

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Benchmarks from high-precision mass measurements at TITAN

A.A. Kwiatkowski INT Workshop, Few-body Universality in Atomic and Nuclear Physics 12 May 2014

Accelerating Science for Canada Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Outline

Rare isotope beams at TRIUMF

101

- Mass measurements
 - Motivation
 - Ion traps
- Mass measurements at TITAN
 - Isospin non-conservation
 - Island of inversion
 - Neutron-rich Ca isotopes
 - Double β-decay candidate ⁴⁸Ca

ISAC RIB Facility

User facility with ~1000 users

TRIUMF RIB Production

Proton-induced reactions spallation ²⁰¹ Fr 500 MeV p fragmentation 238 U 11 X ISAC fission Cs **Photo-induced fission** fission ¹⁴³Cs 238 ARIEL

• 1 GeV proton beam on a lanthanum (La) target

Photo-fission products using 50 MeV 10 mA electrons on to Hg convertor & UC_x target.

Isotope production figure from ISOLDE-CERN

RIB Available at ISAC

Yield Chart of Nuclides

Why measure the atomic mass?

Mining Nuclear Physics from Atomic Mass Measurements

Mining Nuclear Physics from Atomic Mass Measurements

Halo nuclei

Figure: http://www.ph.surrey.ac.uk/npg/confs/ecthalo.html

Storage and Trapping Devices

Wish list:

- Confine rare nuclide to a well-defined volume
- "Infinite" observation time (or at least as long as $T_{1/2}$)
- Use well-defined fields \rightarrow careful manipulation
- Lead to high-accuracy, -precision, -sensitivity experiments

micromotion

Ion Traps

Penning Traps Paul Traps = electrostatic + magnetic = oscillating electric field B • U_{RF} V_{DC} H. G. Dehmelt W. Paul magnetron motion (ω) precision experiments beam preparation 1989 modified cyclotron motion (ω_{+}) axial motion (ω_{τ})

micromotion + macromotion

Penning Trap Single-ion Quantum Manipulation

Mass determination via cyclotron-frequency determination:

- Measurement performed with single ion at a time
- Repeat over a range of frequencies
- Total number of ions per spectrum ~ 100

Mass Determination

lime-of-flight (μs)

50

48

46

44

42

50

-30

ref. ion

²³Na⁺

-20

-10

0

 $v_{\rm RE} = 2.4707904 \times 10^6$ (Hz)

10

20

30

- Measure measure time of flight $v_c = \frac{1}{2\pi m} \xrightarrow{q} B \rightarrow \text{calibrate with reference ion}$ ion's mass
- Experimental result:

$$R = \frac{V_{c,ref}}{V_c} = \frac{q_{ref}}{q} \cdot \frac{m}{m_{ref}}$$

• Atomic mass: $M = R \cdot (m_{ref} - q_{ref} m_e + B_{e, ref}) + qm_e - B_e^{40} = \frac{21}{38} Mg^{+}$

v_{RF}-2703399 (Hz)

Maturing Field: High Precision and Accuracy

N

TRIUMF's Ion Trap for Atomic and Nuclear science

J. Dilling et al., NIMB 204 (2003) 492

6,8,9,11Li Isotopes with TITAN

- Measured ^{6,8,9,11}Li
- TITAN confirmed ⁶Li deviation from Atomic Mass Evaluation (AME) 2003 found at SMILETRAP

S. Nagy *et al.* PRL 96 163004 M. Brodeur et al, PRC 80 (2009) 044318; M. Smith et al PRL 101, 202501 (2008)

R. Sánchez *et al.*, PRL 96, 033002 (2006);

Nature Physics 2, 145 (2006);; W. Nörtershäuers et al., PRC 84, 024307 (2011); G. W. Drake et al. PRL. 100, 243002 (2008)

TRIUMF

1.8

1.7

0

INOY

0.2

0.4

0.6

He Halos with TITAN

Nuclear charge radius of ⁸He

UCOM*

0.8

S_{2n} [MeV]

MN

-∆-

MN-LS

 $\Phi V_{low k}(N^{3}LO)$

1.2

1.4

P. Mueller et al PRL 99, 252501 (2007); M. Brodeur et al. PRL 108, 052504 (2012)

TITAN Halo Harvest

- Highest precision for such short-lived nuclides
- Shortest-lived (¹¹Li T_{1/2} = 9 ms) measured with Penning trap mass spectrometry
- Limits of sensitivity (5-10 ions/sec)

V. Ryjkov et al., PRL 101 (2008) 012501
M. Brodeur et al., PRL108 (2012) 052504
M. Smith et al PRL 101, 202501 (2008)
R. Ringle et al., PLB 675 (2009) 170
S. Ettenauer et al., PRC 81 (2010) 024314

Moving heavier: ^{20,21}Mg

Bisobaric Multiplet Mass Equation

- Assume charge-independent strong interaction
- Isobaric analog states (IAS) are degenerate & share same mass
- Coulomb interaction breaks
 symmetry
- Using two-body chargedependent interaction, the sum of isoscalar, isovector, and isotensor operators is

$M(A,T,T_z) = a(A,T) + b(A,T) T_z + c(A,T) T_z^2$

How robust is IMME?

- 29 of 35 multiplets obey quadratic form
- 6 outliers: A = 8, 9, 11, 32, 33, 35
 - Problem with experimental data or requires dT_z³ or eT_z⁴
- Sources of *d* term:
 - Unbound nuclei
 - Isospin mixing with nearby states of same J^π → usually observed in shell model calculations

TITAN ^{20,21}Mg Masses

A.T. Gallant et al., submitted to PRL; figure : J.D. Holt et al., PRL 110 (2013) 022502

RIVMF IMME: Comparison to Theory

A = 20 quintet

term	exp (keV)	USDA (keV)	USDB (keV)	$V_{low k}$ (keV)
d	2.8(11)	-0.1(10)	-0.1(10)	-18(13)
е	0.9(12)	-1.7(10)	degenerate	-49(17)

- Observed d term cannot be explained by USDA/B
- e term close to USDA result
- Uncertainty in V_{low k} calculation too large

A = 21 quartets

Jp	d exp (ke∀)	d USDA (ke∀)	d USDB (keV)	$d \lor_{lowk} (ke \lor)$
5/2+	6.7(13)	-0.3(10)	0.3(10)	-38(37)
1/2+	-4.4(14)	1.2(10)	1.9(10)	6(37)

Observed d term cannot be explained by USDA/B

Inadequate data or new effects not included in calculation

Uncertainty in V_{low k} calculation too large

RIVMF Moving heavier: Island of Inversion

Figure: P. Cottle, *Nature* 465 (2010) 430

RIUMF

Island-of-inversion Mass Cartography

Name arises from the *pf* orbitals which "intrude" into the *sd* shell

TITAN's campaign of mass measurements:

- Na: A = 29-31
- Mg: A = 30-34
- AI: A = 29-34

A.Chaudhuri et al, PRC 88 (2013) 054317; AAK et al, submitted to PLB; figure from Himpe et al, PLB 658 (2008) 203

Island of Inversion: S_{2n} Cartography

AAK et al, submitted to PLB

Vanishing N = 20 Shell

- $\Delta_n(^{31}Na) = 1.79(23) \text{ MeV}$
- ∆_n(³²Mg) = 1.10(3) MeV ←

•
$$\Delta_n(^{33}\text{AI}) = 1.82(7) \text{ MeV}$$

lowest known of any magic nuclide

Limited guidance from theory:

- Models tend to overestimate "shell gap" Δ_n in ³²Mg
- Mean-field models predict shape incorrectly
- Only conventional shell model indicates breaking of N = 20 shell closure but it predicts $\Delta_n < 0$
- Out of reach for energy-density functional and *ab-initio* methods

$N = 21 S_{2n}$ Crossover

Moving heavier: ^{51,52}Ca

RIVMF Extending Theory to Heavier Nuclides

Ca theory with realistic NN interaction & 3N forces:

- Substantially different trend for single-particle energies & S_{2n}
- Quenching of N=28 shell gap around A=50-54

New magic shell closure at N = 32, 34 in Ca?

RIVMF Neutron-rich K and Ca isotopes

 TITAN value deviated 7σ & 10σ from AME 2003 for ^{48,49}K respectively

A. Lapierre et al., PRC 85 (2012) 024317

30

30

\Re^{RELINE} Is N = 32 magic for K, Ca isotopes?

Measured ⁵¹K and ^{51,52}Ca masses

 Found ⁵²Ca 1.74 MeV more bound than expected from AME 2003

Calculations based on chiral NN and 3N force predict increased binding at $N \approx 32$

- Repulsive 3N contributions critical for Ca g.s. properties & require further investigation
- 51,52 Ca S_{2n} & $\Delta_n^{(3)}$ differences with experiment $\leq 200 \& 500 \text{ keV}$

KB3G & GXPF1A phenomenological models also predict behavior well

N = 34 Subshell Closure?

- ISOLTRAP extended high-precision mass measurements to ⁵⁴Ca
- Experiments agree well with this theory, confirming trend, and other theories (e.g. CC PRL 109, 032502).

Q-value of ${}^{48}Ca \rightarrow {}^{48}Ti$

Q-value of ${}^{48}Ca \rightarrow {}^{48}Ti$

$$T_{1/2}^{0\nu} = G_{0\nu}(Q_{\beta\beta}, Z) \swarrow M_{0\nu} \land m_{e} \land$$

Summary

Isospin non-conservation

- Mass determinations of ^{20,21,21m}Mg
- Most stringent test of IMME to date
- Some USD issues

RIUMF

Some χEFT issues

Role of three-body forces

- At ⁵²Ca , confirm prediction of N = 32 subshell closure
- In ⁴⁸Ca, determined 75% larger 0v2β NME and1 keV higher measured Qvalue

Island of inversion

- Mass determinations of n-rich Na, Mg, Al
- Lowest shell gap of any (traditionally) magic nuclide
- S_{2n} (*N*=21) crossover is a singularity on mass surface

Outlook

- Continue mass-measurement campaign in island of inversion → will there be more surprises?
- IMME: most imprecise are ^{24,25}Si, ²⁷P, ^{28,29}Si, ³¹Cl, and ³⁶Ca

Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Thank you! Merci

U. Chowdhury, A.T. Gallant, R. Klawitter, AAK, K.G. Leach, A. Lennarz, T.D. Macdonald, B.E. Schultz, J. Dilling and the TITAN Collaboration

U. of Manilob Uni Mainz McGall U. Mausaiser U. Max Plank Inst. für Kernphysik GANIL GANIL CNRS/Orany Yale Giessen CNRS/Orany CNRS/Orany

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada