. data 
 vs. theory for 

Pol+→Pol- and Pol+→Mol

Decay of repulsive polarons

long lifetimes! 
10 times more than in the MIT expmt. (Science 2009)
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Rabi oscillations
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Rabi frequency 
as a measure of 
polaron residues

|Ii = â†0q=0|FSi
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p
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X

q

(â†1qâ0q + h.c.)

regime of very high RF power, 
well beyond linear response regime: 

fast oscillations, and quasiparticle decay 
may be ignored

collision-induced decoherence 
is the main damping mechanism

p
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p
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Equation of state

27

A strongly-interacting system, described as 
an ensemble of weakly-interacting quasi-particles 

(a Fermi liquid)
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chemical potential 
of one polaron

kinetic energy 
 of the Fermi sea

kinetic energy 
 of the polarons 

(m* is their effective mass)



How many ↑ in the dressing cloud?
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Contact density
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s-wave p-wave
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IFM

one impurity (↓)

ideal Fermi sea at T<<TF  (↑)



p-wave 
scattering
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 p-wave molecules with m=+1,0,-1 in an external magnetic field 
 have different energies due to dipole-dipole interactions:

m=±1 m=0

E±1>E0

(Ticknor, Regal, Jin, and Bohn, PRA 2004)

scattering 
volume effective range

fµ(k) =
k2

�v�1
µ + 1

2k0k
2 � ik3

.



p-wave polarons
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dressed molecule
T-matrix

self-energy:

two-channel Hamiltonian
g(p) = g⇥(⇤� p)cut-off:
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p-wave polarons
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p=0 polaron spectra for various resonance splittings δ:

δ

m=±1 m=0

δ=0

Z±1=2Z0
k0=-10kF

J. Levinsen, PM, F. Chevy, and C. Lobo, PRL 2012



s-wave p-wave
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IFM

few dilute impurities (↓)

ideal Fermi sea at T<<TF  (↑)



Itinerant FerroMagnetism
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Fully Mixed Partially Phase-Sep Fully Phase-Sep

Thermodynamic analysis at T≥0: 
Maxwell construction on the free energy of the mixed phase
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The gas is mixed above the lines, and phase separated below.

earlier 
predictions 

at T=0

Polarization : P =

N1 �N2

N1 +N2

broad res narrow res (kFR*=1)

PM, Z. Yu, and G. Bruun, PRL 2013
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heavy impurities (mass ratio 40/6)

light impurities (mass ratio 6/40)

equal masses of the impurity and the bath

long lifetimes for K impurities 
in a bath of Li atoms 

at a narrow Feshbach resonance! 
(as in the Innsbruck FeLiKx expmt.)
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Conclusions
The properties of one dressed impurity give important insights 
in the many-body behavior of a complex system



A new strongly interacting quantum state: the repulsive polaron  
    (meta-stable, but very long-lived)



Rabi oscillations confirm the coherence of the quasi-particles



new polaron/molecule branches appear in the p-wave case



Smaller losses at narrow resonances may open the way to IFM
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