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Motivation
Ab-initio calculations for nuclei - Quantum Monte Carlo (QMC)

Nuclear structure methods seek to solve the many-body
Schrödinger equation

H |Ψ〉 = E |Ψ〉 .

Variational Monte Carlo (VMC) uses a Metropolis random walk to
calculate an upper bound to the ground-state energy:

ET = 〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉 ≥ E0.

Green’s function Monte Carlo (GFMC) uses propagation in
imaginary time to project out the ground state.

|Ψ(τ)〉 = e−Hτ |ΨT 〉 ⇒ lim
τ→∞

|Ψ(τ)〉 ∝ |Ψ0〉 .



Motivation
Ab-initio calculations for nuclei - QMC

The trial wave function is a symmetrized product of correlation
operators acting on a Jastrow wave function.

Trial Wave Function

|ΨT 〉 =

S∏
i<j

(1 + Uij)

 |ΨJ 〉 ,

Uij =
m∑

p=2
up(rij)Op

ij , |ΨJ 〉 =
∏
i<j

fc(rij) |ΦA〉 ,

|Φ4〉 = A |p↑ p↓ n↑ n↓〉 ,

|ΨT 〉 =

S∏
i<j

(1 + uσ(rij)σi · σj + utτ (rij)Sijτ i · τ j)

∏
i<j

fc(rij) |Φ4〉



Motivation
Ab-initio calculations for nuclei - QMC

GFMC enjoys a reputation as the most accurate method for solving
the many-body Schrödinger equation for light nuclei 4 < A ≤ 12.

First: VMC.
I We begin with a trial wave function ΨT and generate a random

position: R = r1, r2, . . . , rA.

I Use the Metropolis algorithm to generate new positions R′ based on
the probability P = |ΨT (R′)|2

|ΨT (R)|2 .

I This gives us a set of “walkers” distributed according to the trial
wave function:

∑
β cβ |Rβ〉 . 3A positions and 2A(A

Z
)

spin/isospin
states in the charge basis.



Motivation
Ab-initio calculations for nuclei - QMC

Second: GFMC.

I The wave function is imperfect: ΨT = Ψ0 +
∑

i 6=0 ciΨi .

I Propagate in imaginary time to project out the ground state Ψ0:

Ψ(τ) = e−(H−ET )τΨT = e−(E0−ET )τ

Ψ0 +
∑
i 6=0

cie−(Ei−E0)τΨi


⇒ lim

τ→∞
Ψ(τ) ∝ Ψ0.



Motivation
Ab-initio calculations for nuclei - QMC

Second: GFMC.
The Green’s function is calculated by introducing the
short-imaginary time ∆τ = τ/n.

Ψ(τ) = [e−(H−ET )∆τ︸ ︷︷ ︸
Gαβ(R,R′;∆τ)

]nΨT

Gαβ(R,R′; ∆τ) = 〈Rα|e−(H−ET )∆τ |R′β〉

Ψ(Rn , τ) =
∫

dRG(Rn ,Rn−1) · · ·G(R1,R0)ΨT (R0)

dR =
n−1∏
i=0

dRi



Motivation
Ab-initio calculations for nuclei - QMC

Second: GFMC.
I We can calculate so-called “mixed estimates”:

〈Ψ(τ)|O|ΨT〉
〈Ψ(τ)|ΨT〉

=
∫

dRΨ†T(Rn)G†(Rn,Rn−1) · · ·G†(R1,R0)OΨT(R0)∫
dRΨ†T(Rn)G†(Rn,Rn−1) · · ·G†(R1,R0)ΨT(R0)

.

〈O(τ)〉 = 〈Ψ(τ)|O|Ψ(τ)〉
〈Ψ(τ)|Ψ(τ)〉 ≈ 〈O(τ)〉Mixed + [〈O(τ)〉Mixed − 〈O〉T ].

I For ground-state energies, O = H , and [H ,G] = 0:

〈H 〉Mixed = 〈ΨT |e−(H−ET )τ/2He−(H−ET )τ/2|ΨT〉
〈ΨT |e−(H−ET )τ/2e−(H−ET )τ/2|ΨT〉

lim
τ→∞

〈H 〉Mixed = E0.



Motivation
Nuclear interactions - Nucleons

A fundamental goal of
low-energy nuclear physics is
to describe and calculate
properties of nuclei in terms of
realistic bare nuclear
interactions.
Quantum chromodynamics
(QCD) is the underlying
theory, but nucleons are the
relevant degrees of freedom for
low-energy nuclear physics
→ nucleon-nucleon potentials.

Figure 1: From www.scidacreview.org



Motivation
Nuclear interactions - The Hamiltonian

H =
A∑

i=1

p2
i

2mi
+

A∑
i<j

vij +
A∑

i<j<k
Vijk + · · ·

The focus of this talk is on the two-body interaction. Until now, there
were two broad choices for vij .

Local, real-space, phenomenological: Argonne’s v18
1 - informed by

theory, phenomenology, and experiment (well tested and very
successful).
Non-local, momentum-space, effective field theory (EFT): N3LO2 -
informed by chiral EFT and experiment (well liked and often used
in basis-set methods, such as the no-core shell model).

1R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).
2e.g. D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003)



Motivation
Nuclear interactions - Argonne’s v18

Argonne’s v18 consists of three parts.

vij = vγij + vπij + vR
ij .

vγij includes one- and two-photon exchange Coulomb interactions,
vacuum polarization, Darwin-Foldy, and magnetic moment terms
with appropriate proton and neutron form factors.
vπij includes charge-dependent terms due to the difference in
neutral and charged pion masses.
vR

ij is a short-range phenomenological potential.



Motivation
Nuclear interactions - Argonne’s v18

Operator form

vπij + vR
ij =

18∑
p=1

vp(rij)Op
ij .

Charge-independent operators

Op=1,14
ij =

[
1,σi · σj ,Sij ,L · S,L2,L2(σi · σj), (L · S)2

]
⊗ [1, τ i · τ j ] .

Charge-independence-breaking operators

Op=15,18
ij = [1,σi · σj ,Sij ]⊗ Tij , and (τzi + τzj).

Tensor operators
Sij = 3(σi · r̂ij)(σj · r̂ij)− σi · σj , Tij = 3τziτzj − τ i · τ j



Motivation
Nuclear interactions - Argonne’s v18

Ab-initio few-nucleon calculation 
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Figure 2: Many excellent results using Green’s function Monte Carlo (GFMC) and
phenomenological potentials. From http://www.phy.anl.gov/theory.

This is great! But... Until now the nucleon-nucleon potentials used
have been restricted to the phenomenological Argonne-Urbana/Illinois
family of interactions.



Motivation
Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the
nuclear force.

Figure 3: Hierarchy of the nuclear force in
chiral EFT, from R. Machleidt and D. Entem,
Phys. Rep. 503, 1 (2011).

Weinberg prescription
Start from the most general
Lagrangian consistent with
all symmetries of the
underlying interaction...
L = Lππ +LπN +LNN + · · ·

Define a power-counting
scheme...
ν = −4+2N +2L+

∑
i Vi∆i ,

∆i = di + 1
2ni − 2.



Motivation
Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the
nuclear force.

Figure 3: Hierarchy of the nuclear force in
chiral EFT, from R. Machleidt and D. Entem,
Phys. Rep. 503, 1 (2011).

Weinberg prescription
An expansion in (Q/Λχ).
Q is a soft momentum scale.
Λχ ∼ 1 GeV is the
chiral-symmetry-breaking
scale.

For example, the leading-order
(LO) diagrams lead to

V (0)
NN ∝

(σ1 · q)(σ2 · q)
q2 + M 2

π

τ 1·τ 2+· · ·



Motivation
Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the
nuclear force.

Figure 3: Hierarchy of the nuclear force in
chiral EFT, from R. Machleidt and D. Entem,
Phys. Rep. 503, 1 (2011).

Sources of non-locality in
standard approacha b

Regulator:
f (p, p′) = e−(p/Λ)n e−(p′/Λ)n .
Contact interactions
∝ k = (p + p′)/2.

F [V (p,p′)]→ V (r, r′).
aD. Entem and R. Machleidt,

Phys. Rev. C 68, 041001 (2003)
bE. Epelbaum, W.Glöckle and

U.-G. Meißner, Eur. Phys. J. A 19, 401
(2004)



Motivation
Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the
nuclear force.

Figure 3: Hierarchy of the nuclear force in
chiral EFT, from R. Machleidt and D. Entem,
Phys. Rep. 503, 1 (2011).

New approacha

Regulator:
flong(r) = 1− e−(r/R0)4 .
Up to N2LO, Vπ = Vπ(q),
q = p′ − p.
Antisymmetry allows for
the selection of contacts not
proportional to k (almost).

F [V (q)]→ V (r)
⇒ Local!

aA. Gezerlis et al.,
Phys. Rev. Lett. 111, 032501 (2013)



Motivation
Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the
nuclear force.

Figure 3: Hierarchy of the nuclear force in
chiral EFT, from R. Machleidt and D. Entem,
Phys. Rep. 503, 1 (2011).

New approacha

V (r) = VC (r) + WC (r)τ 1 · τ 2
+ (VS(r) + WS(r)τ 1 · τ 2)σ1 · σ2
+ (VT (r) + WT (r)τ 1 · τ 2)S12.

VC (r) =
1

2π2r
∫ Λ̃

2Mπ
dµµe−µrρC (µ), etc.

aA. Gezerlis et al.,
Phys. Rev. Lett. 111, 032501 (2013)



Motivation
Nuclear interactions - Chiral EFT

Local chiral EFT potential ∼ a v7 potential

vij =
7∑

p=1
vp(rij)Op

ij +
18∑

p=15
vp(rij)Op

ij .

Charge-independent operators

Op=1,14
ij =

[
1,σi · σj ,Sij ,L · S,L2,L2(σi · σj), (L · S)2

]
⊗ [1, τ i · τ j ] .

Charge-independence-breaking operators

Op=15,18
ij = [1,σi · σj ,Sij ]⊗ Tij , and (τzi + τzj).

Tensor operators
Sij = 3(σi · r̂ij)(σj · r̂ij)− σi · σj , Tij = 3τziτzj − τ i · τ j



Motivation
Nuclear interactions - Chiral EFT
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Figure 4: (PRELIMINARY) Phase shifts for the np potential. From A. Gezerlis et al. in
preparation.



Results
2H binding energies - 〈H 〉
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Figure 5: Deuteron wave functions at N2LO.
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Figure 6: 2H binding energy at different
chiral orders and cutoff values.



Results
A = 3 binding energies - 〈H 〉
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Figure 7: 3H binding energy at different
chiral orders and cutoff values.
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Results
4He binding energies - 〈H 〉
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Figure 9: 4He binding energy at different chiral orders and cutoff values.
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4He binding energies - 〈H 〉
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Results
Tjon line
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Figure 10: The Tjon line using our results at different chiral orders and cutoff values.



Results
A = 3 radii - r2

pt. = r2
ch. − r2

p − N
Z r2
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Figure 11: 3H radii at different chiral orders
and cutoff values.
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Figure 12: 3He radii at different chiral orders
and cutoff values.



Results
4He radii - r2
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Figure 13: 4He radii at different chiral orders and cutoff values.



Results
4He perturbation - 〈ΨNLO|HN2LO|ΨNLO〉
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Figure 14: 4He binding energy at different chiral orders and cutoff values plus a first-order
perturbative calculation of 〈HN2LO〉.



Results
2H perturbation

Hints from the deuteron.
Write H → 〈k ′JMJ L′S |H |kJMJ LS〉.
Diagonalize→ {ψ(i)

D (r)}.
Second- and third-order perturbation calculations possible.

Table 1: Perturbation calculations for 2H with different cutoff values for R0.

Calculation
Eb (MeV)

R0 =1.0 fm R0 =1.1 fm R0 =1.2 fm

E (0)
0 (NLO) -2.15 -2.16 -2.16

E (0)
0 (NLO) + V (1)

pert. -1.44 -1.80 -1.90
E (0)

0 (NLO) + V (2)
pert. -2.11 -2.17 -2.18

E (0)
0 (NLO) + V (3)

pert. -2.13 -2.18 -2.19
E (0)

0 (N2LO) -2.21 -2.21 -2.20



Results
Distributions - 4He

Proton distribution: ρ1,p(r) = 1
4πr2 〈Ψ|

∑
i

1+τz(i)
2 δ(r − |ri −Rc.m.|)|Ψ〉.
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Figure 15: 4He proton distribution at different chiral orders.



Results
Distributions - 4He

Two-body T = 1 distribution:
ρ2,T=1(r) = 1

4πr2 〈Ψ|
∑

i<j
3+τ i ·τ j

4 δ(r − |rij |)|Ψ〉.
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Figure 16: 4He two-body T = 1 distributions.



Results
Distributions - 4He

Coulomb Sum Rule: SL(q) = 1 + ρLL(q)− Z |FL(q)|2;
ρLL(q) ∝

∫
d3rj0(qr)ρ2,T=1(r).
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Figure 17: (PRELIMINARY) Fourier transform of the two-body distributions.



Conclusion
Summary

Nuclear structure calculations probe nuclear Hamiltonians.
I Phenomenological potentials have been very successful but are

perhaps unsatisfactory.
I Chiral EFT potentials have a more direct connection to QCD, but

until now, have been non-local.
GFMC calculations of light nuclei are now possible with chiral
EFT interactions.
Binding energies at N2LO are reasonably similar to results for
two-body-only phenomenological potentials.
Radii show expected trends.
The softest of the potentials with R0 = 1.2 fm display perturbative
behavior in the difference between N2LO and NLO.
The high-momentum (short-range) behavior of chiral EFT
interactions is distinct from the phenomenological interactions.



Conclusion
Future work

Include 3-nucleon force which appears at N2LO.
Include 2-nucleon force at N3LO (which will be non-local).
Extend to larger nuclei with 4 < A ≤ 12.
Second-order perturbation calculation in GFMC.
Study of, for example, Coulomb sum rule to probe possible
consequences of different short-range behavior.
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