Quantum Monte Carlo calculations for light nuclei using chiral forces

Joel Lynn

Theoretical Division, Los Alamos National Laboratory

with A. Gezerlis, S. Gandolfi, J. Carlson, A. Schwenk, E. Epelbaum

Universality in few-body systems: Theoretical challenges and new directions

Outline

1 Motivation

- Ab-initio calculations for nuclei
- Nuclear interactions
 - Phenomenology
 - Chiral Effective Field Theory Standard approach
 - Chiral Effective Field Theory A new approach

2 Results

- $A \leq 4$ binding energies
- $A \leq 4$ radii
- Perturbative calculations
- Distributions

3 Conclusion

- Summary
- Future work
- Acknowledgments

Ab-initio calculations for nuclei - Quantum Monte Carlo (QMC)

Motivation

• Nuclear structure methods seek to solve the many-body Schrödinger equation

$$H |\Psi\rangle = E |\Psi\rangle$$
.

• Variational Monte Carlo (VMC) uses a Metropolis random walk to calculate an upper bound to the ground-state energy:

$$E_T = \frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle} \ge E_0.$$

• Green's function Monte Carlo (GFMC) uses propagation in imaginary time to project out the ground state.

$$|\Psi(\tau)\rangle = e^{-H\tau} |\Psi_T\rangle \Rightarrow \lim_{\tau \to \infty} |\Psi(\tau)\rangle \propto |\Psi_0\rangle.$$

Motivation Ab-initio calculations for nuclei - QMC

The trial wave function is a symmetrized product of correlation operators acting on a Jastrow wave function.

GFMC enjoys a reputation as the most accurate method for solving the many-body Schrödinger equation for light nuclei $4 < A \leq 12$.

- First: VMC.
 - We begin with a trial wave function Ψ_T and generate a random position: $\mathbf{R} = \mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_A$.
 - ► Use the Metropolis algorithm to generate new positions \mathbf{R}' based on the probability $P = \frac{|\Psi_T(\mathbf{R}')|^2}{|\Psi_T(\mathbf{R})|^2}$.
 - ▶ This gives us a set of "walkers" distributed according to the trial wave function: $\sum_{\beta} c_{\beta} |\mathbf{R}\beta\rangle$. 3A positions and $2^{A} {A \choose Z}$ spin/isospin states in the charge basis.

Ab-initio calculations for nuclei - QMC

• Second: GFMC.

- The wave function is imperfect: $\Psi_T = \Psi_0 + \sum_{i \neq 0} c_i \Psi_i$.
- Propagate in imaginary time to project out the ground state Ψ_0 :

$$\Psi(\tau) = e^{-(H-E_T)\tau} \Psi_T = e^{-(E_0-E_T)\tau} \left[\Psi_0 + \sum_{i \neq 0} c_i e^{-(E_i-E_0)\tau} \Psi_i \right]$$
$$\Rightarrow \lim_{\tau \to \infty} \Psi(\tau) \propto \Psi_0.$$

Ab-initio calculations for nuclei - QMC

• Second: GFMC.

The Green's function is calculated by introducing the short-imaginary time $\Delta \tau = \tau/n$.

$$\Psi(\tau) = [\underbrace{e^{-(H-E_T)\Delta\tau}}_{G_{\alpha\beta}(\mathbf{R},\mathbf{R}';\Delta\tau)}]^n \Psi_T$$

$$G_{\alpha\beta}(\mathbf{R},\mathbf{R}';\Delta\tau) = \langle \mathbf{R}\alpha | e^{-(H-E_T)\Delta\tau} | \mathbf{R}'\beta \rangle$$

$$\Psi(\mathbf{R}_n,\tau) = \int d\mathcal{R}G(\mathbf{R}_n,\mathbf{R}_{n-1})\cdots G(\mathbf{R}_1,\mathbf{R}_0)\Psi_T(\mathbf{R}_0)$$

$$d\mathcal{R} = \prod_{i=0}^{n-1} d\mathbf{R}_i$$

 $Ab\mathchar`-nitio$ calculations for nuclei - QMC

- Second: GFMC.
 - ▶ We can calculate so-called "mixed estimates":

$$\frac{\langle \Psi(\tau)|O|\Psi_T\rangle}{\langle \Psi(\tau)|\Psi_T\rangle} = \frac{\int d\boldsymbol{\mathcal{R}}\Psi_T^{\dagger}(\mathbf{R}_n)G^{\dagger}(\mathbf{R}_n,\mathbf{R}_{n-1})\cdots G^{\dagger}(\mathbf{R}_1,\mathbf{R}_0)O\Psi_T(\mathbf{R}_0)}{\int d\boldsymbol{\mathcal{R}}\Psi_T^{\dagger}(\mathbf{R}_n)G^{\dagger}(\mathbf{R}_n,\mathbf{R}_{n-1})\cdots G^{\dagger}(\mathbf{R}_1,\mathbf{R}_0)\Psi_T(\mathbf{R}_0)}.$$
$$\langle O(\tau)\rangle = \frac{\langle \Psi(\tau)|O|\Psi(\tau)\rangle}{\langle \Psi(\tau)|\Psi(\tau)\rangle} \approx \langle O(\tau)\rangle_{\text{Mixed}} + [\langle O(\tau)\rangle_{\text{Mixed}} - \langle O\rangle_T].$$

▶ For ground-state energies, O = H, and [H, G] = 0:

$$\langle H \rangle_{\text{Mixed}} = \frac{\langle \Psi_T | e^{-(H-E_T)\tau/2} H e^{-(H-E_T)\tau/2} | \Psi_T \rangle}{\langle \Psi_T | e^{-(H-E_T)\tau/2} e^{-(H-E_T)\tau/2} | \Psi_T \rangle} \\ \lim_{\tau \to \infty} \langle H \rangle_{\text{Mixed}} = E_0.$$

Nuclear interactions - Nucleons

- A fundamental goal of low-energy nuclear physics is to describe and calculate properties of nuclei in terms of realistic bare nuclear interactions.
- Quantum chromodynamics (QCD) is the underlying theory, but nucleons are the relevant degrees of freedom for low-energy nuclear physics → nucleon-nucleon potentials.

Nuclear interactions - The Hamiltonian

$$H = \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2m_{i}} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} V_{ijk} + \cdots$$

The focus of this talk is on the two-body interaction. Until now, there were two broad choices for v_{ij} .

- Local, real-space, phenomenological: Argonne's v_{18}^1 informed by theory, phenomenology, and experiment (well tested and very successful).
- Non-local, momentum-space, effective field theory (EFT): N³LO² informed by chiral EFT and experiment (well liked and often used in basis-set methods, such as the no-core shell model).

 $^{^1 \}rm R.$ B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C **51**, 38 (1995). $^2 \rm e.g.$ D. R. Entem and R. Machleidt, Phys. Rev. C **68**, 041001 (2003)

Nuclear interactions - Argonne's v_{18}

Argonne's v_{18} consists of three parts.

$$v_{ij} = v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^R.$$

- v_{ij}^{γ} includes one- and two-photon exchange Coulomb interactions, vacuum polarization, Darwin-Foldy, and magnetic moment terms with appropriate proton and neutron form factors.
- v_{ij}^{π} includes charge-dependent terms due to the difference in neutral and charged pion masses.
- v_{ij}^R is a short-range phenomenological potential.

Nuclear interactions - Argonne's v_{18}

Operator form

$$v_{ij}^{\pi} + v_{ij}^{R} = \sum_{p=1}^{18} v_p(r_{ij}) O_{ij}^{p}.$$

Charge-independent operators

$$O_{ij}^{p=1,14} = \left[1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^2, \mathbf{L}^2(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j), (\mathbf{L} \cdot \mathbf{S})^2\right] \otimes \left[1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j\right].$$

Charge-independence-breaking operators

$$O_{ij}^{p=15,18} = [1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}] \otimes T_{ij}, \text{ and } (\tau_{zi} + \tau_{zj}).$$

Tensor operators

$$S_{ij} = 3(\boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij})(\boldsymbol{\sigma}_j \cdot \hat{\mathbf{r}}_{ij}) - \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, \ T_{ij} = 3\tau_{zi}\tau_{zj} - \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$$

Nuclear interactions - Argonne's v_{18}

Figure 2: Many excellent results using Green's function Monte Carlo (GFMC) and phenomenological potentials. From http://www.phy.anl.gov/theory.

This is great! But... Until now the nucleon-nucleon potentials used have been restricted to the phenomenological Argonne-Urbana/Illinois family of interactions.

Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the nuclear force.

Figure 3: Hierarchy of the nuclear force in chiral EFT, from R. Machleidt and D. Entem, Phys. Rep. **503**, 1 (2011).

Weinberg prescription

- Start from the most general Lagrangian consistent with all symmetries of the underlying interaction... $\mathcal{L} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{\pi N} + \mathcal{L}_{NN} + \cdots$
- Define a power-counting scheme...

$$\nu = -4 + 2N + 2L + \sum_i V_i \Delta_i,$$

$$\Delta_i = d_i + \frac{1}{2}n_i - 2.$$

Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the nuclear force.

Figure 3: Hierarchy of the nuclear force in chiral EFT, from R. Machleidt and D. Entem, Phys. Rep. **503**, 1 (2011).

Weinberg prescription

- An expansion in (Q/Λ_{χ}) .
- Q is a soft momentum scale.
- $\Lambda_{\chi} \sim 1$ GeV is the chiral-symmetry-breaking scale.

For example, the leading-order (LO) diagrams lead to

$$V_{NN}^{(0)} \propto rac{(\boldsymbol{\sigma}_1 \cdot \mathbf{q})(\boldsymbol{\sigma}_2 \cdot \mathbf{q})}{\mathbf{q}^2 + M_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \cdots$$

Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the nuclear force.

Figure 3: Hierarchy of the nuclear force in chiral EFT, from R. Machleidt and D. Entem, Phys. Rep. **503**, 1 (2011).

Sources of non-locality in standard approach a b

- Regulator: $f(p, p') = e^{-(p/\Lambda)^n} e^{-(p'/\Lambda)^n}.$
- Contact interactions $\propto \mathbf{k} = (\mathbf{p} + \mathbf{p}')/2.$

 $\mathcal{F}[V(\mathbf{p},\mathbf{p}')] \to V(\mathbf{r},\mathbf{r}').$

^aD. Entem and R. Machleidt,
 Phys. Rev. C 68, 041001 (2003)
 ^bE. Epelbaum, W.Glöckle and
 U.-G. Meißner, Eur. Phys. J. A 19, 401 (2004)

Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the nuclear force.

Figure 3: Hierarchy of the nuclear force in chiral EFT, from R. Machleidt and D. Entem, Phys. Rep. **503**, 1 (2011).

New approach^a

- Regulator: $f_{\text{long}}(r) = 1 - e^{-(r/R_0)^4}.$
- Up to N²LO, $V_{\pi} = V_{\pi}(\mathbf{q}),$ $\mathbf{q} = \mathbf{p}' - \mathbf{p}.$
- Antisymmetry allows for the selection of contacts not proportional to **k** (almost).

$$\mathcal{F}[V(\mathbf{q})] \to V(\mathbf{r})$$

$$\Rightarrow \text{Local!}$$

^aA. Gezerlis et al., Phys. Rev. Lett. **111**, 032501 (2013)

Nuclear interactions - Chiral EFT

Chiral EFT makes a more direct connection between QCD and the nuclear force.

New approach^{*a*} $V(r) = V_C(r) + W_C(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2$ $+ (V_S(r) + W_S(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2$ $+ (V_T(r) + W_T(r)\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)S_{12}.$

$$\begin{split} V_C(r) &= \\ \frac{1}{2\pi^2 r} \int_{2M_\pi}^{\tilde{\Lambda}} d\mu \mu e^{-\mu r} \rho_C(\mu), \, \text{etc.} \end{split}$$

^aA. Gezerlis et al., Phys. Rev. Lett. **111**, 032501 (2013)

Figure 3: Hierarchy of the nuclear force in chiral EFT, from R. Machleidt and D. Entem, Phys. Rep. **503**, 1 (2011).

Nuclear interactions - Chiral EFT

Local chiral EFT potential $\sim a v_7$ potential

$$v_{ij} = \sum_{p=1}^{7} v_p(r_{ij}) O_{ij}^p + \sum_{p=15}^{18} v_p(r_{ij}) O_{ij}^p.$$

Charge-independent operators

$$O_{ij}^{p=1,14} = \left[1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}, \mathbf{L} \cdot \mathbf{S}, \mathbf{L}^2, \mathbf{L}^2(\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j), (\mathbf{L} \cdot \mathbf{S})^2\right] \otimes \left[1, \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j\right].$$

Charge-independence-breaking operators

$$O_{ij}^{p=15,18} = [1, \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, S_{ij}] \otimes T_{ij}, \text{ and } (\tau_{zi} + \tau_{zj}).$$

Tensor operators

$$S_{ij} = 3(\boldsymbol{\sigma}_i \cdot \hat{\mathbf{r}}_{ij})(\boldsymbol{\sigma}_j \cdot \hat{\mathbf{r}}_{ij}) - \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j, \ T_{ij} = 3\tau_{zi}\tau_{zj} - \boldsymbol{\tau}_i \cdot \boldsymbol{\tau}_j$$

Nuclear interactions - Chiral EFT

Figure 4: (PRELIMINARY) Phase shifts for the np potential. From A. Gezerlis et al. in preparation.

$\begin{array}{l} {\rm Results} \\ {}^{^{2}}{\rm H} \ {\rm binding \ energies} \ {\rm -} \ \langle H \rangle \end{array}$

Figure 5: Deuteron wave functions at N^2LO .

Figure 6: ²H binding energy at different chiral orders and cutoff values.

Results

A = 3 binding energies - $\langle H \rangle$

Figure 7: ³H binding energy at different chiral orders and cutoff values.

Figure 8: 3 He binding energy at different chiral orders and cutoff values.

$\begin{array}{l} {\rm Results} \\ {}^{\rm 4}{\rm He \ binding \ energies} \ {\rm -} \ \langle H \rangle \end{array}$

Figure 9: ⁴He binding energy at different chiral orders and cutoff values.

$\begin{array}{l} {\rm Results} \\ {}^{\rm 4}{\rm He \ binding \ energies} \ {\rm -} \ \langle H \rangle \end{array}$

Figure 9: ⁴He binding energy at different chiral orders and cutoff values.

Results

Tjon line

Figure 10: The Tjon line using our results at different chiral orders and cutoff values.

Results

A = 3 radii - $r_{\rm pt.}^2 = r_{\rm ch.}^2 - r_p^2 - \frac{N}{Z}r_n^2$

Figure 11: 3 H radii at different chiral orders and cutoff values.

Figure 12: 3 He radii at different chiral orders and cutoff values.

Figure 13: ⁴He radii at different chiral orders and cutoff values.

Results ⁴He perturbation - $\langle \Psi_{\rm NLO} | H_{\rm N^2LO} | \Psi_{\rm NLO} \rangle$

Figure 14: ⁴He binding energy at different chiral orders and cutoff values plus a first-order perturbative calculation of $\langle H_{\rm N^2LO} \rangle$.

Hints from the deuteron.

- Write $H \to \langle k' J M_J L' S | H | k J M_J L S \rangle$.
- Diagonalize $\rightarrow \{\psi_D^{(i)}(r)\}.$
- Second- and third-order perturbation calculations possible.

Table 1: Perturbation calculations for ²H with different cutoff values for R_0 .

Calculation	$E_b \ ({ m MeV})$		
Calculation	$R_0\!=\!1.0\mathrm{fm}$	$R_0\!=\!1.1\mathrm{fm}$	$R_0\!=\!1.2\mathrm{fm}$
$E_{0(\rm NLO)}^{(0)}$	-2.15	-2.16	-2.16
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(1)}$	-1.44	-1.80	-1.90
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(2)}$	-2.11	-2.17	-2.18
$E_{0(\rm NLO)}^{(0)} + V_{\rm pert.}^{(3)}$	-2.13	-2.18	-2.19
$E_{0({ m N}^2{ m LO})}^{(0)}$	-2.21	-2.21	-2.20

Los Alamos NATIONAL LABORATORY ST.1943

Results Distributions - ⁴He

Proton distribution: $\rho_{1,p}(r) = \frac{1}{4\pi r^2} \langle \Psi | \sum_i \frac{1 + \tau_z(i)}{2} \delta(r - |\mathbf{r}_i - \mathbf{R}_{c.m.}|) | \Psi \rangle.$

Figure 15: ⁴He proton distribution at different chiral orders.

Results Distributions - ⁴He

Figure 16: ⁴He two-body T = 1 distributions.

Results Distributions - ⁴He

Figure 17: (PRELIMINARY) Fourier transform of the two-body distributions.

Conclusion

- Nuclear structure calculations probe nuclear Hamiltonians.
 - Phenomenological potentials have been very successful but are perhaps unsatisfactory.
 - Chiral EFT potentials have a more direct connection to QCD, but until now, have been non-local.
- GFMC calculations of light nuclei are now possible with chiral EFT interactions.
- Binding energies at N²LO are reasonably similar to results for two-body-only phenomenological potentials.
- Radii show expected trends.
- The softest of the potentials with $R_0 = 1.2$ fm display perturbative behavior in the difference between N²LO and NLO.
- The high-momentum (short-range) behavior of chiral EFT interactions is distinct from the phenomenological interactions.

Future work

- Include 3-nucleon force which appears at N^2LO .
- Include 2-nucleon force at N^3LO (which will be non-local).
- Extend to larger nuclei with $4 < A \leq 12$.
- Second-order perturbation calculation in GFMC.
- Study of, for example, Coulomb sum rule to probe possible consequences of different short-range behavior.

Thank you to my collaborators.

A. Gezerlis, S. Gandolfi, J. Carlson, A. Schwenk, and E. Epelbaum.

