Dressed impurities in an ideal Fermi gas: an (N+1)-body problem, with N>>1

Pietro Massignan

Introduction Quantum Mixtures in CondMat

Mixtures of fermionic/bosonic atoms

(³He-⁴He, ultracold gases, neutron stars, Quark-Gluon Plasma, ...)

- ✦ Spinor gases, SU(N) invariant systems, …
- ✦ Quantum magnets, quantum Hall systems, and spin-liquids
- Unconventional and multi-band superconductors

Despite different microscopic origins, at low energies these systems can be described by emergent many-body theories exhibiting a significant degree of universality.

40 K C)

⁶l i

41 K b)

Universality in Quantum Mixtures

Quantum simulation with ultracold atoms

- chemical composition
- ◆ temperature
- interaction strength
- periodic potentials
- physical dimension
- atom-light coupling
- exotic couplings
 (x-wave, spin-orbit, ...)
 dynamics
- + disorder
- periodic driving (shaken optical lattices, ...)

Attractive Fermi Mixtures

Population-imbalanced attractive Fermi Mixtures

N=N

SF-normal transition

Zwierlein et al., Nature 2005

Very imbalanced attractive Fermi mixtures

N>>N

polarons

Schirotzek et al., PRL 2009

Repulsive Fermi Mixtures

REPULSION

repulsion vs. Fermi pressure

Stoner's Itinerant Ferromagnetism

predicted in 1933, not yet realized..

Outline of this talk

wave

p-'

IFM

s-wave

Motivation

Understanding the properties of a single impurity in a Fermi gas provides insight on:

- phase diagram of imbalanced Fermi gases
- coherence properties of fundamental quasiparticles
- their decay mechanisms

With p-wave interactions, superfluids may be polar, chiral, topological, ...

Routes towards Itinerant Ferromagnetism?

IOP Publishing

Rep. Prog. Phys. 77 (2014) 034401 (26pp)

Reports on Progress in Physics doi:10.1088/0034-4885/77/3/034401

Report on Progress

Polarons, dressed molecules and itinerant ferromagnetism in ultracold Fermi gases

Pietro Massignan¹, Matteo Zaccanti² and Georg M Bruun³

¹ ICFO-Institut de Ciències Fotòniques, Mediterranean Technology Park, E-08860 Castelldefels, Barcelona, Spain

² LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, and INO-CNR, I-50019 Sesto Fiorentino, Italy

³ Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark

E-mail: pietro.massignan@icfo.es, zaccanti@lens.unifi.it and bruungmb@phys.au.dk

Received 20 December 2011, revised 19 December 2013 Accepted for publication 19 December 2013 Published 19 February 2014

a detailed review on:

- theoretical methods
- experimental probes and results
- mass imbalance
- reduced dimensionality
- decay processes

IFM

s-wave

Many-body systems

(from Richard Mattuck's book)

Fig. 0.1 Some Many-body Systems

Quasi-Particles

Landau's idea: why care about real particles?

Of importance are the excitations, which behave as quasi-particles!

Fig. 0.4 Quasi Particle Concept

a QP is a "free particle" with:
@ q. numbers (charge, spin, ...)
@ renormalized mass
@ chemical potential
@ shielded interactions
@ lifetime

The impurity problem

new quantum toy! a gas with strong repulsive interactions

The polaron: a dressed impurity

Fermi sea with N particles

particle + hole dressing

$$|\psi_{\mathbf{p}}\rangle = \phi_{\mathbf{p}}c_{\mathbf{p}\downarrow}^{\dagger}|FS_{N}\rangle + \sum_{q < k_{F}}^{k > k_{F}} \phi_{\mathbf{pqk}} c_{\mathbf{p+q-k}\downarrow}^{\dagger} c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{q}\uparrow} |FS_{N}\rangle$$

(and a similar variational w.f. may be written for the molecule)

self-energy of the impurity: $\Sigma_{\mathbf{P}}(\mathbf{p}, E) = \sum_{q < k_F} T(\mathbf{p} + \mathbf{q}, E + \xi_{q\uparrow})$

energies of the two polarons: $E_{\pm} = \Re[\Sigma_{\rm P}(\mathbf{p}, E_{\pm} + i0^+)]$

residues:
$$Z_{\pm} = \frac{1}{1 - \partial_{\omega} \Re(\Sigma_{\rm P})}$$

effective masses:
$$\frac{m^*}{m_{\downarrow}} = \frac{1}{Z_{\pm}} \left[1 + \frac{\partial \Re(\Sigma_{\rm P})}{\partial (p^2/2m_{\downarrow})} \right]^{-1}$$

self-consistent equation for the molecule energy:

$$\sum_{\mathbf{k}'} \frac{K_{\mathbf{k}'\mathbf{p}\mathbf{q}}}{E_{\mathbf{k}\mathbf{k}'\mathbf{p}\mathbf{q}}^{(2)}} - \sum_{\mathbf{q}'} \frac{K_{\mathbf{k}\mathbf{p}\mathbf{q}'}}{E_{\mathbf{k}\mathbf{p}}^{(1)}} - \frac{T(\mathbf{p},0)}{E_{\mathbf{k}\mathbf{p}}^{(1)}} \sum_{\mathbf{k}'\mathbf{q}'} \frac{K_{\mathbf{k}'\mathbf{p}\mathbf{q}'}}{E_{\mathbf{k}'\mathbf{p}}^{(1)}} + \frac{K_{\mathbf{k}\mathbf{p}\mathbf{q}}}{T(\mathbf{q}+\mathbf{p}-\mathbf{k},\xi_{q\uparrow}-\xi_{k\uparrow})} = -\frac{T(\mathbf{p},0)}{E_{\mathbf{k}\mathbf{p}}^{(1)}}$$

Comparison with Diagrammatic QMC

Vlietinck et al., PRB (2013)

Narrow Feshbach Resonances

Scattering amplitude:
$$f = -[a^{-1} + ik + R^*k^2 + ...]^{-1}$$

close to resonance: $R^* = -\frac{r_s}{2} = \frac{1}{2m_r a_{\rm bg} \Delta B \delta \mu} > 0$ (Petrov, PRL 2004)

a FR is broad if $R^* \ll R_{VdW}$ or $k_F R^* \ll 1$

most heteronuclear FR are narrow

many-body + narrow FR + bg scatt.

$$T(\mathbf{P}, \omega) = T_{\text{open}}(\mathbf{P}, \omega) + T_{\text{closed}}(\mathbf{P}, \omega)$$

 $T_{\text{open}}(\mathbf{P},\omega) = \frac{1}{T_{\text{bg}}^{-1} - \Pi(\mathbf{P},\omega)}$

 $T_{\rm bg} = 2\pi a_{\rm bg}/m_r$

$$\Pi(\mathbf{P},\omega) = \int \frac{\mathrm{d}\mathbf{k}}{(2\pi)^3} \left[\frac{1 - f_{\uparrow}(\mathbf{k}) - f_{\downarrow}(\mathbf{P} + \mathbf{k})}{\omega + i0^+ - \xi_{\uparrow\mathbf{k}} - \xi_{\downarrow\mathbf{P}+\mathbf{k}}} + \frac{2m_r}{k^2} \right]$$

renormalized (†↓)-dimer coupling: $g=\sqrt{T_{
m bg}\Delta B\delta\mu}$

$$T_{\text{closed}}(\mathbf{P},\omega) = V(\mathbf{P},\omega)D(\mathbf{P},\omega)V(\mathbf{P},\omega)$$
$$V(\mathbf{P},\omega) = g[1 - T_{\text{bg}}\Pi(\mathbf{P},\omega)]^{-1}$$
$$D(\mathbf{P},\omega) = [E_{\text{CM}} - \delta\mu(B - B_0) - \Sigma_{\text{mol}}(\mathbf{P},\omega)]^{-1}$$
$$\Sigma_{\text{mol}}(\mathbf{P},\omega) = g\Pi(\mathbf{P},\omega)V(\mathbf{P},\omega)$$

Bruun, Jackson & Kolomeitsev, PRA 2005 PM & Stoof, PRA 2008

many-body + narrow FR + bg scatt.

energy-dependent "scattering length": $\tilde{a}(E_{\rm CM}) \equiv a_{\rm bg} \left(1 - \frac{\Delta B}{B - B_0 - E_{\rm CM}/\delta\mu}\right)$

low energy expansion in vacuum:
$$-\frac{1}{f_{\text{vac}}} = a^{-1} + ik + \tilde{R}^* + \dots$$

 $a = a_{\text{bg}} \left(1 - \frac{\Delta B}{B - B_0} \right)$
 $\tilde{R}^* = R^* \left(1 - \frac{a_{\text{bg}}}{a} \right)^2$

Bruun, Jackson & Kolomeitsev, PRA 2005 PM & Stoof, PRA 2008

RF spectroscopy

real particle

real horse

low power RF:

high power RF:

high power is needed to couple to the MH continuum, due to a small FC overlap

RF spectroscopy

repulsive polarons exist as well-defined quasiparticles even in the strongly-interacting regime

Kohstall, Zaccanti, Jag, Trenkwalder, PM, Bruun, Schreck & Grimm, Nature (2012)

• P. Massignan, EPL (2012)

Decay of repulsive polarons

exp. data vs. theory for Pol+ \rightarrow Pol- and Pol+ \rightarrow Mol

long lifetimes! 10 times more than in the MIT expmt. (Science 2009)

$$\begin{split} \hat{R} &\propto \Omega_0 \sum_{\mathbf{q}} (\hat{a}_{1\mathbf{q}}^{\dagger} \hat{a}_{0\mathbf{q}} + h.c.) \\ |I\rangle &= \hat{a}_{0\mathbf{q}}^{\dagger} |\mathbf{FS}\rangle \\ |F\rangle &= \sqrt{Z} \hat{a}_{1\mathbf{q}=0}^{\dagger} |\mathbf{FS}\rangle + \sum_{p < \hbar \kappa_F < q} \phi_{\mathbf{q},\mathbf{p}} \hat{a}_{1\mathbf{p}-\mathbf{q}}^{\dagger} \hat{b}_{\mathbf{q}}^{\dagger} |\mathbf{FS}\rangle + \ldots \end{split}$$

Rabi frequency as a measure of polaron residues

 $\langle F|\hat{R}|I\rangle = \sqrt{Z}\Omega_0$

Equation of state

A strongly-interacting system, described as an ensemble of weakly-interacting quasi-particles (a Fermi liquid)

How many \uparrow in the dressing cloud?

The density of the majority atoms far away from the impurity should remain unchanged when adding one impurity: $\partial^2 c$

p-wave

IFM

s-wave

p-wave scattering

p-wave molecules with m=+1,0,-1 in an external magnetic field have different energies due to dipole-dipole interactions:

 $E_{\pm 1} > E_0$

p-wave polarons

cut-off:
$$g(p) = g\Theta(\Lambda - p)$$

two-channel Hamiltonian

$$H = \sum_{\mathbf{p},\sigma} \frac{p^2}{2m} a^{\dagger}_{\sigma\mathbf{p}} a_{\sigma\mathbf{p}} + \sum_{\mathbf{q},\mu} \left(\epsilon_{\mu} + \frac{q^2}{4m} \right) b^{\dagger}_{\mu\mathbf{q}} b_{\mu\mathbf{q}} + \sum_{\mathbf{p},\mathbf{q},\mu} \frac{g(p)}{\sqrt{V}} \mathbf{p}_{\mu} \left(b^{\dagger}_{\mathbf{q}\mu} a_{\uparrow\frac{\mathbf{q}}{2}+\mathbf{p}} a_{\downarrow\frac{\mathbf{q}}{2}-\mathbf{p}} + a^{\dagger}_{\downarrow\frac{\mathbf{q}}{2}-\mathbf{p}} a^{\dagger}_{\uparrow\frac{\mathbf{q}}{2}+\mathbf{p}} b_{\mathbf{q}\mu} \right)$$

upon proper renormalization, the theory depends on: scattering volumes v_{μ} , and effective range k0~-1/ R_{vdW}

J. Levinsen, PM, F. Chevy, and C. Lobo, PRL 2012

k₀=-10k_F 33

s-wave

IFM

Itinerant FerroMagnetism

FULLY MIXED

PARTIALLY PHASE-SEP

FULLY PHASE-SEP

Thermodynamic analysis at $T \ge 0$: Maxwell construction on the free energy of the mixed phase

Itinerant FerroMagnetism

The gas is mixed above the lines, and phase separated below. PM, Z. Yu, and G. Bruun, PRL 2013 36

Critical interaction for IFM and decay rates

at a narrow Feshbach resonance!

(as in the Innsbruck FeLiKx expmt.)

in collaboration with:

Theory: Georg Bruun Frederic Chevy Carlos Lobo Jesper Levinsen Zhenhua Yu

Experiment: Christoph Kohstall Matteo Zaccanti Michael Jag Andreas Trenkwalder Florian Schreck Rudi Grimm

Conclusions

- The properties of one dressed impurity give important insights in the many-body behavior of a complex system
- A new strongly interacting quantum state: the repulsive polaron (meta-stable, but very long-lived)
- Rabi oscillations confirm the coherence of the quasi-particles
- new polaron/molecule branches appear in the p-wave case
- Smaller losses at narrow resonances may open the way to IFM

