

Strong atom-dimer attraction in a Fermi-Fermi mixture

Jesper Levinsen, Aarhus Institute of Advanced Studies

Collaboration with Dmitry Petrov (Université Paris Sud) Jook Walraven (University of Amsterdam) Tobias Tiecke (Harvard) Rudi Grimm & the FeLiKx team (Innsbruck) Vudtiwat Ngampruetikorn (Cambridge) Meera Parish (University College London)

Tor was monociarsen

Tunability of a cold atomic gas

the the second where the

$$a(B) = a_{\rm bg} [1 - \Delta B / (B - B_0)]$$

• Dimensionality

• Population

A Bridge

Goal: Interesting phases with applications to the solid state

p-wave pairing in a Fermi gas

• Whereas *s*-wave interactions usually dominate low temperature physics, *p*-wave pairing appears naturally for *identical* fermions

- *p*-wave superfluids are highly sought because of their unusual properties
 - The $p_x + ip_y$ phase is predicted to be topological in 2D
 - Supports gapless Majorana mode on boundary to vacuum
 - Vortices obey non-Abelian statistics
 - Applications in topologically protected quantum computing

p-wave pairing in a Fermi gas

Gaebler et al, PRL 2007

- Early attempts to study the BCS-BEC crossover with identical fermions failed
 - Contact interaction is inherently unstable for *p*-waves, equilibration not possible
 - This is due to wavefunction in short-distance region

J.L., Cooper, Gurarie PRL 2007

• Stark contrast with longevity of *s*-waves due to separation of scales and fermionic antisymmetry

• Instead consider long-range interactions

Outline

- Long range *p*-wave interactions in a heteronuclear Fermi gas
 - Resonant atomic exchange illustrated within the Born-Oppenheimer approximation
 - Theoretical predictions
 - Experimental observation of strong atom-dimer attraction
- Three-body problem in 2D: Hydrogen-like spectrum of trimers
- Polarized heteronuclear Fermi gases in 2D

Long-range *p*-wave interactions through resonant atomic exchange

Heteronuclear Fermi mixtures

- Long-range interactions through resonant atomic exchange
 - Mixture of heavy and light fermionic atoms
 - Short range interactions, characterized by scattering length a

stand a . Ad

Long range interactions generated between heavy atoms

J.L., Tiecke, Walraven, Petrov PRL 2009

• Consider *a*>0 (i.e. two-body bound state exists)

Born-Oppenheimer approximation

Ultracold identical fermionic atoms do not interact directly

• Effective interaction between (slow) heavy atoms is mediated by light atom

Understood intuitively in Born-Oppenheimer approximation:

• Assume light atom adiabatically adjusts its wave function to positions of heavy atoms:

$$\psi_{\mathbf{R}} \propto rac{ar{e}^{\kappa(R)|\mathbf{r}-\mathbf{R}/2|}}{|\mathbf{r}-\mathbf{R}/2|} \pm rac{ar{e}^{\kappa(R)|\mathbf{r}+\mathbf{R}/2|}}{|\mathbf{r}+\mathbf{R}/2|}$$

-/+ for even/odd partial waves

Analogy: H₂+

J.L. & Petrov, EPJD 2011

Born-Oppenheimer approximation

- Energy of the light atom = effective potential for the motion of heavy atoms
 - Repulsive (attractive) for even (odd) partial waves
- For partial waves higher than *s*-wave, consider also the centrifugal barrier. Total potential in the *p*-wave scattering:

J.L. & Petrov, EPJD 2011

- At mass ratio 5, the p-wave potential is purely repulsive
- Potassium 40-Lithium 6 mixture: potential develops an attractive well and enhanced p-wave scattering

[J.L., Tiecke, Walraven, Petrov, PRL 2009]

- Above 8.2 the well supports a bound state (trimer) [Kartavtsev & Malykh, J. Phys. B 2007]
- Above 13.6 the short-distance potential is attractive leading to Efimov physics

Born-Oppenheimer approximation

The induced interaction between the two heavy fermionic atoms is inherently of a long range, of the order of the scattering length (which diverges at resonance).

Bottom to top: $m_{\uparrow}/m_{\downarrow} = 13.6, 8.2, 6.64, 5$

J.L. & Petrov, EPJD 2011

• The centrifugal barrier prevents the two identical fermions from approaching to short distances, suppressing three-body losses

• This scenario is fundamentally different from the bosonic case, where losses are enhanced close to the formation of (Efimov) trimers

=> a (relatively) stable mixture of atoms and dimers with strong *p*-wave interactions. This is a new paradigm for few-body physics

Heteronuclear mixtures

- ⁶Li-⁴⁰K (Innsbruck, Paris, Singapore)
- ⁶Li-⁷Li-¹³³Cs (Chicago, Heidelberg)
- ⁴⁰K-⁸⁷Rb (JILA, Aarhus)
- 23 Na- 40 K (MIT)
- 41 K- 40 K- 6 Li (MIT)
- ⁸⁷Rb-Sr (Innsbruck/Amsterdam)
- many more...

0

										1.1.1			1000				1.000		
	1 14	5			-171										- 141 F		5		18 VIIIA
	1 1.0075	1			RELATIV	VE ATOMIC N	4A55 (D)		http://www.periodni.com										1 4.0026
1	н	L		080	and the second		DOEDCAS	-	10	acmimital	Nonme	cto#	- 1						
	5	12	IA.	040	13	IIIA [®]	ROUPLAS	Altaine earth metal						13 11A 14 IVA 15 VA 16 VIA 17 VIA					HELIUM
	0.9		9.0122	ATOMIC N	UMBER - 5	10.011		Transition metals						5 10.811	6 12.011	7 14.007	8 15.399	9 18,998	10 20,180
			ве	5	AMBOL B			1.0	Lanthanida STANDARD STATE (25 °C; 101)					в	С	N	0	F	Ne
	UTHUM		DRYLLIUM		DORON			1.1	Actnide No - 944 Fo - 54					BORON	CARBON	NTROOEN	DIOYDEN	PLUCAINE	NEON IN LO OUT
	N	1	14.305	FLEMENT NAME				Hg - Road TO - synthetic					00	10 20.902	14 20.000	D	C		10 39,910
Γ	Na		Mg					VIIB						AI	51	P	5	CI	Ar
	19 30 004	Ť.	40.078	21 44 956	4 IVB	5 VB	6 VIB	7 VIIB	8 26 55 845	27 58 933	28 54.693	29 63 546	30 45.34	31 69.723	32 72 64	33 74 977	34 78.96	35 79 904	36 83.758
4	K		Ca	Se	T	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ca	Co	Ac	Se	Br	Kr
	R		u can	SC MOREN	TITING AL	VIANATURA	CHECKEN	TATH	re	CONT	NCOL	correct	200	Ga	Gre	14.5	STI FALM	DI	IXI .
L	37 85.468	1	87.62	39 88.906	40 91.224	41 02.008	42 95.96	43 (98)	44 101.07	45 102.91	46 108.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.78	52 127.60	53 128.90	54 131.29
H	Rb		Sr	v	Zr	Nb	Mo	TDe	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
L	RUBCIUM		RONTIUM	YTTRUM	ZROONUM	NOBUM	MOLYBOENUM	TECHNETIUM	RUTHENIUM	RHODIUM	PALLADIUM	SLVER	CADMUM	INDIUM	TN	ANTIMONY	TELLURUM	IOONE	XENON
	55 132.91		5 137.33	57-71	72 178.49	73 180.95	74 163.64	75 106.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs		Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	14112		MRUM	Lanthanide	HIPNUM	TINTALUM	TUNOSTEN	RHENUM	OBMUM	ROUM	PLATINUM	GOLD	MERCURY	THALLUM	LEAD	BISMUTH	POLONUM	ASTATINE	RADON
	87 ,223	8	(226)	89-103	104 (267)	105 (266)	106 (271)	107 (272)	108 (277)	109 (275)	110 (201)	111 (200)	112 (205)	113 ()	114 (287)	115 ()	116 (291)	117 ()	118 ()
7	Fr	E	Ra	Ac-Lr	R	Db	Sg	Bh	His	Mit	IDs	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
	FRANCIUM	Ŀ	NOUN .	Actinide	0.000000M	DUBNUM	SEABORISUM	BOHRUM	HASSIUM	MOTHERUM	presentation unit	ROENTSENIN	COPERNOLIN	UNIATRUM	FLEROIUM	UNUMPERTUN	LIERNORUM	UNINGETUN	UNUNCETUR
															0	opyright © 2013	Eni Generalic		
57 130.91 58 14							59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93		67 164.93		69 168.93	70 173.05	71 174.97
Relative atomic manos are expressed with					La	Ce	Pr	Nd	TPinn	Sm	En	Gd	Th	Dv	Ho	Fr	Tm	Vb	Lu
five significant figures. For elements that have no stable multides, the value enclosed in					LANTHANUM	CERUM	A A	NECOVALIAN	PROMETHICAN	Simera	ERCELM	GADOLINEM	TERRINI		HOLMEN		THEFT	VITERBLAN	LUTETUN
brackets indicates the mass number of the					ACTINIDE														
three such clorectts (Th, Pa and U) do have a					89 (227)	90 232.04	91 231.04	92 208.00	93 (237)	94 (214)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)
and	schemenic torre for these an at	omic	weight is tob	related.	Ac	Th	Pa	U	Np	IPu	Am	Cm	IBK	CI	IEs	Fm	MIdl	NΦ	Le
					ACTINUM	THORIUM	PROTICTINUM	URINUM	NEPTUNUM	PLUTONUM	AMERICIUM	CURIUM	BERKELUM,	CALIFORNUM	ENSTENUM	PERMIUM	MENCELEVUN	NOBELIUM	LAWRENCIA

Theorists may consider mass ratio a free parameter...

Narrow Feshbach resonance

- Typically, Feshbach resonances in heteronuclear mixtures are narrow in magnetic field width
 - This translates into an effective range much larger than the van der Waals range of the atomic interactions

 $R^* = -r_0/2 = \frac{1}{2\mu a_{\rm bg}\mu_{\rm rel}\Delta B}$

• In ⁴⁰K-⁶Li mixture:

 $R^* \gtrsim 2000a_0$

 $R_{\rm vdW} \simeq 50 a_0$

 Assume no other terms in scattering amplitude are anomalously large and neglect higher partial waves:

$$f(\mathbf{k}) = -\frac{1}{1/a + R^*k^2 + ik}$$

Narrow Feshbach resonance: Two-channel model

The coupling to a closed channel may be modelled by a two-channel model (Timmermanns et al., Phys. Rep. 1999):

$$\hat{H} = \sum_{\mathbf{k},\sigma=\uparrow,\downarrow} \frac{k^2}{2m_{\sigma}} \hat{a}^{\dagger}_{\mathbf{k},\sigma} \hat{a}_{\mathbf{k},\sigma} + \sum_{\mathbf{p}} \left(\omega_0 + \frac{p^2}{2M} \right) \hat{b}^{\dagger}_{\mathbf{p}} \hat{b}_{\mathbf{p}} + \sum_{\mathbf{k},\mathbf{p}} \frac{g}{\sqrt{V}} \left(\hat{b}^{\dagger}_{\mathbf{p}} \hat{a}_{\frac{\mathbf{p}}{2} + \mathbf{k},\uparrow} \hat{a}_{\frac{\mathbf{p}}{2} - \mathbf{k},\downarrow} + \hat{b}_{\mathbf{p}} \hat{a}^{\dagger}_{\frac{\mathbf{p}}{2} - \mathbf{k},\downarrow} \hat{a}^{\dagger}_{\frac{\mathbf{p}}{2} + \mathbf{k},\uparrow} \right)$$

Taking the coupling to be constant up to a cutoff relates the parameters of the model to the coefficients of the 2-body scattering amplitude:

$$a = \frac{\mu g^2}{2\pi} \frac{1}{\frac{g^2 \mu \Lambda}{\pi^2} - \omega_0}, \qquad R^* = \frac{\pi}{\mu^2 g^2}$$

Weakly bound state with binding energy (*a*>0)

$$\epsilon_0 = -\left(\sqrt{1+4R^*/a}-1\right)^2/8\mu R^{*2}$$

20Three-body problem: Skorniakov — Ter-Martingsian equation 5 The interaction between an atom and a dimer may be treated exactly the limit $a > R_{vdW}$ by applying the Skorniakov—Ter-Mar negral equation ware p-waye1 Sums an infinite number of three-body diagrams a b $g_{\ell \mathbf{k}} p,$ 21 20 The atom dimer interaction may be separated in its partia wave components: 0-61 $5 f(\mathbf{k},$ 1) $P_{\ell}(\cos\theta)f_{\ell}(k)$ C) 0.2 0.4 $= f_{\ell}(k,k)$ Li-LiK $k \cot \delta_{\ell}(k) - ik$ σ_{ℓ}/a_{2D} $= 4\pi (2\ell + 1)k^{-2}\sin^2 \delta_\ell(k)$ σ_{ℓ} 0.1 **c**)

Atom-dimer scattering in Li-K mixture

 $R^* = -\frac{1}{2}r_0$

Close to resonance, phase shift crosses $\pi/2$ at collision energy of 10% of binding energy p-wave resonance

 For R^{*} ≤ a, p-wave scattering dominates for most collision energies

Compare with mass-balanced case

J.L., Tiecke, Walraven, Petrov PRL 2009

J.L. & Petrov, EPJD 2011

• p-wave resonance a unique consequence of mass-imbalance

Born-Oppenheimer picture: Narrow resonance

Effect of resonance width:

Bottom to top: $R^*/a = 0, 1/16, 1/4, 1$

When the light atom spends more time in the closed channel molecular state, the strength of the exchange potential is decreased

Experimental observation of strong atomdimer attraction

Jag, Zaccanti, Cetina, Lous, Schreck, Grimm, Petrov, J.L., PRL 2014

Experimental observation

Experiment in the group of Rudi Grimm (IQOQI, Innsbruck)

Thermal mixture of K atoms and KLi dimers, perform RF spectroscopy

• Signal: fraction of atoms transferred as a function of the RF detuning from the bare transition

Theory-experiment comparison

Main theory assumption: Interaction energy shift is dominated by threebody correlations

Mean field shift of K atom in bath of LiK dimers: 4

Impact theory of pressure-induced effects on spectral lines:

$$\delta\nu = -\hbar\bar{n}_{\rm D} \operatorname{Re} \langle f(0) \rangle / \mu_3$$
$$f(0) = \sum_{l=0}^{\infty} (2l+1) \left[\frac{\sin 2\delta_l(k_{\rm coll})}{2k_{\rm coll}} + i \frac{\sin^2 \delta_l(k_{\rm coll})}{k_{\rm coll}} \right]$$

Optical theorem:

 $\tau^{-1} = 4\pi\hbar\bar{n}_{\rm D} \mathrm{Im}\,\langle f(0)\rangle/\mu_3$

Lorentzian broadening with FWHM $1/(2\pi\tau)$

(additional broadening due to finite duration of RF pulse)

K dimers:
$$\Delta E = \frac{2\pi\hbar^2 n_D a_{ad}}{m_{ad}} > 0$$

Schreck, Grimm, Petrov, J.L., PRL 2014 Theory-experiment comparison

 $\tau^{-1} = 4\pi\hbar\bar{n}_{\rm D} \mathrm{Im} \langle f(0) \rangle / \mu_3 \quad 1/(2\pi\tau)$

 $\delta \nu = -\hbar \bar{n}_{\rm D} \operatorname{Re} \langle f(0) \rangle / \mu_3$

Theory: No adjustable parameters

• The normally repulsive atom-dimer interaction is turned into strong attraction

Jag, Zaccanti, Cetina, Lous,

Trimers in (quasi) 2D

Amaid

Tory and States man water to the tag their an at

Confinement induced trimers

Marida . Ad

Now that we've seen enhanced scattering in higher partial waves, observing stable trimers is the next goal

Kartavtsev & Malykh, J. Phys. B 2007

• Critical mass ratio in 3D is 8.2 while in 2D it is 3.3

Pricoupenko and Pedri, PRA 2009

 $\omega_z \simeq 2\pi \times 25 \text{kHz}$ (well within experimental reach)

J.L., Tiecke, Walraven, Petrov PRL 2009

3 fermions with large mass ratio in 2D

Pricoupenko and Pedri, PRA 2010:

- No trimers for equal masses
- 1st trimer appears at mass ratio 3.3
- 2nd trimer appears at 10.4
- As mass ratio is increased, an ever increasing number of trimers appear in the spectrum
- Trimers are degenerate among different partial waves

Tan & Nishida, Few-body Systems 2011:

 No Efimov effect in 2D, as interaction vanishes at short range
(caveat: Meera's talk on Friday...)

3 fermions with large mass ratio in 2D

Trimers appear in the short range part of the potential, $R \ll a_{2D}$ Born-Oppenheimer effective potential at short range: $\epsilon(R) \approx -\frac{2\varepsilon_B}{e^{\gamma}} \frac{a_{2D}}{R}$ Fersistrimers pedtrum is simply that of a hydrogen atom confined to 2Ders (l=different partial waves have the same spectrun 12 8 14

$$E_n = -\frac{m_{\uparrow}}{e^{2\gamma}m_{\downarrow}}\frac{\varepsilon_B}{2(n+1/2)^2} - \varepsilon_B \qquad n \ge \ell$$

Ngampruetikorn, Parish, J.L., EPL 2013

Trimer energies

Very good agreement between exact trimer energies (from STM equation) and the hydrogen spectrum

Bosons in even partial wave ers $(\ell=1)$ described by same potential as fermions in odd partial wave so the spectrum is the same

$$E_n = -\frac{m_{\uparrow}}{e^{2\gamma}m_{\downarrow}}\frac{\varepsilon_B}{2(n+1/2)^2} - \varepsilon_B$$

Ngampruetikorn, Parish, J.L., EPL 2013

Number of bound trimers

Solution of Schrödinger equation at distances $R \ll a_{2D}$

 $J_{2\ell}(2\sqrt{e^{-\gamma}(m_{\uparrow}/m_{\downarrow})R/a_{2\mathrm{D}}})$

Each time the argument increases by π an extra node appears

bound states ~ $\sqrt{m_{\uparrow}/m_{\downarrow}}$

Ngampruetikorn, Parish, J.L., EPL 2013 see also Bellotti et al, J. Phys. B: At. Mol. Opt. Phys. (2013)

Polarized heteronuclear Fermi gas

stand & All

ALC: N

an substition manufactor statistics and at

Consequences: Polarized heteronuclear Fermi gas in 2D

Parish & J.L., PRA 2013

See also Mathy et al., PRL 2011 (3D calculation)

Conclusions & outlook

- J.L., Tiecke, Walraven, Petrov, PRL 2009
- J.L. & Petrov, EPJD 2011
- Strong "stable" long-range *p*-wave interactions in a quantum gas

and the state of the state of the state

- Heteronuclear mixture with short-range interactions
- Experimental observation of strong attraction
- Hydrogenic spectrum of trimers in 2D Ngampruetikorn, Parish, J.L., EPL 2013

Jag, Zaccanti, Cetina, Lous, Schreck, Grimm, Petrov, J.L., PRL 2014

- Outlook:
 - Trimers à la Kartavtsev and Malykh, J. Phys. B 2007, by confining K atoms to quasi-2D
 - FFLO state in a polarised gas

Parish & J.L., PRA 2013

Thank you!

