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Tunability of a cold atomic gas

• Two-body interaction

• Dimensionality

• Population

Goal: Interesting phases with 
applications to the solid state

a(B) = abg[1��B/(B �B0)]



p-wave pairing in a Fermi gas

• Whereas s-wave interactions usually dominate low temperature physics, 
p-wave pairing appears naturally for identical fermions

s-wave p-wave

• p-wave superfluids are highly sought because of their unusual properties!

• The px+ipy phase is predicted to be topological in 2D!

• Supports gapless Majorana mode on boundary to vacuum!

• Vortices obey non-Abelian statistics!

• Applications in topologically protected quantum computing



• Early attempts to study the BCS-BEC crossover with identical fermions failed!

• Contact interaction is inherently unstable for p-waves, equilibration not 
possible!

• This is due to wavefunction in short-distance region!

• Stark contrast with longevity of s-waves due to separation of scales and 
fermionic antisymmetry

p-wave pairing in a Fermi gas

• Instead consider long-range interactions

~a ~RvdW

J.L., Cooper, Gurarie!
PRL 2007

Gaebler et al, PRL 2007



Outline

• Long range p-wave interactions in a heteronuclear Fermi gas!

• Resonant atomic exchange illustrated within the Born-
Oppenheimer approximation!

• Theoretical predictions!

• Experimental observation of strong atom-dimer attraction!

• Three-body problem in 2D: Hydrogen-like spectrum of trimers!

• Polarized heteronuclear Fermi gases in 2D



Long-range p-wave interactions	


through resonant atomic exchange



Heteronuclear Fermi mixtures

• Long-range interactions through resonant atomic exchange!

• Mixture of heavy and light fermionic atoms!

• Short range interactions, characterized by scattering length a!

• Long range interactions generated between heavy atoms!

!

• Consider a>0 (i.e. two-body bound state exists)

"
"

J.L., Tiecke, Walraven, 
Petrov PRL 2009



Born-Oppenheimer approximation

Ultracold identical fermionic atoms do not interact directly!
• Effective interaction between (slow) heavy atoms is mediated by light atom!

!
Understood intuitively in Born-Oppenheimer approximation:!
!

• Assume light atom adiabatically adjusts its wave function to positions of heavy atoms:

-/+ for even/odd 
 partial waves
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3.1 Born-Oppenheimer approximation

It is instructive to consider the enhancement of the
atom-dimer scattering and the appearance of trimers for
sufficiently large mass ratios in the Born-Oppenheimer ap-
proximation [25]. This method was introduced in refer-
ence [14] to study Efimov physics in the system of one light
and two heavy particles. Although the Born-Oppenheimer
approximation is not exact, it serves well to illustrate the
essential physics leading to the resonant enhancement of
the p-wave scattering. Here we extend it to the case of a
resonance of finite width.

The method takes advantage of the large mass ratio by
assuming that the state of the light atom adiabatically ad-
justs itself to the distance R between the heavy fermions.
The wavefunction of the light atom can be written in the
form

ψR,±(r) ∝ e−κ±(R)|r−R/2|/R

|r − R/2| ± e−κ±(R)|r+R/2|/R

|r + R/2| . (21)

It satisfies the free-particle Schrödinger equation with the
energy

ϵ±(R) = −κ2
±(R)/2m↓. (22)

The singularities of ψR,±(r) at vanishing r̃ = r ± R/2
satisfy the Bethe-Peierls boundary condition [26]

[r̃ψ]′r̃/r̃ψ | r̃→0 = iκ±(R) cot δ0 [iκ±(R)]

= −1/a + R∗κ2
±(R), (23)

where the light-heavy s-wave phase shift, again denoted
by δ0, is calculated at the light-heavy collision energy
ϵ±(R). The equation for κ±(R) is obtained by applying
the boundary condition (23) to the wavefunction (21):

κ±(R) ∓ exp [−κ±(R)R] /R = 1/a− R∗κ2
±(R). (24)

The second step of the Born-Oppenheimer method con-
sists of solving the Schrödinger equation for the heavy
fermions by using ϵ±(R) as the potential energy surface.
Let us denote the corresponding heavy-fermion wavefunc-
tion by φ(R). Since the total three-body wavefunction,
proportional to the product φ(R)ψR,±(r), should be an-
tisymmetric with respect to the permutation of the heavy
fermions, the symmetry of φ depends on the choice of
sign in equation (21). As ψR,+(r) is symmetric with re-
spect to the permutation R ↔ −R, the heavy-atom wave-
function φ is antisymmetric and describes odd atom-dimer
scattering channels. Accordingly, the lower sign in equa-
tions (21)–(24) corresponds to even channels. We see how
the composite nature of the dimer leads to the ℓ-dependent
effective atom-dimer potentials: by solving equation (24)
one arrives at a purely attractive ϵ+(R) for odd channels
and purely repulsive ϵ−(R) for even ones.

From the viewpoint of the radial Schrödinger equation
it is convenient to introduce the total effective potential
for each φℓ(R):

Vℓ(R) = ϵ(−1)ℓ+1(R) − ϵ(∞) + ℓ(ℓ + 1)/m↑R
2, (25)

Fig. 7. The Born-Oppenheimer atom-dimer effective poten-
tial V1(R) (in units of 1/2m↓a

2) in the wide resonance case
(R∗ = 0) for mass ratios m↑/m↓ = 5 (dashed), mK/mLi (solid),
8.2 (dash-dotted), and 13.6 (dotted).

which includes the centrifugal barrier and shifts the
threshold to zero by subtracting the dimer binding energy

ϵ(∞) = −
(√

1 + 4R∗/a − 1
)2

/8m↓R
∗2. (26)

In the limit m↑ ≫ m↓ equation (26) reduces to equa-
tion (11).

For the p-wave atom-dimer interaction the central is-
sue is the competition between the attractive exchange
potential ϵ+ ∝ 1/m↓ and the repulsive centrifugal barrier,
which is inversely proportional to m↑. In Figure 7, we show
V1(R) in the limit of vanishing detuning for different mass
ratios. Remarkably, for m↑/m↓ ∼ mK/mLi this potential,
being repulsive in both limits R ≪ a and R ≫ a, develops
a well at distances R ∼ a. For m↑/m↓ > 8.2 the depth
of this well is enough to accomodate a trimer state with
unit angular momentum [18] and for somewhat smaller
mass ratios the presence of the well leads to the resonant
enhancement of the p-wave interaction.

The effect of finite R∗ is to decrease the strength of
the exchange potentials ϵ±. In Figure 8, we show V1(R) in
the K-Li case for different values of the detuning R∗/a.
One can see that the p-wave attraction becomes less
pronounced and the well eventually disappears with in-
creasing R∗/a.

It is important to distinguish the p-wave trimer for
m↑/m↓ ! 8.2 from Efimov trimers. The former exists
only for a > 0 and is a result of the peculiar competi-
tion between the exchange potential and the centrifugal
force at distances of the order of a, which determines its
size. In contrast, the Efimov effect occurs at larger mass
ratios, m↑/m↓ > 13.6, when the effective potential at dis-
tances R ≪ a is no longer repulsive. Then, in the Born-
Oppenheimer description the heavy atoms fall to the cen-
ter in an attractive 1/R2-potential. This is accompanied
by the appearance of an infinite set of Efimov states, irre-
spective of the sign of a.

Atom-dimer scattering in even channels is described by
the potential ϵ+(R), which is defined at distances R > a.
It has a form of a purely repulsive soft-core potential,

Analogy: H2+

J.L. & Petrov, EPJD 2011

- -



Born-Oppenheimer approximation

• Energy of the light atom = effective potential for the motion of heavy atoms!

• Repulsive (attractive) for even (odd) partial waves!

• For partial waves higher than s-wave, consider also the centrifugal barrier. 
Total potential in the p-wave scattering:
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atom-dimer scattering and the appearance of trimers for
sufficiently large mass ratios in the Born-Oppenheimer ap-
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ence [14] to study Efimov physics in the system of one light
and two heavy particles. Although the Born-Oppenheimer
approximation is not exact, it serves well to illustrate the
essential physics leading to the resonant enhancement of
the p-wave scattering. Here we extend it to the case of a
resonance of finite width.
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assuming that the state of the light atom adiabatically ad-
justs itself to the distance R between the heavy fermions.
The wavefunction of the light atom can be written in the
form

ψR,±(r) ∝ e−κ±(R)|r−R/2|/R
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The singularities of ψR,±(r) at vanishing r̃ = r ± R/2
satisfy the Bethe-Peierls boundary condition [26]

[r̃ψ]′r̃/r̃ψ | r̃→0 = iκ±(R) cot δ0 [iκ±(R)]

= −1/a + R∗κ2
±(R), (23)

where the light-heavy s-wave phase shift, again denoted
by δ0, is calculated at the light-heavy collision energy
ϵ±(R). The equation for κ±(R) is obtained by applying
the boundary condition (23) to the wavefunction (21):

κ±(R) ∓ exp [−κ±(R)R] /R = 1/a− R∗κ2
±(R). (24)

The second step of the Born-Oppenheimer method con-
sists of solving the Schrödinger equation for the heavy
fermions by using ϵ±(R) as the potential energy surface.
Let us denote the corresponding heavy-fermion wavefunc-
tion by φ(R). Since the total three-body wavefunction,
proportional to the product φ(R)ψR,±(r), should be an-
tisymmetric with respect to the permutation of the heavy
fermions, the symmetry of φ depends on the choice of
sign in equation (21). As ψR,+(r) is symmetric with re-
spect to the permutation R ↔ −R, the heavy-atom wave-
function φ is antisymmetric and describes odd atom-dimer
scattering channels. Accordingly, the lower sign in equa-
tions (21)–(24) corresponds to even channels. We see how
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which includes the centrifugal barrier and shifts the
threshold to zero by subtracting the dimer binding energy

ϵ(∞) = −
(√

1 + 4R∗/a − 1
)2

/8m↓R
∗2. (26)

In the limit m↑ ≫ m↓ equation (26) reduces to equa-
tion (11).

For the p-wave atom-dimer interaction the central is-
sue is the competition between the attractive exchange
potential ϵ+ ∝ 1/m↓ and the repulsive centrifugal barrier,
which is inversely proportional to m↑. In Figure 7, we show
V1(R) in the limit of vanishing detuning for different mass
ratios. Remarkably, for m↑/m↓ ∼ mK/mLi this potential,
being repulsive in both limits R ≪ a and R ≫ a, develops
a well at distances R ∼ a. For m↑/m↓ > 8.2 the depth
of this well is enough to accomodate a trimer state with
unit angular momentum [18] and for somewhat smaller
mass ratios the presence of the well leads to the resonant
enhancement of the p-wave interaction.

The effect of finite R∗ is to decrease the strength of
the exchange potentials ϵ±. In Figure 8, we show V1(R) in
the K-Li case for different values of the detuning R∗/a.
One can see that the p-wave attraction becomes less
pronounced and the well eventually disappears with in-
creasing R∗/a.

It is important to distinguish the p-wave trimer for
m↑/m↓ ! 8.2 from Efimov trimers. The former exists
only for a > 0 and is a result of the peculiar competi-
tion between the exchange potential and the centrifugal
force at distances of the order of a, which determines its
size. In contrast, the Efimov effect occurs at larger mass
ratios, m↑/m↓ > 13.6, when the effective potential at dis-
tances R ≪ a is no longer repulsive. Then, in the Born-
Oppenheimer description the heavy atoms fall to the cen-
ter in an attractive 1/R2-potential. This is accompanied
by the appearance of an infinite set of Efimov states, irre-
spective of the sign of a.

Atom-dimer scattering in even channels is described by
the potential ϵ+(R), which is defined at distances R > a.
It has a form of a purely repulsive soft-core potential,

m"/m# = 13.6, 8.2, 6.64, 5Bottom to top: •At mass ratio 5, the p-wave potential is 
purely repulsive!

•Potassium 40-Lithium 6 mixture: potential 
develops an attractive well and enhanced p-
wave scattering 
[J.L., Tiecke, Walraven, Petrov, PRL 2009]!

•Above 8.2 the well supports a bound state 
(trimer) [Kartavtsev & Malykh, J. Phys. B 
2007]!

•Above 13.6 the short-distance potential is 
attractive leading to Efimov physicsJ.L. & Petrov, EPJD 2011



Born-Oppenheimer approximation

The induced interaction between the two heavy fermionic atoms is 
inherently of a long range, of the order of the scattering length (which 
diverges at resonance). 

!
• The centrifugal barrier prevents the two 

identical fermions from approaching to short 
distances, suppressing three-body losses 
!

• This scenario is fundamentally different from 
the bosonic case, where losses are enhanced 
close to the formation of (Efimov) trimers 

!
=> a (relatively) stable mixture of atoms and 
dimers with strong p-wave interactions. This is a 
new paradigm for few-body physics
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force at distances of the order of a, which determines its
size. In contrast, the Efimov effect occurs at larger mass
ratios, m↑/m↓ > 13.6, when the effective potential at dis-
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by the appearance of an infinite set of Efimov states, irre-
spective of the sign of a.

Atom-dimer scattering in even channels is described by
the potential ϵ+(R), which is defined at distances R > a.
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m"/m# = 13.6, 8.2, 6.64, 5Bottom to top: 

J.L. & Petrov, EPJD 2011



Heteronuclear mixtures

•
6Li-

40
K (Innsbruck, Paris, Singapore)!

•
6Li-7Li-133Cs (Chicago, Heidelberg)!

•
40
K-87Rb (JILA, Aarhus)!

•
23
Na-

40
K (MIT)!

•
41K-40K-6Li (MIT)!

•
87Rb-Sr (Innsbruck/Amsterdam)!

• many more…

Theorists may consider mass 
ratio a free parameter…



Narrow Feshbach resonance

• Typically, Feshbach resonances in heteronuclear mixtures are narrow in 
magnetic field width!

• This translates into an effective range much larger than the van der Waals 
range of the atomic interactions
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In this paper, we develop a uniform-space diagram-
matic approach for studying few-body processes in a hete-
ronuclear fermionic mixture near an interspecies Feshbach
resonance of finite width. We calculate relevant atom-
dimer scattering phaseshifts and partial cross-sections in
the homonuclear case and in the K-Li case. Passing from
m↑/m↓ = 1 to m↑/m↓ = 6.64 we observe an increase in
the atom-dimer interaction, repulsive in even angular mo-
mentum channels and attractive in odd ones. The most
dramatic increase is found in the channel with unit angu-
lar momentum – the p-wave scattering volume changes by
more than an order of magnitude. Our exact calculations
are complemented by a qualitative explanation of the ob-
served effect based on the Born-Oppenheimer approach,
which we generalize to the case of a narrow interspecies
resonance. We predict a very strong interference between
s- and p-waves in atom-dimer scattering. Depending on
the collision energy, the scattering is dominant in back-
ward or forward directions, which can be observed exper-
imentally by colliding an atomic cloud with a cloud of
molecules. We use our diagrammatic approach to calcu-
late the dimer-dimer scattering length add as a function
of the atomic scattering length a and the width of the
interspecies resonance. Finally, we discuss the main mech-
anisms of the collisional relaxation of dimers into deep
molecular states, and calculate the corresponding atom-
dimer and dimer-dimer relaxation rate constants as func-
tions of a, the width of the resonance, and the collision
energy.

The paper is organized as follows. In Section 2, we dis-
cuss the two-body problem in the narrow resonance case
and introduce our field-theoretical approach. The main
part of the paper is structured according to the previous
paragraph – Sections 3 and 4 are devoted to the three-
and four-body problems respectively. In Section 5, we dis-
cuss the inelastic collisional relaxation in atom-dimer and
dimer-dimer collisions, and in Section 6 we conclude.

2 Two-body problem near a narrow Feshbach
resonance

We assume that all interatomic interactions in the ↑-↓
fermionic mixture are characterized by van der Waals po-
tentials. We also assume that the intraspecies interactions
are not resonant, and therefore can be safely neglected
in the ultracold regime. Let us denote the van der Waals
range of the interspecies interaction by Re and write down
the partial wave expansion of the on-shell scattering am-
plitude [12]

f(k,k′) =
∞∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)fℓ(k). (1)

Here k and k′ are initial and final relative momenta such
that |k| = |k′| = k, and θ = ∠k,k′ is the scattering angle.
We set ! = 1. The partial wave amplitudes fℓ(k) can be
written in terms of the phase shifts δℓ(k) as

fℓ(k) =
1

k cot δℓ(k) − ik
. (2)

Expanding the denominator of equation (2) in powers of
kRe gives the effective range expansion. In particular, in
the s-wave channel (ℓ = 0) we have

k cot δ0(k) ≈ −a−1 +
1
2
r0k

2 + . . . , (3)

and the corresponding expansion in the p-wave channel
(ℓ = 1) reads

k3 cot δ1(k) ≈ −v−1 +
1
2
k0k

2 + . . . , (4)

where v is the p-wave scattering volume, and k0 is a pa-
rameter analogous to the effective range.

The scale of the scattering length a, the effective
range r0, and other expansion parameters in the higher
order terms in equation (3) are set by the length Re or its
power of suitable dimension, and the same holds for higher
partial waves. For k → 0 the partial scattering amplitudes
are proportional to (kRe)2ℓ. Thus, in the limit kRe ≪ 1
(ultracold regime) the s-wave scattering amplitude, which
equals f0(0) = −a, is the most important interaction pa-
rameter in the mixture.

Near a scattering resonance the scattering length can
be modified and, in particular, can take anomalously large
values (i.e. |a| ≫ Re). A magnetic Feshbach resonance oc-
curs when the collision energy of the two atoms is close
to the energy of a quasidiscrete molecular state in another
hyperfine domain, which is called closed channel. The tun-
ing of the scattering amplitude is achieved by shifting the
open and closed channels with respect to each other in an
external magnetic field (hyperfine states corresponding to
the open and closed channel have different magnetic mo-
ments). The width of the resonance is determined by the
strength of the coupling between these two channels. The
narrower the resonance, the stronger the collision energy
dependence of the scattering amplitude, and, therefore,
the larger the effective range r0. We call a resonance nar-
row2, if |r0| ≫ Re. In fact, near such a resonance r0 is
necessarily negative and it is convenient to use another
length parameter [20]

R∗ = −r0/2 =
1

2µabgµrel∆B
, (5)

where µ = m↑m↓/(m↑ + m↓) is the reduced mass, abg is
the background scattering length, µrel is the difference in
the magnetic moments of the closed and open channels,
and ∆B is the magnetic width of the Feshbach resonance.
All 6Li-40K interspecies resonances discussed so far are
characterized by R∗ " 100 nm [4,7], which is much larger
than the van der Waals range Re ≈ 2.2 nm.

One can imagine an interatomic potential for which the
higher order terms in equation (3) are also anomalously

2 We note that in a many-body problem, the width of the res-
onance can be characterized by comparing |r0| with the mean
interparticle separation. In particular, the narrow resonance

condition
(
n|r0|3

)−1/3 ≪ 1 (much more strict than |r0| ≫ Re)
allows for a perturbative expansion across the whole BCS-BEC
crossover [22].

• In 40K-6Li mixture:

R⇤ & 2000a0

RvdW ' 50a0
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with ℓ > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a + R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a ≪
1, and the regime of intermediate detuning, R∗/a ≫ 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
∑

k,σ=↑,↓

k2

2mσ
â†
k,σâk,σ +

∑

p

(
ω0 +

p2

2M

)
b̂†pb̂p

+
∑

k,p

g√
V

(
b̂†pâp

2 +k,↑âp
2 −k,↓ + b̂pâ†

p
2 −k,↓â

†
p
2 +k,↑

)
, (7)

where a†
↑,↓ and a↑,↓ are creation and annihilation operators

of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
µg2

2π
1

g2µΛ
π2 − ω0

, R∗ =
π

µ2g2
. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)
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The pole of D(0, p0) determines the dimer binding energy

ϵ0 = −
(√

1 + 4R∗/a − 1
)2

/8µR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ϵ0 ≃ −1/2µa2 and in the regime
of intermediate detuning ϵ0 ≃ −1/2µR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

× D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −µ3

2π
T
(
k, k2/2m↑;k′, k2/2m↑

)
, (13)

where µ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , fℓ,

• Assume no other terms in scattering amplitude are anomalously large and 
neglect higher partial waves:
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with ℓ > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a + R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a ≪
1, and the regime of intermediate detuning, R∗/a ≫ 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
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k,σâk,σ +

∑

p

(
ω0 +

p2

2M

)
b̂†pb̂p

+
∑

k,p

g√
V

(
b̂†pâp
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where a†
↑,↓ and a↑,↓ are creation and annihilation operators

of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
µg2
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, R∗ =
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. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)
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The pole of D(0, p0) determines the dimer binding energy

ϵ0 = −
(√

1 + 4R∗/a − 1
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/8µR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ϵ0 ≃ −1/2µa2 and in the regime
of intermediate detuning ϵ0 ≃ −1/2µR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

× D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −µ3
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(
k, k2/2m↑;k′, k2/2m↑

)
, (13)

where µ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , fℓ,
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with ℓ > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a + R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a ≪
1, and the regime of intermediate detuning, R∗/a ≫ 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
∑

k,σ=↑,↓

k2
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p
2 −k,↓â
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, (7)

where a†
↑,↓ and a↑,↓ are creation and annihilation operators

of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
µg2

2π
1

g2µΛ
π2 − ω0

, R∗ =
π

µ2g2
. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)
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+
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The pole of D(0, p0) determines the dimer binding energy

ϵ0 = −
(√

1 + 4R∗/a − 1
)2

/8µR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ϵ0 ≃ −1/2µa2 and in the regime
of intermediate detuning ϵ0 ≃ −1/2µR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

× D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −µ3

2π
T
(
k, k2/2m↑;k′, k2/2m↑

)
, (13)

where µ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , fℓ,
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with ℓ > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a + R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a ≪
1, and the regime of intermediate detuning, R∗/a ≫ 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
∑

k,σ=↑,↓

k2

2mσ
â†
k,σâk,σ +

∑

p

(
ω0 +
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)
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+
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2 +k,↑âp
2 −k,↓ + b̂pâ†

p
2 −k,↓â

†
p
2 +k,↑

)
, (7)

where a†
↑,↓ and a↑,↓ are creation and annihilation operators

of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
µg2

2π
1

g2µΛ
π2 − ω0

, R∗ =
π

µ2g2
. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)
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)
+

1
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−
√

2µ

√
−p0 +

p2

2M
− i0

.

(10)

The pole of D(0, p0) determines the dimer binding energy

ϵ0 = −
(√

1 + 4R∗/a − 1
)2

/8µR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ϵ0 ≃ −1/2µa2 and in the regime
of intermediate detuning ϵ0 ≃ −1/2µR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

× D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −µ3

2π
T
(
k, k2/2m↑;k′, k2/2m↑

)
, (13)

where µ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , fℓ,

The coupling to a closed channel may be modelled by a two-channel 
model (Timmermanns et al., Phys. Rep. 1999):

Taking the coupling to be constant up to a cutoff relates the parameters of 
the model to the coefficients of the 2-body scattering amplitude:
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large. For example, we can introduce one or several ad-
ditional closed channels with quasistationary states very
close to the open-channel threshold resulting in a rather
exotic scattering amplitude3. However, in this paper we
assume a more practical and simple case in which the
terms denoted by . . . in equation (3) vanish in the limit
kRe → 0. We will also assume that scattering with ℓ > 0
is not resonant and can be neglected in this limit. Then,
substituting equation (3) into equation (2) we get the well-
known formula for the resonant scattering at a quasidis-
crete level [12] (written as a function of momentum rather
than energy)

f(k) = − 1
1/a + R∗k2 + ik

. (6)

The ratio R∗/a measures the detuning from the resonance
and we distinguish the regime of small detuning, R∗/a ≪
1, and the regime of intermediate detuning, R∗/a ≫ 1.
The properties of a few-body system in these two limits
are qualitatively different [20].

In order to describe the ↑↓ mixture near a narrow res-
onance we use the two-channel Hamiltonian [21]

Ĥ =
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where a†
↑,↓ and a↑,↓ are creation and annihilation operators

of the two fermionic species while b† (b) creates (annihi-
lates) a closed-channel molecule of mass M ≡ m↑ + m↓.
The atom-molecule interconversion amplitude g is taken
constant up to the momentum cut-off Λ ∝ 1/Re, and ω0

is the bare detuning of the molecule. The quantities a and
R∗ are related to the parameters of the model (7) by [22]
(see also Appendix A)

a =
µg2

2π
1

g2µΛ
π2 − ω0

, R∗ =
π

µ2g2
. (8)

The bare propagators of atoms and closed-channel mole-
cules read

G↑,↓(p, p0) =
1

p0 − p2/2m↑,↓ + i0
,

D0(p, p0) =
1

p0 − p2/2M − ω0 + i0
, (9)

where +i0 slightly shifts the poles of G and D0 into the
lower half of the complex p0-plane. A physical dimer con-
sists of a closed-channel molecule dressed by open-channel

3 In principle, the method that we develop in this paper can
be generalized to an arbitrary energy dependence of the phase
shift.

atoms. The corresponding propagator is given by (see Ap-
pendix A)
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The pole of D(0, p0) determines the dimer binding energy

ϵ0 = −
(√

1 + 4R∗/a − 1
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/8µR∗2. (11)

Equation (11) interpolates between the two limits: for
small detuning we have ϵ0 ≃ −1/2µa2 and in the regime
of intermediate detuning ϵ0 ≃ −1/2µR∗a.

3 Atom-dimer scattering

Knowledge of atom-dimer interaction parameters is neces-
sary for the correct description of an atom-molecule mix-
ture on the BEC side of the Feshbach resonance. The
momentum-space formalism for the three-body problem
with short-range interactions was first demonstrated in
the calculation of the neutron-deuteron scattering length
(total spin S = 3/2 in this case corresponds to our ↑-↑↓
scattering problem) [23]. The coordinate formulation can
be found in reference [17] where the atom-dimer scattering
length was obtained in the mass-imbalanced case. Here we
extend these results to higher partials waves, finite colli-
sion energies, and finite Feshbach resonance width.

Let us denote the atom-dimer scattering T -matrix by
T (k, k0;p, p0), the arguments of which imply that the in-
coming four-momenta of the atom and the molecule are
(k, k0) and (−k, E−k0), and the outgoing ones are (p, p0)
and (−p, E−p0), respectively. In Figure 1, we show the di-
agrammatic series for T , the summation of which results
in the Skorniakov-Ter-Martirosian integral equation [23]
(see also Ref. [24])

T (k, k0;p, p0) = −g2Z G↓(−k− p, E − k0 − p0)

− i

∫
d4q

(2π)4
G↑(q, q0)G↓(−p− q, E − p0 − q0)

× D(−q, E − q0)T (k, k0;q, q0). (12)

Equation (12) is formally identical to the equal-mass
wide-resonance one, the difference being hidden in the
propagators and the factor Z, which serves for correct nor-
malization of external propagators (see Appendix A). The
atom-dimer elastic scattering amplitude is proportional to
the on-shell T -matrix:

f(k,k′) = −µ3

2π
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)
, (13)

where µ3 ≡ Mm↑/(M + m↑) is the reduced mass of the
atom-dimer system, and k = |k| = |k′|. Hereafter f , fℓ,

Weakly bound state with binding energy (a>0)



Three-body problem: Skorniakov—Ter-Martirosian equation

• The interaction between an atom and a dimer may be treated exactly in the 
limit a>>RvdW by applying the Skorniakov—Ter-Martirosian integral 
equation!

• Sums an infinite number of three-body diagrams!

!

!

• The atom-dimer interaction may be separated in its partial wave components:
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In this paper, we develop a uniform-space diagram-
matic approach for studying few-body processes in a hete-
ronuclear fermionic mixture near an interspecies Feshbach
resonance of finite width. We calculate relevant atom-
dimer scattering phaseshifts and partial cross-sections in
the homonuclear case and in the K-Li case. Passing from
m↑/m↓ = 1 to m↑/m↓ = 6.64 we observe an increase in
the atom-dimer interaction, repulsive in even angular mo-
mentum channels and attractive in odd ones. The most
dramatic increase is found in the channel with unit angu-
lar momentum – the p-wave scattering volume changes by
more than an order of magnitude. Our exact calculations
are complemented by a qualitative explanation of the ob-
served effect based on the Born-Oppenheimer approach,
which we generalize to the case of a narrow interspecies
resonance. We predict a very strong interference between
s- and p-waves in atom-dimer scattering. Depending on
the collision energy, the scattering is dominant in back-
ward or forward directions, which can be observed exper-
imentally by colliding an atomic cloud with a cloud of
molecules. We use our diagrammatic approach to calcu-
late the dimer-dimer scattering length add as a function
of the atomic scattering length a and the width of the
interspecies resonance. Finally, we discuss the main mech-
anisms of the collisional relaxation of dimers into deep
molecular states, and calculate the corresponding atom-
dimer and dimer-dimer relaxation rate constants as func-
tions of a, the width of the resonance, and the collision
energy.

The paper is organized as follows. In Section 2, we dis-
cuss the two-body problem in the narrow resonance case
and introduce our field-theoretical approach. The main
part of the paper is structured according to the previous
paragraph – Sections 3 and 4 are devoted to the three-
and four-body problems respectively. In Section 5, we dis-
cuss the inelastic collisional relaxation in atom-dimer and
dimer-dimer collisions, and in Section 6 we conclude.

2 Two-body problem near a narrow Feshbach
resonance

We assume that all interatomic interactions in the ↑-↓
fermionic mixture are characterized by van der Waals po-
tentials. We also assume that the intraspecies interactions
are not resonant, and therefore can be safely neglected
in the ultracold regime. Let us denote the van der Waals
range of the interspecies interaction by Re and write down
the partial wave expansion of the on-shell scattering am-
plitude [12]

f(k,k′) =
∞∑

ℓ=0

(2ℓ + 1)Pℓ(cos θ)fℓ(k). (1)

Here k and k′ are initial and final relative momenta such
that |k| = |k′| = k, and θ = ∠k,k′ is the scattering angle.
We set ! = 1. The partial wave amplitudes fℓ(k) can be
written in terms of the phase shifts δℓ(k) as

fℓ(k) =
1

k cot δℓ(k) − ik
. (2)

Expanding the denominator of equation (2) in powers of
kRe gives the effective range expansion. In particular, in
the s-wave channel (ℓ = 0) we have

k cot δ0(k) ≈ −a−1 +
1
2
r0k

2 + . . . , (3)

and the corresponding expansion in the p-wave channel
(ℓ = 1) reads

k3 cot δ1(k) ≈ −v−1 +
1
2
k0k

2 + . . . , (4)

where v is the p-wave scattering volume, and k0 is a pa-
rameter analogous to the effective range.

The scale of the scattering length a, the effective
range r0, and other expansion parameters in the higher
order terms in equation (3) are set by the length Re or its
power of suitable dimension, and the same holds for higher
partial waves. For k → 0 the partial scattering amplitudes
are proportional to (kRe)2ℓ. Thus, in the limit kRe ≪ 1
(ultracold regime) the s-wave scattering amplitude, which
equals f0(0) = −a, is the most important interaction pa-
rameter in the mixture.

Near a scattering resonance the scattering length can
be modified and, in particular, can take anomalously large
values (i.e. |a| ≫ Re). A magnetic Feshbach resonance oc-
curs when the collision energy of the two atoms is close
to the energy of a quasidiscrete molecular state in another
hyperfine domain, which is called closed channel. The tun-
ing of the scattering amplitude is achieved by shifting the
open and closed channels with respect to each other in an
external magnetic field (hyperfine states corresponding to
the open and closed channel have different magnetic mo-
ments). The width of the resonance is determined by the
strength of the coupling between these two channels. The
narrower the resonance, the stronger the collision energy
dependence of the scattering amplitude, and, therefore,
the larger the effective range r0. We call a resonance nar-
row2, if |r0| ≫ Re. In fact, near such a resonance r0 is
necessarily negative and it is convenient to use another
length parameter [20]

R∗ = −r0/2 =
1

2µabgµrel∆B
, (5)

where µ = m↑m↓/(m↑ + m↓) is the reduced mass, abg is
the background scattering length, µrel is the difference in
the magnetic moments of the closed and open channels,
and ∆B is the magnetic width of the Feshbach resonance.
All 6Li-40K interspecies resonances discussed so far are
characterized by R∗ " 100 nm [4,7], which is much larger
than the van der Waals range Re ≈ 2.2 nm.

One can imagine an interatomic potential for which the
higher order terms in equation (3) are also anomalously

2 We note that in a many-body problem, the width of the res-
onance can be characterized by comparing |r0| with the mean
interparticle separation. In particular, the narrow resonance

condition
(
n|r0|3

)−1/3 ≪ 1 (much more strict than |r0| ≫ Re)
allows for a perturbative expansion across the whole BCS-BEC
crossover [22].
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Fig. 1. Diagrammatic series contributing to the atom-dimer
T -matrix and a schematic representation of the Skorniakov-
Ter-Martirosian integral equation (12). External propagators
are included to guide the eye, they do not form part of the
T -matrix. Straight and wavy lines denote atomic and dimer
propagators, respectively.

δℓ, and σℓ refer to the atom-dimer scattering parameters,
the two-atom interaction being described by a and R∗.

Integration over q0 in equation (12) may be carried out
by closing the complex contour in the lower half plane.
The integration picks up the contribution from the simple
pole of G↑ at q0 = q2/2m↑. The scattering phase shifts are
on-shell quantities and we let k0 = k2/2m↑, p0 = p2/2m↑,
and the total energy E = k2/2µ3 + ϵ0. The remaining on-
shell condition, |p| = |k|, should be implemented at the
end of the calculations.

The kernel of the resulting three-dimensional integral
equation has a simple pole at |q| = |k| hidden in the dimer
propagator. We make it explicit by defining functions f̃
and h:

f̃(k,q)
q2 − k2 − i0

=
D(q, E−q2/2m↑)

4πg2Z
T

(
k,

k2

2m↑
;q,

q2

2m↑

)
,

h(k, q) =
(
k2 − q2

)
D

(
q, E − q2/2m↑

)
/4π. (14)

Both f̃ and h are not singular at |q| = |k|, and f̃ is chosen
such that f̃(k,k′) = f(k,k′), for |k| = |k′|. Finally, we
note that equation (12) conserves angular momentum and,
therefore, can be written as a set of decoupled equations
for each partial wave

f̃ℓ(k, p) = h(k, p)

{
gℓ(k, p) +

2
π

∫ ∞

0
q2dq

gℓ(p, q)f̃ℓ(k, q)
q2 − k2 − i0

}
,

(15)
where we define

gℓ(k, p) =
1
2

∫ 1

−1
dxPℓ(x)

× G↓
(
k + p, E − k2/2m↑ − p2/2m↑

)
, (16)

where x is the cosine of the angle between k and p. Partial
atom-dimer scattering amplitudes are related to solutions
of equation (15) by the equation fℓ(k) = f̃ℓ(k, k), and
the corresponding phase shifts δℓ are deduced from equa-
tion (2).

In Figure 2, we plot the s-, p-, and d-wave phase shifts
as functions of the collision energy Ecoll = k2/2µ3 for
different detunings R∗/a. We write the phase shifts as

Fig. 2. (Color online) Atom-dimer s, p, and d-wave scatter-
ing phase shifts vs. Ecoll/|ϵ0|. Solid, dashed, dot-dashed, and
dotted lines correspond to R∗/a = 0, 1/16, 1/4, and R∗ = a, re-
spectively. In the homonuclear case we show δd only for R∗ = 0.

δ0 ≡ δs, δ1 ≡ δp, and δ2 ≡ δd. The results are shown for
two mass ratios: m↑/m↓ = 6.64 (left) and m↑/m↓ = 1
(right). We keep the same vertical scale in both graphs,
and one can see that the atom-dimer interaction in the
heteronuclear case is stronger in every considered chan-
nel. Looking at the low-energy asymptotes of the phase
shifts in the wide resonance case (R∗ = 0) we see that
passing from m↑/m↓ = 1 to m↑/m↓ = 6.64 the atom-
dimer s-wave scattering length increases from aad ≈ 1.18a
to aad ≈ 1.98a, consistent with references [23] and [17]. At
the same time the p-wave scattering volume increases by
more than an order of magnitude from vad ≈ −0.95a3 to
vad ≈ −10.1a3, which is apparently due to the vicinity of
the resonance at the critical mass ratio m↑/m↓ ≈ 8.2 [18].
Although the mass ratio for the K-Li case is quite a bit
smaller, our results indicate that for sufficiently small de-
tuning one has a strongly marked p-wave K-KLi scatter-
ing resonance. Indeed, for R∗ = 0 the p-wave phase shift
reaches the unitarity value π/2 at a relatively small colli-
sion energy Ecoll ≈ 0.1|ϵ0|.

In Figure 2 we also see that the atom-dimer interac-
tion decreases with detuning. We attribute this to the fact
that at larger R∗/a the light atom spends more time in
the closed-channel molecular state, and consequently con-
tributes less to the atom-dimer exchange interaction. In
a sense, increasing R∗/a is similar to increasing the mass
of the light atom (decreasing the mass ratio): the heavier
the atom, the weaker the exchange interaction.

Although the p-wave resonance becomes less pronoun-
ced near a narrow resonance, in a K-Li mixture the p-wave
atom-dimer interaction can be strong, which is demon-
strated in Figure 3, where we plot the partial wave cross-
sections σℓ(k) = 4π(2ℓ + 1)k−2 sin2 δℓ(k). We clearly see
that for detunings R∗/a ! 1 the p-wave partial cross-
section either exceeds or is comparable to σs in a wide
range of collision energies.
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Fig. 1. Diagrammatic series contributing to the atom-dimer
T -matrix and a schematic representation of the Skorniakov-
Ter-Martirosian integral equation (12). External propagators
are included to guide the eye, they do not form part of the
T -matrix. Straight and wavy lines denote atomic and dimer
propagators, respectively.

δℓ, and σℓ refer to the atom-dimer scattering parameters,
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pole of G↑ at q0 = q2/2m↑. The scattering phase shifts are
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and the total energy E = k2/2µ3 + ϵ0. The remaining on-
shell condition, |p| = |k|, should be implemented at the
end of the calculations.
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δ0 ≡ δs, δ1 ≡ δp, and δ2 ≡ δd. The results are shown for
two mass ratios: m↑/m↓ = 6.64 (left) and m↑/m↓ = 1
(right). We keep the same vertical scale in both graphs,
and one can see that the atom-dimer interaction in the
heteronuclear case is stronger in every considered chan-
nel. Looking at the low-energy asymptotes of the phase
shifts in the wide resonance case (R∗ = 0) we see that
passing from m↑/m↓ = 1 to m↑/m↓ = 6.64 the atom-
dimer s-wave scattering length increases from aad ≈ 1.18a
to aad ≈ 1.98a, consistent with references [23] and [17]. At
the same time the p-wave scattering volume increases by
more than an order of magnitude from vad ≈ −0.95a3 to
vad ≈ −10.1a3, which is apparently due to the vicinity of
the resonance at the critical mass ratio m↑/m↓ ≈ 8.2 [18].
Although the mass ratio for the K-Li case is quite a bit
smaller, our results indicate that for sufficiently small de-
tuning one has a strongly marked p-wave K-KLi scatter-
ing resonance. Indeed, for R∗ = 0 the p-wave phase shift
reaches the unitarity value π/2 at a relatively small colli-
sion energy Ecoll ≈ 0.1|ϵ0|.

In Figure 2 we also see that the atom-dimer interac-
tion decreases with detuning. We attribute this to the fact
that at larger R∗/a the light atom spends more time in
the closed-channel molecular state, and consequently con-
tributes less to the atom-dimer exchange interaction. In
a sense, increasing R∗/a is similar to increasing the mass
of the light atom (decreasing the mass ratio): the heavier
the atom, the weaker the exchange interaction.

Although the p-wave resonance becomes less pronoun-
ced near a narrow resonance, in a K-Li mixture the p-wave
atom-dimer interaction can be strong, which is demon-
strated in Figure 3, where we plot the partial wave cross-
sections σℓ(k) = 4π(2ℓ + 1)k−2 sin2 δℓ(k). We clearly see
that for detunings R∗/a ! 1 the p-wave partial cross-
section either exceeds or is comparable to σs in a wide
range of collision energies.
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Ter-Martirosian integral equation (12). External propagators
are included to guide the eye, they do not form part of the
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range of collision energies.
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Fig. 1. Diagrammatic series contributing to the atom-dimer
T -matrix and a schematic representation of the Skorniakov-
Ter-Martirosian integral equation (12). External propagators
are included to guide the eye, they do not form part of the
T -matrix. Straight and wavy lines denote atomic and dimer
propagators, respectively.

δℓ, and σℓ refer to the atom-dimer scattering parameters,
the two-atom interaction being described by a and R∗.

Integration over q0 in equation (12) may be carried out
by closing the complex contour in the lower half plane.
The integration picks up the contribution from the simple
pole of G↑ at q0 = q2/2m↑. The scattering phase shifts are
on-shell quantities and we let k0 = k2/2m↑, p0 = p2/2m↑,
and the total energy E = k2/2µ3 + ϵ0. The remaining on-
shell condition, |p| = |k|, should be implemented at the
end of the calculations.

The kernel of the resulting three-dimensional integral
equation has a simple pole at |q| = |k| hidden in the dimer
propagator. We make it explicit by defining functions f̃
and h:

f̃(k,q)
q2 − k2 − i0

=
D(q, E−q2/2m↑)

4πg2Z
T

(
k,

k2

2m↑
;q,

q2

2m↑

)
,

h(k, q) =
(
k2 − q2

)
D

(
q, E − q2/2m↑

)
/4π. (14)

Both f̃ and h are not singular at |q| = |k|, and f̃ is chosen
such that f̃(k,k′) = f(k,k′), for |k| = |k′|. Finally, we
note that equation (12) conserves angular momentum and,
therefore, can be written as a set of decoupled equations
for each partial wave

f̃ℓ(k, p) = h(k, p)

{
gℓ(k, p) +

2
π

∫ ∞

0
q2dq

gℓ(p, q)f̃ℓ(k, q)
q2 − k2 − i0

}
,

(15)
where we define

gℓ(k, p) =
1
2

∫ 1

−1
dxPℓ(x)

× G↓
(
k + p, E − k2/2m↑ − p2/2m↑

)
, (16)

where x is the cosine of the angle between k and p. Partial
atom-dimer scattering amplitudes are related to solutions
of equation (15) by the equation fℓ(k) = f̃ℓ(k, k), and
the corresponding phase shifts δℓ are deduced from equa-
tion (2).

In Figure 2, we plot the s-, p-, and d-wave phase shifts
as functions of the collision energy Ecoll = k2/2µ3 for
different detunings R∗/a. We write the phase shifts as

Fig. 2. (Color online) Atom-dimer s, p, and d-wave scatter-
ing phase shifts vs. Ecoll/|ϵ0|. Solid, dashed, dot-dashed, and
dotted lines correspond to R∗/a = 0, 1/16, 1/4, and R∗ = a, re-
spectively. In the homonuclear case we show δd only for R∗ = 0.

δ0 ≡ δs, δ1 ≡ δp, and δ2 ≡ δd. The results are shown for
two mass ratios: m↑/m↓ = 6.64 (left) and m↑/m↓ = 1
(right). We keep the same vertical scale in both graphs,
and one can see that the atom-dimer interaction in the
heteronuclear case is stronger in every considered chan-
nel. Looking at the low-energy asymptotes of the phase
shifts in the wide resonance case (R∗ = 0) we see that
passing from m↑/m↓ = 1 to m↑/m↓ = 6.64 the atom-
dimer s-wave scattering length increases from aad ≈ 1.18a
to aad ≈ 1.98a, consistent with references [23] and [17]. At
the same time the p-wave scattering volume increases by
more than an order of magnitude from vad ≈ −0.95a3 to
vad ≈ −10.1a3, which is apparently due to the vicinity of
the resonance at the critical mass ratio m↑/m↓ ≈ 8.2 [18].
Although the mass ratio for the K-Li case is quite a bit
smaller, our results indicate that for sufficiently small de-
tuning one has a strongly marked p-wave K-KLi scatter-
ing resonance. Indeed, for R∗ = 0 the p-wave phase shift
reaches the unitarity value π/2 at a relatively small colli-
sion energy Ecoll ≈ 0.1|ϵ0|.

In Figure 2 we also see that the atom-dimer interac-
tion decreases with detuning. We attribute this to the fact
that at larger R∗/a the light atom spends more time in
the closed-channel molecular state, and consequently con-
tributes less to the atom-dimer exchange interaction. In
a sense, increasing R∗/a is similar to increasing the mass
of the light atom (decreasing the mass ratio): the heavier
the atom, the weaker the exchange interaction.

Although the p-wave resonance becomes less pronoun-
ced near a narrow resonance, in a K-Li mixture the p-wave
atom-dimer interaction can be strong, which is demon-
strated in Figure 3, where we plot the partial wave cross-
sections σℓ(k) = 4π(2ℓ + 1)k−2 sin2 δℓ(k). We clearly see
that for detunings R∗/a ! 1 the p-wave partial cross-
section either exceeds or is comparable to σs in a wide
range of collision energies.
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Fig. 3. (Color online) Partial K-KLi atom-dimer cross-sections
σs (solid), σp (dashed), and σd (dotted) in units of a2 vs. col-
lision energy for different detunings R∗/a.

Fig. 4. (Color online) Atom-dimer s-wave (black), p-wave
(blue), and d-wave (purple) scattering cross sections for the
homonuclear gas. Solid, dashed, dot-dashed, and dotted lines
correspond to R∗/a = 0, 1/16, 1/4, and R∗ = a, respectively.

For comparison, in Figure 4 we present partial atom-
dimer cross-sections in the homonuclear case. We see that
the s-wave contribution is always dominant and the func-
tional form of σs/a2 is fairly insensitive to the detuning.

We have calculated the scattering parameters for sev-
eral higher partial waves. Their contributions rapidly de-
crease with ℓ and it is worth plotting only the d-wave phase
shifts (see Fig. 2) and scattering cross-sections (Figs. 3
and 4). The d-wave contribution is comparable to the s-
and p-wave ones only in the heteronuclear case and for
relatively high collision energies ∼ |ϵ0|. In Figures 2 and 4
the d-wave contribution for the homonuclear case is plot-
ted only for R∗ = 0 as for finite detunings the curves are
even closer to the horizontal axis.

We have already discussed the atom-dimer scatter-
ing length and scattering volume for m↑/m↓ ≈ 6.64 and
m↑/m↓ = 1 in the case R∗ = 0. In Figures 5 and 6, we
plot these quantities and the effective range parameters
rad and kad (atom-dimer analogues of r0 and k0 defined in

Fig. 5. (Color online) Atom-dimer scattering length aad, s-
wave effective range rad, p-wave scattering volume vad, and the
p-wave effective range parameter kad in units of corresponding
powers of a vs. R∗/a for m↑/m↓ = 6.64. Solid lines are exact
and dotted lines are approximate results (17)–(20) valid in the
limit R∗ ≫ a.

Fig. 6. (Color online) Same as in Figure 5 but for the homo-
nuclear case.

equations (3) and (4)) versus the detuning R∗/a. Dotted
lines in these graphs are obtained by using a perturbation
theory in the limit of a very narrow resonance, g → 0,
when the atom-dimer T -matrix can be obtained by sum-
ming the first few diagrams in Figure 1. This gives an
expansion in powers of

√
a/R∗ ≪ 1. The first two terms

in the expansion of aad and vad and the leading terms for
the effective range parameters rad and kad read

aad ≈ a
µ3

µ

[
1 +

1
2

(
1 − µ3

µ

) √
a

R∗

]
, (17)

rad ≈ −4R∗ µ

µ3

(
1 − µ

2µ3

)
, (18)

vad ≈ −2
3
a2R∗ µ3

m↓

[
1 +

3
2

(
1 +

µ3

36m↓

) √
a

R∗

]
, (19)

kad ≈ 12
a

m↓

µ3

(
1 − µ

2µ3

)
. (20)
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equations (3) and (4)) versus the detuning R∗/a. Dotted
lines in these graphs are obtained by using a perturbation
theory in the limit of a very narrow resonance, g → 0,
when the atom-dimer T -matrix can be obtained by sum-
ming the first few diagrams in Figure 1. This gives an
expansion in powers of
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a/R∗ ≪ 1. The first two terms

in the expansion of aad and vad and the leading terms for
the effective range parameters rad and kad read
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Born-Oppenheimer picture: Narrow resonance

Effect of resonance width:
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Fig. 8. The Born-Oppenheimer atom-dimer effective potential
V1(R) (in units of 1/2m↓a

2) in the K-Li case for R∗ = 0 (solid),
R∗ = a/16 (dashed), R∗ = a/4 (dash-dotted), and R∗ = a
(double-dot dashed). The dotted line is the centrifugal barrier.

which increases with the mass ratio and decreases with
R∗, consistent with the exact results above on s- and d-
wave atom-dimer scattering.

3.2 Interference of s- and p-waves

Now we would like to discuss one of the implications of
the channel dependent atom-dimer interaction, a pecu-
liarity, which is strongly pronounced in the K-Li mixture.
In this case the p- and s-wave phase shifts are comparable
in magnitude and can be large (see Fig. 3). It is thus not
necessary to go to very high collision energies for observing
the quantum interference between these partial waves4.

Let us consider a gedankenexperiment in which a cold
thermal cloud of KLi dimers collides with a cloud of
K atoms at collision energies below the dimer break-up
threshold. The measurable quantity is then the angular
distribution of scattered dimers (or atoms), which is pro-
portional to the differential cross-section. We can write it
in terms of the phase shifts by using equations (1) and (2):

dσ

dΩ
=

1
k2

[
sin2 δs + 6 cos(δp − δs) sin δs sin δp cos θ

+ 9 sin2 δp cos2 θ
]
+ . . . (27)

Here k is the relative atom-dimer momentum and the an-
gle θ is measured with respect to the collision axis, which
we denote by ẑ. The dots signify the contribution of higher
partial waves. We have checked that they can be safely ig-
nored.

The first term on the right hand side in equation (27)
gives the well-known spherically symmetric scattering
halo. The last term corresponds to the pure p-wave scat-
tering. It contributes equally to the forward (0 < θ < π/2)
and backward (π/2 < θ < π) directions, but vanishes in

4 Quantum interference of s- and d-waves has been observed
in collisions of 87Rb BECs at rather high collision energies,
see [27,28].

ẑ
x̂

Fig. 9. (Color online) The integrated column density for K-
KLi atom-dimer scattering in arbitrary units. The collision en-
ergies are Ecoll = 0.05|ϵ0 | (left) and Ecoll = 0.25|ϵ0| (right). In
both cases R∗ = a/4. Backward direction corresponds to neg-
ative z. For presentation purposes we imitate a small thermal
smear.

Fig. 10. The contrast vs. collision energy for detuning R∗/a
equal to 0 (solid), 1/16 (dashed), 1/4 (dot-dashed), and 1
(double-dot dashed). Dotted line is the homonuclear case result
for R∗ = 0.

the direction perpendicular to ẑ. The second (interference)
term favors either backward or forward scattering. In Fig-
ure 9 we simulate an absorption image (column density)
of scattered particles that initially moved in the positive
z direction. In the K-Li case backward scattering domi-
nates at small collision energies while forward scattering
is favored at higher energies, when δp − δs > π/2.

In Figure 10, we plot the contrast, defined as the nor-
malized difference between the numbers of particles scat-
tered forward, N+, and backward, N−, as a function of
collision energy for different detunings R∗/a. For compar-
ison we also present the homonuclear wide-resonance case
(dotted line). We see that in this case backward scatter-
ing always dominates, the highest contrast achieved for
Ecoll ≈ |ϵ0|/3.

The collision experiment described above requires the
ability of manipulating atoms and molecules individually,
which points to an advantage of heteronuclear mixtures
– in the heteronuclear case different atomic species feel
optical potentials in a different manner, and this obviously

centrifugal barrier

R⇤/a = 0, 1/16, 1/4, 1Bottom to top: 

When the light atom spends more time in the 
closed channel molecular state, the strength of 
the exchange potential is decreased!



Experimental observation of strong atom-
dimer attraction
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FIG. 2: Sample rf spectra taken at B � B
0

= �20mG at
T

e↵

= 232 nK. The red diamonds (blue circles) show data
recorded using method A (B). For reference, the gray trian-
gles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at �17mG
over an extended frequency range. The molecular dissociation
signal (open symbols), recorded with 30⇥ increased rf power,
is clearly separated from the atomic peak (filled symbols).

the K atoms from the noninteracting state |2i into the
interacting state |3i (method A) or vice versa (method
B). With our K atoms initially prepared in the state |2i,
we carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full K|2i population
into K|3i using a short 90-µs preparation pulse without
spectral resolution, and then drive the spectrally resolv-
ing transition with a 1-ms pulse. Our signal in both cases
is the fraction of transferred atoms as a function of the
rf detuning ⌫ � ⌫

0

with respect to the unperturbed tran-
sition frequency ⌫

0

, the latter being determined by the rf
spectroscopy in the absence of dimers.

Sample spectra, at a magnetic detuning of B � B
0

=
�20 mG, are shown in Fig. 2. The spectra recorded by
methods A and B (circles and diamonds in Fig. 2) show
both a broadening and a peak shift, as compared to the
spectra recorded in the absence of dimers (triangles). Al-
though the spectra very close to the FR center reveal
asymmetries in their wings, which depend on the method
applied, their peak shifts and broadenings are consistent
for both methods. In the range of detunings B � B

0

studied in the present work the molecular dissociation
signal is always well separated from the atomic line (in-
set of Fig. 2), and thus does not a↵ect the lineshape of
the atomic signal.

Figure 3 shows the widths and peak shifts [34] of the rf
spectroscopic signal, recorded by method A, as a function
of B � B

0

for our three values of T
e↵

. When the FR
center is approached, the spectrum broadens and its peak
shifts from a positive to a negative rf detuning. With
increasing temperature, the corresponding zero crossing

í�� í�� �
í���

í���

í���

�

���

���

pe
ak

 s
hi

ft 
(k

H
z)

���

�����

�����

FW
H

M
 (k

H
z)

í�� í�� �
%í%� (mG)

í�� í�� �

Teff� �����Q. �������Q. ������Q.

FIG. 3: Widths (blue triangles) and peak shifts (red circles)
extracted from the rf spectra as a function of the magnetic
field detuning B � B

0

for the three di↵erent values of T
e↵

.
The lines are the corresponding theoretical predictions. To
account for fluctuations in the dimer number of di↵erent spec-
tra, the widths and peak shifts are scaled to a dimer number
of 15, 000, which is typical for all spectra.

shows a trend to move towards larger detunings.
We interpret the obtained results in the framework of

the impact theory of pressure-induced e↵ects on spec-
tral lines, which assumes the collisions to be e↵ectively
instantaneous. This theory predicts Lorentzian profiles
centered near the unperturbed frequency ⌫

0

whose line
shifts and broadenings are proportional to the real and
imaginary parts of the thermally averaged atom-dimer
forward scattering amplitude f(0) [27–29], respectively.
The real part of f(0) shifts the energy of the K atoms,
causing an average shift in the frequency of their peak
rf response of �⌫ = �~n̄

D

Rehf(0)i/µ
3

, where hf(0)i de-
notes the thermal average of f(0) over all atom-dimer
collision energies E

coll

. The red solid lines in Fig. 3 show
the theoretical results for �⌫ for the respective molecule
densities and collision energies. The optical theorem
relates the imaginary part of f(0) to the average elas-
tic scattering rate ⌧�1 as ⌧�1 = 4⇡~n̄

D

Imhf(0)i/µ
3

.
The resulting finite lifetime ⌧ of the atoms’ wavepackets
causes Lorentzian broadening with a full-width at half-
maximum (FWHM) 1/2⇡⌧ . The blue solid lines in Fig. 3
show the predicted FWHM, including additional broad-
ening due to the finite duration of our rf pulse [35].

The collisional broadening yields information on the
elastic scattering rate. At typical detunings of B�B

0

⇡
�20 mG, our data show an elastic scattering rate of the
order of 1/(100 µs). A comparison with the observed de-
cay rate of about 1/(5 ms) reveals a ratio of elastic to
inelastic collisions of at least 50.

The comparison between the experimentally observed
and the theoretically calculated line shifts and broad-
enings shows remarkable agreement over the whole pa-

•Signal: fraction of atoms transferred as a function of the RF 
detuning from the bare transition



Theory-experiment comparison

Main theory assumption: Interaction energy shift is dominated by three-
body correlations!
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e↵

= 232 nK. The red diamonds (blue circles) show data
recorded using method A (B). For reference, the gray trian-
gles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at �17mG
over an extended frequency range. The molecular dissociation
signal (open symbols), recorded with 30⇥ increased rf power,
is clearly separated from the atomic peak (filled symbols).

the K atoms from the noninteracting state |2i into the
interacting state |3i (method A) or vice versa (method
B). With our K atoms initially prepared in the state |2i,
we carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full K|2i population
into K|3i using a short 90-µs preparation pulse without
spectral resolution, and then drive the spectrally resolv-
ing transition with a 1-ms pulse. Our signal in both cases
is the fraction of transferred atoms as a function of the
rf detuning ⌫ � ⌫

0

with respect to the unperturbed tran-
sition frequency ⌫

0

, the latter being determined by the rf
spectroscopy in the absence of dimers.

Sample spectra, at a magnetic detuning of B � B
0

=
�20 mG, are shown in Fig. 2. The spectra recorded by
methods A and B (circles and diamonds in Fig. 2) show
both a broadening and a peak shift, as compared to the
spectra recorded in the absence of dimers (triangles). Al-
though the spectra very close to the FR center reveal
asymmetries in their wings, which depend on the method
applied, their peak shifts and broadenings are consistent
for both methods. In the range of detunings B � B

0

studied in the present work the molecular dissociation
signal is always well separated from the atomic line (in-
set of Fig. 2), and thus does not a↵ect the lineshape of
the atomic signal.

Figure 3 shows the widths and peak shifts [34] of the rf
spectroscopic signal, recorded by method A, as a function
of B � B

0

for our three values of T
e↵

. When the FR
center is approached, the spectrum broadens and its peak
shifts from a positive to a negative rf detuning. With
increasing temperature, the corresponding zero crossing
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FIG. 3: Widths (blue triangles) and peak shifts (red circles)
extracted from the rf spectra as a function of the magnetic
field detuning B � B

0

for the three di↵erent values of T
e↵

.
The lines are the corresponding theoretical predictions. To
account for fluctuations in the dimer number of di↵erent spec-
tra, the widths and peak shifts are scaled to a dimer number
of 15, 000, which is typical for all spectra.

shows a trend to move towards larger detunings.
We interpret the obtained results in the framework of

the impact theory of pressure-induced e↵ects on spec-
tral lines, which assumes the collisions to be e↵ectively
instantaneous. This theory predicts Lorentzian profiles
centered near the unperturbed frequency ⌫

0

whose line
shifts and broadenings are proportional to the real and
imaginary parts of the thermally averaged atom-dimer
forward scattering amplitude f(0) [27–29], respectively.
The real part of f(0) shifts the energy of the K atoms,
causing an average shift in the frequency of their peak
rf response of �⌫ = �~n̄

D

Rehf(0)i/µ
3

, where hf(0)i de-
notes the thermal average of f(0) over all atom-dimer
collision energies E

coll

. The red solid lines in Fig. 3 show
the theoretical results for �⌫ for the respective molecule
densities and collision energies. The optical theorem
relates the imaginary part of f(0) to the average elas-
tic scattering rate ⌧�1 as ⌧�1 = 4⇡~n̄

D

Imhf(0)i/µ
3

.
The resulting finite lifetime ⌧ of the atoms’ wavepackets
causes Lorentzian broadening with a full-width at half-
maximum (FWHM) 1/2⇡⌧ . The blue solid lines in Fig. 3
show the predicted FWHM, including additional broad-
ening due to the finite duration of our rf pulse [35].

The collisional broadening yields information on the
elastic scattering rate. At typical detunings of B�B

0

⇡
�20 mG, our data show an elastic scattering rate of the
order of 1/(100 µs). A comparison with the observed de-
cay rate of about 1/(5 ms) reveals a ratio of elastic to
inelastic collisions of at least 50.

The comparison between the experimentally observed
and the theoretically calculated line shifts and broad-
enings shows remarkable agreement over the whole pa-

Optical theorem:!
!
!
Lorentzian broadening with FWHM

to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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FIG. 2 (color online). Sample rf spectra taken at B − B0 ¼
−20 mG at Teff ¼ 232 nK. The red diamonds (blue circles) show
data recorded using method A (B). For reference, the gray
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with a Gaussian fit (gray line). Inset: Spectrum at −17 mG over
an extended frequency range. The molecular dissociation signal
(open symbols), recorded with 30× increased rf power, is clearly
separated from the atomic peak (filled symbols).
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to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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−20 mG at Teff ¼ 232 nK. The red diamonds (blue circles) show
data recorded using method A (B). For reference, the gray
triangles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at −17 mG over
an extended frequency range. The molecular dissociation signal
(open symbols), recorded with 30× increased rf power, is clearly
separated from the atomic peak (filled symbols).
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(additional broadening due to finite duration of RF pulse)

Impact theory of pressure-induced 
effects on spectral lines:!

to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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−20 mG at Teff ¼ 232 nK. The red diamonds (blue circles) show
data recorded using method A (B). For reference, the gray
triangles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at −17 mG over
an extended frequency range. The molecular dissociation signal
(open symbols), recorded with 30× increased rf power, is clearly
separated from the atomic peak (filled symbols).
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cation, where the exchange of the electron leads to a
symmetric bound state and an antisymmetric unbound state
[28]. In our experiment, the heavy particles are identical
fermions, making the atom-dimer interaction channel
dependent. The symmetric (antisymmetric) state corre-
sponds to odd (even) values of the total angular momentum
l [26]. In Fig. 1(a), we plot the total effective potentials
U! þ Ucb (solid lines) and the bare centrifugal barriers
Ucb ¼ lðlþ 1Þℏ2=m↑R2 (dashed lines) for l ¼ 0, 1, and 2
(i.e., s-, p-, and d-wave channels) for typical experimental
conditions. At distances on the order of typical de Broglie
wavelength, U! can be comparable to Ucb and we expect
significant interaction effects in nonzero partial waves.
The relevant quantity that characterizes the net effect of

all partial waves is the atom-dimer forward scattering
amplitude [29–31]

fð0Þ ¼
X∞

l¼0

ð2lþ 1Þ
!
sin 2δlðkcollÞ

2kcoll
þ i

sin2δlðkcollÞ
kcoll

"
; (1)

where kcoll ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ3Ecoll

p
=ℏ is the wave number associated

with the relative atom-dimer motion and μ3 is the reduced
atom-dimer mass. The phase shifts δl for the three lowest
partial waves have been computed in Ref. [26], and here,
we extend the result to higher ones since they give
significant contributions [32]. In Fig. 1(b), we show the
resulting −Re fð0Þ as a function of the collision energy
Ecoll for the same conditions as in Fig. 1(a). In the limit of
Ecoll → 0, the quantity −Re fð0Þ corresponds to the atom-
dimer s-wave scattering length. At Ecoll ≪ 0.1Eb, with Eb
being the dimer binding energy, s-wave scattering (dashed
line) dominates and the net interaction is repul-
sive, −Re fð0Þ > 0.
For Ecoll ≳ 0.1Eb, higher partial-wave contributions lead

to a sign reversal of Re fð0Þ, changing the character of the
interaction from repulsive into attractive. This sign reversal
also appears if, at a fixed collision energy, the magnetic
detuning from the FR center is varied, see Fig. 1(c). In the
realistic example of Fig. 1(c), the sign reversal takes place
at a magnetic detuning of B − B0 ¼ −53 mG, where the
binding energy is Eb=kB ≈ 3.1 μK, corresponding to
roughly ten times the collision energy Ecoll=kB ¼
350 nK. The theory lines in Fig. 1(c) stop close to the
FR center at the magnetic field detuning where jEbj ¼ Ecoll
(dotted line), beyond which the inelastic channel of colli-
sional dimer dissociation opens up.
The starting point of our experiments is an optically

trapped, near-degenerate Fermi-Fermi mixture of typically
4 × 104 40K atoms and 1 × 105 6Li atoms. The preparation
procedures are described in our previous work [24,33]. We
choose a particular FR that occurs between Li atoms in the
lowest Zeeman sublevel Lij1i (f ¼ 1=2, mf ¼ þ1=2) and
K atoms in the third-to-lowest sublevel Kj3i (f ¼ 9=2,
mf ¼ −5=2) [34]. The s-wave interspecies scattering
length a can be magnetically tuned as a ¼ abg½1 − Δ=ðB −
B0Þ' with abg ¼ 63:0 a0 (a0 ¼ 1 Bohr’s radius) and Δ ¼
880 mG [34]. The resonance is rather narrow, as charac-
terized by the length parameter R( ¼ 2700 a0 [35]. The
position of the FR center near B ≈ 154:7 G depends on
the trap setting, as it includes small shifts induced by the
trapping light. For each trap setting, we have calibrated the
FR center B0 with ≤ 2 mG accuracy [32].
We create an atom-dimer mixture by a Feshbach ramp

across the resonance and by subsequent purification and
spin-manipulation techniques [32]. While the dimers are
formed in the Lij1i-Kj3i spin channel, we initially prepare
the free atoms in the second-to-lowest spin state Kj2i
(f ¼ 9=2, mf ¼ −7=2), for which the interaction with the
dimers is negligible. The total number of dimers and atoms
is 1.5 × 104 and 7 × 103, respectively. The interspecies
attraction during the Feshbach ramp results in a collective
oscillation of the dimer cloud, which we can take into
account by introducing an effective temperature Teff [32].
We use three different trap settings, for which
Teff ¼ 165 nK, 232 nK, and 370 nK. This corresponds
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FIG. 1 (color online). Interaction between 40K atoms and
6Li40K dimers near the 155 G interspecies FR. (a) Total inter-
action potentials as a function of the distance R between the two
K atoms for the s, p, and d channels (dashed curves with labels s0,
p0, d0 refer to the unmodified centrifugal barriers). Here we have
chosen a magnetic detuning of B − B0 ¼ −16 mG, correspond-
ing to an s-wave scattering length of a ¼ 3500 a0 and to a dimer
binding energy of Eb=kB ¼ 600 nK. (b) Real part of the forward-
scattering amplitude fð0Þ as a function of the collision energy
Ecoll (solid line) in comparison with the s-wave contribution
(dashed line). (c) Same as in (b), but as a function of the magnetic
detuning B − B0 for a fixed collision energy Ecoll=kB ¼ 350 nK.
The dotted line indicates the dimer breakup threshold, Ecoll ¼ Eb.
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to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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FIG. 2 (color online). Sample rf spectra taken at B − B0 ¼
−20 mG at Teff ¼ 232 nK. The red diamonds (blue circles) show
data recorded using method A (B). For reference, the gray
triangles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at −17 mG over
an extended frequency range. The molecular dissociation signal
(open symbols), recorded with 30× increased rf power, is clearly
separated from the atomic peak (filled symbols).
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FIG. 3 (color online). Widths (blue triangles) and peak shifts
(red circles) extracted from the rf spectra as a function of the
magnetic field detuning B − B0 for the three different values of
Teff . The lines are the corresponding theoretical predictions. To
account for fluctuations in the dimer number of different spectra,
the widths and peak shifts are scaled to a dimer number of 15 000,
which is typical for all spectra.
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to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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to mean dimer densities as experienced by the atoms
of n̄D ¼ 5.2 × 1011 cm−3, 8.2 × 1011 cm−3, and 1.4×
1012 cm−3, respectively.
To investigate the interaction between the Kj3i atoms

and the Lij1iKj3i dimers, we carry out rf spectroscopy.
This can be done in two different ways, either by driving
the K atoms from the noninteracting state j2i into the
interacting state j3i (method A) or vice versa (method B).
With our K atoms initially prepared in the state j2i, we
carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full Kj2i population into
Kj3i using a short 90– μs preparation pulse without
spectral resolution, and then drive the spectrally resolving
transition with a 1-ms pulse. Our signal in both cases is the
fraction of transferred atoms as a function of the rf detuning
ν − ν0 with respect to the unperturbed transition frequency
ν0, the latter being determined by the rf spectroscopy in the
absence of dimers.
Sample spectra, at a magnetic detuning of

B − B0 ¼ −20 mG, are shown in Fig. 2. The spectra
recorded by methods A and B (circles and diamonds in
Fig. 2) show both a broadening and a peak shift, as
compared to the spectra recorded in the absence of dimers
(triangles). Although the spectra very close to the FR center
reveal asymmetries in their wings, which depend on the
method applied, their peak shifts and broadenings are
consistent for both methods. In the range of detunings B −
B0 studied in the present Letter, the molecular dissociation
signal is always well separated from the atomic line (inset
of Fig. 2), and thus, does not affect the line shape of the
atomic signal.

Figure 3 shows the widths and peak shifts [36] of the rf
spectroscopic signal, recorded by method A, as a function
of B − B0 for our three values of Teff . When the FR center
is approached, the spectrum broadens and its peak shifts
from a positive to a negative rf detuning. With increasing
temperature, the corresponding zero crossing shows a trend
to move towards larger detunings.
We interpret the obtained results in the framework of the

impact theory of pressure-induced effects on spectral lines,
which assumes the collisions to be effectively instanta-
neous. This theory predicts Lorentzian profiles centered
near the unperturbed frequency ν0 whose line shifts and
broadenings are proportional to the real and imaginary parts
of the thermally averaged atom-dimer forward scattering
amplitude fð0Þ [29–31], respectively. The real part of fð0Þ
shifts the energy of the K atoms, causing an average
shift in the frequency of their peak rf response of
δν ¼ −ℏn̄DRe hfð0Þi=μ3, where hfð0Þi denotes the ther-
mal average of fð0Þ over all atom-dimer collision energies
Ecoll. The red solid lines in Fig. 3 show the theoretical
results for δν for the respective molecule densities and
collision energies. The optical theorem relates the imagi-
nary part of fð0Þ to the average elastic scattering rate τ−1 as
τ−1 ¼ 4πℏn̄DIm hfð0Þi=μ3. The resulting finite lifetime τ
of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1=ð2πτÞ. The
blue solid lines in Fig. 3 show the predicted FWHM,
including additional broadening due to the finite duration
of our rf pulse [37].
The collisional broadening yields information on

the elastic scattering rate. At typical detunings of
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Theory: No adjustable parameters
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FIG. 2: Sample rf spectra taken at B � B
0

= �20mG at
T

e↵

= 232 nK. The red diamonds (blue circles) show data
recorded using method A (B). For reference, the gray trian-
gles show data recorded in the absence of dimers together
with a Gaussian fit (gray line). Inset: Spectrum at �17mG
over an extended frequency range. The molecular dissociation
signal (open symbols), recorded with 30⇥ increased rf power,
is clearly separated from the atomic peak (filled symbols).

the K atoms from the noninteracting state |2i into the
interacting state |3i (method A) or vice versa (method
B). With our K atoms initially prepared in the state |2i,
we carry out method A by applying a 1-ms rf pulse. For
method B, we rapidly transfer the full K|2i population
into K|3i using a short 90-µs preparation pulse without
spectral resolution, and then drive the spectrally resolv-
ing transition with a 1-ms pulse. Our signal in both cases
is the fraction of transferred atoms as a function of the
rf detuning ⌫ � ⌫

0

with respect to the unperturbed tran-
sition frequency ⌫

0

, the latter being determined by the rf
spectroscopy in the absence of dimers.

Sample spectra, at a magnetic detuning of B � B
0

=
�20 mG, are shown in Fig. 2. The spectra recorded by
methods A and B (circles and diamonds in Fig. 2) show
both a broadening and a peak shift, as compared to the
spectra recorded in the absence of dimers (triangles). Al-
though the spectra very close to the FR center reveal
asymmetries in their wings, which depend on the method
applied, their peak shifts and broadenings are consistent
for both methods. In the range of detunings B � B

0

studied in the present work the molecular dissociation
signal is always well separated from the atomic line (in-
set of Fig. 2), and thus does not a↵ect the lineshape of
the atomic signal.

Figure 3 shows the widths and peak shifts [34] of the rf
spectroscopic signal, recorded by method A, as a function
of B � B

0

for our three values of T
e↵

. When the FR
center is approached, the spectrum broadens and its peak
shifts from a positive to a negative rf detuning. With
increasing temperature, the corresponding zero crossing
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FIG. 3: Widths (blue triangles) and peak shifts (red circles)
extracted from the rf spectra as a function of the magnetic
field detuning B � B

0

for the three di↵erent values of T
e↵

.
The lines are the corresponding theoretical predictions. To
account for fluctuations in the dimer number of di↵erent spec-
tra, the widths and peak shifts are scaled to a dimer number
of 15, 000, which is typical for all spectra.

shows a trend to move towards larger detunings.
We interpret the obtained results in the framework of

the impact theory of pressure-induced e↵ects on spec-
tral lines, which assumes the collisions to be e↵ectively
instantaneous. This theory predicts Lorentzian profiles
centered near the unperturbed frequency ⌫

0

whose line
shifts and broadenings are proportional to the real and
imaginary parts of the thermally averaged atom-dimer
forward scattering amplitude f(0) [27–29], respectively.
The real part of f(0) shifts the energy of the K atoms,
causing an average shift in the frequency of their peak
rf response of �⌫ = �~n̄

D

Rehf(0)i/µ
3

, where hf(0)i de-
notes the thermal average of f(0) over all atom-dimer
collision energies E

coll

. The red solid lines in Fig. 3 show
the theoretical results for �⌫ for the respective molecule
densities and collision energies. The optical theorem
relates the imaginary part of f(0) to the average elas-
tic scattering rate ⌧�1 as ⌧�1 = 4⇡~n̄

D

Imhf(0)i/µ
3

.
The resulting finite lifetime ⌧ of the atoms’ wavepackets
causes Lorentzian broadening with a full-width at half-
maximum (FWHM) 1/2⇡⌧ . The blue solid lines in Fig. 3
show the predicted FWHM, including additional broad-
ening due to the finite duration of our rf pulse [35].

The collisional broadening yields information on the
elastic scattering rate. At typical detunings of B�B

0

⇡
�20 mG, our data show an elastic scattering rate of the
order of 1/(100 µs). A comparison with the observed de-
cay rate of about 1/(5 ms) reveals a ratio of elastic to
inelastic collisions of at least 50.

The comparison between the experimentally observed
and the theoretically calculated line shifts and broad-
enings shows remarkable agreement over the whole pa-
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rameter range investigated. The somewhat asymmetric
spectral wings are beyond the impact theory [36] and thus
cannot be reproduced. Indeed, a substantial contribution
to the wings comes from the photon emission/absorption
events for which K atoms find themselves inside the
atom-dimer interaction range, i.e. during atom-dimer col-

lisions, which are assumed instantaneous in the impact
theory. It is then understood that, for example, the left
“attractive” wing of the B-spectrum is larger than that
of the A-spectrum. Since in the former case potassium
atoms are initially attracted by dimers, the probability
to find them near dimers is enhanced. E↵ects that are
beyond the impact theory become more pronounced as
we approach the FR because of the increased atom-dimer
collision time.

We finally discuss the interaction strength in our mix-
ture in terms of �Rehf(0)i, which characterizes the in-
teractions in a way that is analogous to a in the s-
wave mean-field picture. We use the experimental peak-
shift data from Fig. 3 to extract �Rehf(0)i and plot
it together with the corresponding theoretical results in
Fig. 4. The sign reversal shows up for values of a be-
ing somewhat below 2000 a

0

, with the expected temper-
ature dependence of the zero crossing. For a ⇡ 4000 a

0

,
the attractive interaction already corresponds to about
�2000 a

0

. For even larger values of a, we would enter
the more complicated regime of collisional dimer dissoci-
ation, which is beyond the scope of the present investiga-
tions. We note, however, that rf spectra acquired more
deeply in the strongly interacting regime show strongly
asymmetric lineshapes and have peaks shifted to even
larger negative detunings.

In conclusion, we have demonstrated a three-body phe-

nomenon in a mixture of heavy and light fermions, which
leads to a sign reversal of the atom-dimer interaction
near a FR, turning repulsion into a strong attraction.
The e↵ect is due to higher partial-wave (mainly p-wave)
contributions, which are present even at very low colli-
sion energies in the nanokelvin regime. Remarkably, this
few-body e↵ect changes the character of the interaction
without introducing detrimental losses. In contrast to
few-body phenomena of the Efimov type [37], the cen-
trifugal barrier still protects the atoms from approaching
each other too closely. The resulting collisional stability
is a promising feature for many-body physics in Fermi-
Fermi mixtures.

Our work lays the ground for a wealth of future studies
on mass-imbalanced fermionic mixtures in the strongly
interacting regime. Asymmetric phases with coexisting
dimers and heavy atoms are energetically favored in a
way not present in mass-balanced systems [12]. Related
mechanisms in quantum-degenerate situations may lead
to exotic new many-body e↵ects, including the emer-
gence of imbalanced superfluids [?], the condensation into
non-zero momentum states [11], and the appearance of
p-wave superfluidity of heavy atoms mediated by light
atoms [18]. On the few-body side, a direct prospect for
our K-Li system is to dimensionally confine the K atoms
in an optical lattice, which is predicted to lead to the
formation of stable trimer states [23].
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• The normally repulsive 
atom-dimer interaction 
is turned into strong 
attraction



Trimers in (quasi) 2D



Confinement induced trimers

Now that we’ve seen enhanced scattering in higher partial waves, 
observing stable trimers is the next goal!

• Critical mass ratio in 3D is 8.2 while in 2D it is 3.3
Kartavtsev & Malykh, J. Phys. B 2007

Pricoupenko and Pedri, PRA 2009

sections in the limit of a wide resonance, or very small
detunings (a ! R"). One can clearly see that the p-wave
contribution dominates everywhere except for very small
". The p-wave phase shift crosses the unitarity line !p ¼
"=2 at " $ 0:1j"0j and stays very close to it at larger
collision energies.

On the top right in Fig. 1 we present the scattering phase
shifts in the case of a Feshbach resonance of finite width.
We see that the narrower the resonance or the larger the
detuning, the weaker the atom-dimer interaction (attractive
p-wave as well as repulsive s-wave). This is consistent
with the fact that the atoms forming the dimer spend more
time in the closed-channel state, the interaction of which
with the other atom is not resonant.

At this point we can conclude that for sufficiently small
detunings R"=a a mixture of K atoms and K-Li dimers
should behave quite differently compared to the case of an
atom-dimer mixture in which dimers are composed of
equal-mass atoms. The resonant character of the p-wave
atom-dimer interaction can be demonstrated, for example,
by colliding with each other two cold clouds of atoms and
molecules and by measuring the angular distribution of
scattered atoms or molecules [20].

We see that the atom-dimer scattering properties are
sensitive to the detuning R"=a. However, for the Li-K
mass ratio, increasing this parameter can only weaken
the atom-dimer interaction. Aside from the scaling with
j"0j, is it possible to shift the position of the p-wave atom-
dimer resonance down and eventually turn it into a trimer
state by changing parameters of the system? According to
Ref. [15] this can be achieved by increasing the mass ratio
to the value M=m $ 8:2. Another approach, not involving
changes in atom masses, is based on the following facts. In
the 2D case the K-K-Li system with zero-range interac-
tions has one bound trimer state with unit angular momen-
tum [21], and in the case of mixed dimensions, when K is
two-dimensional and Li is three-dimensional, the 3-body
system exhibits the Efimov effect; i.e., it supports an infinte
number of trimer states [22,23]. Therefore, one can assume
that a gradual increase of an external quasi-2D confine-
ment does shift the position of the atom-dimer resonance
and turns it into a trimer state.

To answer the question of how strong the confinement
should be, we return to Eq. (3) and solve it in the inhomo-
geneous case. Note that all the operators in Eq. (3) con-
serve the planar center-of-mass momentum as well as the
planar angular momentum l, and, therefore, f essentially
depends only on three coordinates: fðR1;R2Þ ¼
fðZ1; Z2; j!1 ' !2jÞ expðil#Þ, where Zi and !i are the
axial and radial components of Ri, and # is the angle of
!1 ' !2. Besides, in the case ! ¼ ! the center-of-mass
motion in the axial direction separates and the configura-
tion space of Eq. (3) becomes two-dimensional.

Figure 2 shows the trimer formation thresholds for ! ¼
! (solid line) and ! ¼ 0 (dashed line), and we introduce

the heavy atom oscillator length, l0 ¼ 1=
ffiffiffiffiffiffiffiffiffi
M!

p
. In both

cases the critical confinement length for R" ¼ 0 is given by
l0=a $ 1:3 and then rapidly decreases with R". The close-
ness of the two curves for a & 2l0 is explained by the fact
that the dimer size, (a, is smaller than the light atom

oscillator length, l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M!=m!

p
, and the dimer and trimer

states are fairly insensitive to the light atom confinement.
Accordingly, this part of the diagram should be quite
universal for 0 ) ! & !.
On the negative side of the resonance the two cases

differ significantly. For finite!, there always exists a dimer
state whose size exponentially increases with the detuning
jl0=aj (a < 0). The problem then becomes essentially 2D
(cf. [21]), and for sufficiently small R" there is one trimer
state with unit angular momentum (vertically shaded area).
In the case ! ¼ 0 there exists a dimer threshold (dotted
line) where the dimer size diverges and the resulting
mixed-dimensional 2D-3D system exhibits the Efimov
physics [22,23]. We find, however, that the corresponding
region in the vicinity of this line is 7 orders of magnitude
narrower than the horizontally shaded area, which indi-
cates a single trimer state.
Let us now discuss realistic values of a, R", and l0,

achievable in ongoing experiments. Hereafter we make @
explicit. For the resonance at B ¼ 114:47ð5Þ G in the
j1=2;þ1=2iLi ' j9=2;þ9=2iK mixture, believed to be
one of the widest of the 6Li-40K system, the width is "B ¼
1:5ð5Þ G [7]. With the background scattering length abg ¼
3 nm and $rel ¼ 1:57$B for the difference in magnetic
moments of the closed and open channels, we have [17]
R" ¼ @2=ð2$abg$rel"BÞ ’ 100 nm. The same value of l0
is achieved for the confinement frequency ! $
2"+ 25 kHz. Then the trimer formation threshold is
reached for a $ 400 nm. Note that Re $ 2:2 nm and the
zero-range approach is well justified.
It is well established [24] that atomic systems close to a

p-wave resonance suffer from very strong losses due to the
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FIG. 2. Phase diagram of the K-K-Li system in an external
quasi-2D confinement. The solid (dashed) line corresponds to
the trimer threshold in the case ! ¼ ! (! ¼ 0). Three atoms
form a bound state in vertically (horizontally) shaded areas. The
dotted line represents the dimer formation threshold in the case
! ¼ 0 (see text).
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!z ' 2⇡ ⇥ 25kHz (well within experimental reach)
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Bound States in a Quasi-Two-Dimensional Fermi Gas
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We consider the problem of N identical fermions of mass m" and one distinguishable particle of mass

m# interacting via short-range interactions in a confined quasi-two-dimensional (quasi-2D) geometry. For

N ¼ 2 and mass ratiosm"=m# < 13:6, we find non-Efimov trimers that smoothly evolve from 2D to 3D. In

the limit of strong 2D confinement, we show that the energy of the N þ 1 system can be approximated by

an effective two-channel model. We use this approximation to solve the 3þ 1 problem and we find that a

bound tetramer can exist for mass ratios m"=m# as low as 5 for strong confinement, thus providing the first

example of a universal, non-Efimov tetramer involving three identical fermions.

DOI: 10.1103/PhysRevLett.110.055304 PACS numbers: 67.85.#d, 05.30.Fk, 34.50.#s

An understanding of the few-body problem can be
important for gaining insight into the many-body system.
In dimensions higher than one, few-body bound states can,
for instance, impact the statistics of the many-body quasi-
particle excitations. Indeed, for fermionic systems, the
two-body bound state is fundamental to the understanding
of the BCS-BEC crossover [1–4], while the existence of
three-body bound states of fermions [5,6] with unequal
masses can lead to dressed trimer quasiparticles in the
highly polarized Fermi gas [7]. Even in one dimension
(1D), few-body bound states can impact the many-body
phase: It has already been shown that one can have a
Luttinger liquid of trimers [8].

In general, attractively interacting bosons readily form
bound clusters, with the celebrated example being the
Efimov effect in 3D [9]. Here, there is a universal hierarchy
of trimer states for resonant short-range interactions, while
clusters of four or more bosons can also form [10–13].
Even in the limit of a 2D geometry, where the Efimov
effect is absent, both trimers [14] and tetramers [15] have
been predicted. On the other hand, bound states of identical
fermions are constrained to have odd angular momentum
owing to Pauli exclusion and thus, even for attractive
interactions, identical fermions are subject to a centrifugal
barrier. For short-range s-wave [16] interactions in 3D,
non-Efimov trimers consisting of two identical fermions
with massm" and one distinguishable particle with massm#
can only exist above the critical mass ratio m"=m# ’ 8:2
[5], while Efimov trimers only appear once m"=m# * 13:6
[17]. However, the existence of larger (N þ 1)-body bound
states involving N > 2 identical fermions remains largely
unknown—it has only recently been shown that Efimov
tetramers exist in 3D [18].

In this Letter, we investigate the problem of N identical
fermions interacting with one distinguishable particle in a
confined quasi-2D geometry, where the centrifugal barrier
is reduced and the binding of fermions should be favored.
Such 2D geometries have recently been realised in

ultracold atomic Fermi gases [19–23], where the fermions
are confined to 2D with an effective harmonic potential. In
addition to allowing one to explore the 2D-3D crossover,
the harmonic confinement can strongly modify the scatter-
ing properties of atoms via confinement-induced reso-
nances [6,24,25]. It has already been demonstrated that
stable non-Efimov trimers can exist for lower mass ratios
m"=m# in quasi-2D [6,26]. Here we show that tetramers
involving N ¼ 3 identical fermions can appear for m"=m#
as low as 5 in quasi-2D (see Fig. 1), thus putting it within
reach of current cold-atom experiments.
We construct the general equations for the bound state

of the N þ 1 system in quasi-2D and we reveal how to
simplify the problem in the case of the trimer (N ¼ 2). In
the limit of strong 2D confinement, we show that theN þ 1
problem can be described by an effective two-channel
model, analogous to that used for Feshbach resonances.
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0 0.1 0.2

FIG. 1 (color online). Critical mass ratio for the appearance of
trimers and tetramers in quasi-2D, where the 2D limit corre-
sponds to !b=!z ! 0. The solid line follows from the solution of
the full three-body quasi-2D problem, Eq. (7). Dashed lines
follow from an effective two-channel model. The vertical dotted
line marks unitarity, where the 3D scattering length diverges.
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Pricoupenko and Pedri, PRA 2010:!
• No trimers for equal masses!
• 1st trimer appears at mass ratio 3.3!
• 2nd trimer appears at 10.4!
• As mass ratio is increased, an ever increasing number 

of trimers appear in the spectrum!
• Trimers are degenerate among  

different partial waves  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We consider the problem of N identical fermions of mass m" and one distinguishable particle of mass

m# interacting via short-range interactions in a confined quasi-two-dimensional (quasi-2D) geometry. For

N ¼ 2 and mass ratiosm"=m# < 13:6, we find non-Efimov trimers that smoothly evolve from 2D to 3D. In

the limit of strong 2D confinement, we show that the energy of the N þ 1 system can be approximated by

an effective two-channel model. We use this approximation to solve the 3þ 1 problem and we find that a

bound tetramer can exist for mass ratios m"=m# as low as 5 for strong confinement, thus providing the first

example of a universal, non-Efimov tetramer involving three identical fermions.
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An understanding of the few-body problem can be
important for gaining insight into the many-body system.
In dimensions higher than one, few-body bound states can,
for instance, impact the statistics of the many-body quasi-
particle excitations. Indeed, for fermionic systems, the
two-body bound state is fundamental to the understanding
of the BCS-BEC crossover [1–4], while the existence of
three-body bound states of fermions [5,6] with unequal
masses can lead to dressed trimer quasiparticles in the
highly polarized Fermi gas [7]. Even in one dimension
(1D), few-body bound states can impact the many-body
phase: It has already been shown that one can have a
Luttinger liquid of trimers [8].

In general, attractively interacting bosons readily form
bound clusters, with the celebrated example being the
Efimov effect in 3D [9]. Here, there is a universal hierarchy
of trimer states for resonant short-range interactions, while
clusters of four or more bosons can also form [10–13].
Even in the limit of a 2D geometry, where the Efimov
effect is absent, both trimers [14] and tetramers [15] have
been predicted. On the other hand, bound states of identical
fermions are constrained to have odd angular momentum
owing to Pauli exclusion and thus, even for attractive
interactions, identical fermions are subject to a centrifugal
barrier. For short-range s-wave [16] interactions in 3D,
non-Efimov trimers consisting of two identical fermions
with massm" and one distinguishable particle with massm#
can only exist above the critical mass ratio m"=m# ’ 8:2
[5], while Efimov trimers only appear once m"=m# * 13:6
[17]. However, the existence of larger (N þ 1)-body bound
states involving N > 2 identical fermions remains largely
unknown—it has only recently been shown that Efimov
tetramers exist in 3D [18].

In this Letter, we investigate the problem of N identical
fermions interacting with one distinguishable particle in a
confined quasi-2D geometry, where the centrifugal barrier
is reduced and the binding of fermions should be favored.
Such 2D geometries have recently been realised in

ultracold atomic Fermi gases [19–23], where the fermions
are confined to 2D with an effective harmonic potential. In
addition to allowing one to explore the 2D-3D crossover,
the harmonic confinement can strongly modify the scatter-
ing properties of atoms via confinement-induced reso-
nances [6,24,25]. It has already been demonstrated that
stable non-Efimov trimers can exist for lower mass ratios
m"=m# in quasi-2D [6,26]. Here we show that tetramers
involving N ¼ 3 identical fermions can appear for m"=m#
as low as 5 in quasi-2D (see Fig. 1), thus putting it within
reach of current cold-atom experiments.
We construct the general equations for the bound state

of the N þ 1 system in quasi-2D and we reveal how to
simplify the problem in the case of the trimer (N ¼ 2). In
the limit of strong 2D confinement, we show that theN þ 1
problem can be described by an effective two-channel
model, analogous to that used for Feshbach resonances.
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FIG. 1 (color online). Critical mass ratio for the appearance of
trimers and tetramers in quasi-2D, where the 2D limit corre-
sponds to !b=!z ! 0. The solid line follows from the solution of
the full three-body quasi-2D problem, Eq. (7). Dashed lines
follow from an effective two-channel model. The vertical dotted
line marks unitarity, where the 3D scattering length diverges.
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We also consider in what follows situations of negative total
energy E only; we thus introduce the momentum q:

E = −h̄2q2

2µ
where q > 0. (20)

The equation satisfied by the functionR(k) is deduced from the
contact condition applied to an interacting pair. For example,
application of Eq. (11) for the pair (2 : M; 3 : mi) of relative
momentum η1 gives

∫
d2η1

(2π )2

[
⟨{ki}|"⟩ − 2πR(k1)

η2
1 + #2

]
= R(k1)

f2D(i#)
. (21)

For E < 0, Eq. (21) can be simplified as

R(k)
f2D(κk)

= η

∫
d2u

(2π )2

2πR(u)
u2 + k2 + 2yk.u + q2

, (22)

where the variable y is a function of the mass ratio:

y = M

M + mi

= x

1 + x
, (23)

and also we have introduced the collisional momentum:

κk = i
√

(1 − y2)k2 + q2. (24)

The physical interpretation of Eq. (24) proceeds as follows.
The scattering process between the two interacting particles
(2,3) occurs in their center-of-mass frame at a kinetic energy
E

(2,3)
col which verifies

E = E
(2,3)
col + h̄2(k2 + k3)2

2(M + mi)
+ h̄2

2M
k2

1. (25)

In Eq. (25) we have used the fact that, as mentioned previously,
the third atom (1 in this case) does not interact with an atom
of the pair (2,3) during the scattering process. Hence, using
Eqs. (24) and (25) the collisional energy of the pair can be
written as

E
(2,3)
col =

h̄2κ2
k1

2µ
< 0, (26)

and κk1 is the relative momentum of the pair (2,3) of
total momentum (−k1). Equation (22) is the 2D analog
for the (1 + 2)-body problem of the so-called Skorniakov
Ter-Martirosian equation [27]. For three identical bosons in
2D where R1↼⇁2 = R1↼⇁3 = R2↼⇁3, a similar eigenequation
has been already derived in [21,22,28] [in that case, η = 2 and
y = 1/2 in Eq. (22)]. An analogous integral equation has been
obtained in the context of quasi-2D heteronuclear trimers in
Ref. [29] where the third direction is also taken into account.

IV. (1 + 2)-BODY BOUND STATES

In this Sec. V, we show that Eq. (22) supports the existence
of trimers which can be considered as shallow in the regime
defined by Eq. (16). We denote their binding energy by Etrim:

E = −Etrim < −Edim. (27)

The kernel in Eq. (22) has the cylindrical symmetry, hence
trimer states can be labeled by a radial quantum number
and an orbital quantum number denoted below by m. We
thus expand the source amplitude on the m partial waves:
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FIG. 1. Trimers’ spectrum for two identical bosons of mass M

interacting with a third atom of mass mi . The binding energies Etrim

are expressed in units of the heteronuclear dimer’s energy Edim in
Eq. (14), as a function of the mass ratio x = M/mi . One can notice
that away from threshold, the bound state energy of an m trimer is
quasidegenerate with the energy of a trimer with a lower m.

R(k) =
∑∞

m=0 cos(mθ )Rm(k), with θ = ̸ (êx,k). The angular
integration of the kernel can be performed for each m partial
wave, and one obtains the following integral equation:

Rm(k)
f2D(κk)

= η(−1)m

2ky

∫ ∞

0
du

(t −
√

t2 − 1)m√
t2 − 1

Rm(u), (28)

where t = (u2 + k2 + q2)/(2yku) > 1. Equations (24) and
(27) imply that f2D(κk) is positive. Whence, for η = +1 (atoms
of mass M are bosons) Eq. (28) admits solutions for m even
only, while for η = −1 (identical atoms are fermions) the
orbital quantum number of the trimers is necessarily odd. We
have computed the spectrum for mass ratios x up to 200; such
high values can be reached experimentally using an optical
lattice [14].

Bosonic spectrum. The bosonic spectrum is plotted in Fig. 1.
For x ! 200, we have found trimers with m ! 8 [30] and
the deepest trimer is in the m = 0 sector. The apparition
thresholds of the three first excited trimers in the m = 0 sector
are located at x = 1.77, x = 8.34, and x = 18.27. Trimers
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FIG. 2. Same as Fig. 1 for two identical fermions of mass M

interacting with a third atom of mass mi .
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Tan & Nishida, Few-body Systems 2011:!
• No Efimov effect in 2D, as interaction  

vanishes at short range!
(caveat: Meera’s talk on Friday…)

Pricoupenko & Pedri, PRA 2010
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
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= 2K0
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In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]
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2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad
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� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
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In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B
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R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]
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with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2
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wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to
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in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)

So the spectrum is simply that of a 
hydrogen atom confined to 2D - 
different partial waves have the 
same spectrum
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
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R
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⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad
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�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
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� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)
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FIG. 3: (Color online) Trimer energies (solid lines) as a func-
tion of mass ratio. Our results match those of Ref. [17].
Dashed lines are the hydrogen-like spectrum, Eq. (7).

aad ⌅ 1.7a2D [25]. This disagreement with our exact
few-body calculation is most likely because the equation
of state has a complicated dependence on aad, making
the determination of aad di⌅cult. For large m⌅/m⇧, we
find aad ⌅ 0.845a2D ln(

 
2e�/2m⌅/m⇧), with the Euler

constant � ⌅ 0.577. A logarithmic dependence on mass
ratio was also found in the 3D case [26].

We now turn to trimers, which formally appear as an
energy pole in Eq. (2) for odd partial waves. The spec-
trum of p-wave trimers as a function of mass ratio is
shown in Fig. 3. The appearance of trimers at large
mass ratios in 2D may be elucidated by applying the
Born-Oppenheimer approximation which shows that the
e⇥ective potential between heavy fermionic atoms medi-
ated by the light atom at distances � a2D is similar to the
electron potential in a hydrogen atom confined to 2D. To
see this, assume that the state of the light atom at posi-
tion r adiabatically adjusts itself to the positions ±R/2
of the heavy atoms. Atom-dimer scattering in odd partial
wave channels is described by the symmetric light-atom
wavefunction [26]

�R(r) ⌃ K0(⌅(R)|r�R/2|) + K0(⌅(R)|r + R/2|), (6)

where the modified Bessel function of the second kind
K0(⌅r) is the decaying solution of the free Schrödinger
equation with energy ⇤(R) = �⌅(R)2/2m⇧. The sin-
gularities at the positions of the heavy atoms satisfy
the Bethe-Peierls boundary condition in 2D: For r̃ =
r ± R/2 this is [r̃(�)⌃r̃/�]r̃⇤0 = 1/ ln(r̃e�/2a2D). Using
the asymptotic form, K0(x) x⇤0= � ln(xe�/2), we then

obtain the condition ln
�
� ⇥(R)

⇤B

⇥
= 2K0

⇤⌥
� ⇥(R)

⇤B

R
a2D

⌅
.

In the second stage of the Born-Oppenheimer approx-
imation, the Schrödinger equation of the heavy parti-
cles is solved using ⇤(R) as the e⇥ective interaction po-
tential. In the limit R ⇧ a2D, the potential becomes
⇤(R) ⌅ � 2⇤B

e�
a2D
R . Thus, the spectrum of the deepest

bound trimer states is hydrogen-like and given by the
well-known result (appropriately shifted by the dimer

binding energy) [27]

En = � m⌅
e2�m⇧

 B

2(n + 1/2)2
�  B , (7)

with integer quantum number n ⇤ ⌘. This also implies
that deeply bound trimers with di⇥erent ⌘ are degener-
ate, as was found in Ref. [17]. Furthermore, we note that
the wavefunction (6), and thus the above arguments, ap-
ply equally well to heteronuclear bosons in even partial
waves.

A similar scenario for large mass ratios was recently
predicted [28] in the context of a 3D Fermi gas close to a
narrow interspecies Feshbach resonance, characterized by
a large e⇥ective range R⇥. The e⇥ective interaction be-
tween the two heavy fermions mediated by the light atom
goes like �1/R2 in the range R⇥ ⇧ R ⇧ as, while at
shorter ranges, R ⇧ R⇥, this behavior is replaced by an
attractive 1/R potential [29], leading to a crossover from
an Efimovian spectrum for the weakly bound trimers to
a hydrogen-like spectrum for the deepest trimers [28].

Referring to Fig. 3, for the deepest bound states, we
find very good agreement with the hydrogen-like spec-
trum (7). At a given mass ratio, the potential only sup-
ports a finite number of bound states proportional to the
number of nodes of the heavy-atom wavefunction that
fit in the hydrogen-like part of the potential, R � a2D.
We estimate this number by noting that in this regime
the wavefunction of heavy atoms is proportional to the
Bessel function J2�(2

⌃
e��(m⌅/m⇧)R/a2D). Since the

wavefunction acquires an additional node each time the
argument increases by ⌃, the number of trimers is pro-
portional to

⌃
m⌅/m⇧. This feature is clearly observed

in Fig. 3.
Turning now to inelastic scattering, three-body recom-

bination is the process whereby two atoms bind into a
shallow dimer with the released energy carried away by a
third atom. To extract the recombination rate from the
atom-dimer scattering amplitude, we consider the recom-
bination process in reverse. This is illustrated in Fig. 1(b)
which shows how the recombination process is described
by the same diagram as inelastic atom-dimer scattering –
a process in which no dimer remains after the scattering.
The total recombination rate is therefore proportional
to the atom-dimer inelastic scattering cross section [30]
K(E) = vad

�ad
�aaa

⇧
� ⌥

inel
� (E), where the atom-dimer rel-

ative speed is vad = k/µ3 and the sum is over all partial
waves. The phase space of an atom-dimer pair �ad and
three atoms �aaa are given in the Supplemental Mate-
rial [20]. The inelastic scattering cross section ⌥inel

� is
obtained by subtracting the elastic from the total cross
section, which is related to the imaginary part of the
scattering amplitude through the optical theorem

⌥tot
� (E) = �1

k
⌥[f�(k)](2� ⇥�,0). (8)

Each time the argument 
increases by     an extra node 
appears

# bound states ~
see also Bellotti et al, J. Phys. B: At. Mol. Opt. Phys. (2013)
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Consequences: Polarized heteronuclear Fermi gas in 2D
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FIG. 4: (Color online) Ground state phase diagram for an
impurity atom attractively interacting with a 2D Fermi gas.
Phase boundaries are calculated using the “undressed” wave
functions of Sec. III. The FFLO phase corresponds to the
molecule M2(p) with non-zero momentum p in the ground
state. The behavior of the momentum at which the energy is
at its minimum is given by Eq. (6) and it goes smoothly to
zero at the dashed (red) line given by m�/m⇥ = 1/(kF a2D)

2.
We find that small slivers of FFLO and trimer phases remain
as � ⇥ ⌅. Note, also, that the trimer exists above the critical
mass ratio r ⇤ 3.33 in the limit � ⇥ �⌅, which agrees with
the result for the 3-body bound state in a vacuum [25].

D. The N + 1 problem

Like the bare wavefunctions of Sec. III, the above ap-
proach may be extended to the study of the bound states
of the impurity and N spin-⌅ fermions. The variational
wave function is dressed by one particle-hole pair exci-
tation of the Fermi sea and the minimization procedure
carried out as above. This leads to two coupled integral
equations similar to Eqs. (22) and (23) for the trimer
above. The equations are derived in Appendix B using
the diagrammatic technique. We shall not attempt here
to solve for the energy of the tetramer or bound states
containing even more particles.

V. PHASE DIAGRAMS

We now determine the ground state for the single
impurity and the correponding binding transitions. In
Fig. 4 we show the phase diagram for the “undressed”
wave functions of Sec. III. Surprisingly, we find that a
molecule existing at a given mass ratio r < 3.33 must al-
ways first bind an extra spin-up fermion to form a trimer
before it can unbind into a polaron. This appears to be
an artifact of the approximation. However, it does signify
the importance of three-body correlations for all mass ra-
tios in 2D. Additionally, we find a sliver of FFLO phase,
corresponding to a finite momentum molecule, on the
border of the zero-momentum molecule and the trimer
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FIG. 5: (Color online) Ground state phase diagram for a
spin-down impurity atom immersed in a 2D Fermi gas, with
phase boundaries calculated using the dressed wave functions
of Sec. IV. The FFLO phase corresponds to the molecule
M4(p) with non-zero momentum p in the ground state. See
Fig. 3 for the behavior of p as a function of � across the FFLO
region.

phases. The large region of trimer phase below r ⇧ 3.33
appears to result from the fact that the FFLO molecule
is unstable towards binding an extra ⌅ particle, like in
3D [20]. Whereas trimers are favored by the medium,
we find that tetramers consisting of three spin-⌅ parti-
cles and the impurity appear to be disfavored, i.e. the
phase transition is found to occur at larger mass ratios
in the medium than the critical mass ratio of r = 5.0 in
vacuum [24]. This suggests that four-body correlations
are not as important in the many-body system at low
mass ratios as might be initially expected.

Next, Fig. 5 shows our phase diagram obtained using
wave functions dressed by one particle-hole pair – see
Sec. IV. As above, we find that the trimer is favored
by the Fermi sea, but it now does not appear below a
mass ratio of r ⇥ 2.1. Additionally, we find that the
FFLO region, where the ground-state molecule has finite
momentum, is enlarged at this level of approximation,
making it possible that the FFLO phase may be observed
in this system.

We expect this phase diagram to be qualitatively cor-
rect also across the regime of strong many-body cor-
rections, |�| ⇤ 1, as contributions from two or more
particle-hole pairs cancel approximately [41] and parts
of the phase diagram are fixed by perturbative and ex-
act calculations. In the limit of large negative �, the
dressing of the molecule and trimer by one particle-hole
pair yields the correct form of the first-order correction
to their energy due to the interaction with the Fermi
sea in a perturbative expansion in 1/|�|. This shift is
�E/EF� = � m�

2mR� , where mR is the reduced mass of

the ⌅ atom and a molecule (trimer), and arises from the
molecule (trimer) exciting a ⌅-atom out of the Fermi sea,

Parish & J.L., PRA 2013

See also Mathy et al., PRL 2011 (3D calculation)

• Trimer exists at lower mass ratios in 
the polarized Fermi gas  !

• FFLO phase becomes possible at 
finite polarization



Conclusions & outlook

• Strong “stable” long-range p-wave interactions in a quantum gas!

• Heteronuclear mixture with short-range interactions!

• Experimental observation of strong attraction!

• Hydrogenic spectrum of trimers in 2D!

!

• Outlook:!

• Trimers à la Kartavtsev and Malykh, J. Phys. B 2007, by 
confining K atoms to quasi-2D!

• FFLO state in a polarised gas

Thank you!
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