

RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

University of Excellence

Center for Quantum Dynamics

Observation of Efimov resonances in a mixture with extreme mass imbalance

Eva Kuhnle, Rico Pires, Juris Ulmanis, Stephan Häfner, Marc Repp, Alda Arias, Carmen Renner, and Matthias Weidemüller

Physikalisches Institut, Ruprecht-Karls Universität Heidelberg

Seattle, May 13, 2014, "Few-body Universality in Atomic and Nuclear Physics: Recent Experimental and Theoretical Advances"

Efimov physics with mass imbalance

Atom loss
Three-body loss rate

Feshbach resonances in Li-Cs

coupled-channels calculations by Eberhard Tiemann

Rf spectroscopy of dimers at 843 G

Experimental conditions

	frequencies	atom numbers	density	temperature
Cs	2 π 54 Hz	1.6×10^{4}	$4 \times 10^{11} \mathrm{cm}^{-3}$	0.4 μΚ
Li	2 π 141 Hz	4×10^{4}	$0.8 \times 10^{11} \mathrm{cm}^{-3}$	0.4 μΚ

 \rightarrow at these temperatures: overlap ≈ 80 % and gravitational sag $\approx 10~\mu m$

Feshbach resonances in Li-Cs

Interaction around 843 G

Atom loss

Observation for a < 0: Enhanced loss $B_0 = 849.12(6)_{stat}(3)_{sys} G$ $B_1 = 843.89(1)_{stat}(3)_{sys} G$ $B_2 = 843.03(5)_{stat}(3)_{sys} G$

Chin group, Tung et al., arXiv:1402.5943v1 (2014)

Grimm group, *Phys. Rev. Lett*. 112, 190401 (2014)

Three-body loss rate

$$\dot{n}_{Cs} = -L_1^{Cs} n_{Cs} - 2L_3^{LiCsCs} n_{Li} n_{Cs}^2 - L_3^{Cs} n_{Cs}^3$$
$$\dot{n}_{Li} = -L_1^{Li} n_{Li} - L_3^{LiCsCs} n_{Li} n_{Cs}^2$$

Assumptions:

- Fermionic Li \rightarrow suppression of L_3^{LiLiCs} and L_3^{Li}
- Recompression of the trap stops residual evaporation → constant temperature

Three-body loss coefficient L_3^{CS}

Berninger et al., Phys. Rev. Lett. 107, 120401 (2011)

Three-body loss rate

$$\dot{n}_{Cs} = -L_1^{Cs} n_{Cs} - 2L_3^{LiCsCs} n_{Li} n_{Cs}^2 - L_3^{Cs} n_{Cs}^3$$
$$\dot{n}_{Li} = -L_1^{Li} n_{Li} - L_3^{LiCsCs} n_{Li} n_{Cs}^2$$

Assumptions:

- Fermionic Li \rightarrow suppression of L_3^{LiLiCs} and L_3^{Li}
- Recompression of the trap stops residual evaporation → constant temperature
- $L_3^{Cs} \rightarrow \text{constant}$
- More N_{Li} = 3 x 10⁴ than N_{Cs} = 2 x 10⁴, after wait time the loss of Li atoms ≈ 30% but all Cs atoms are lost → constant n_{Li}

$$\dot{n}_{CS} = -L_1^{CS} n_{CS} - L_3^{LiCsCs} n_{Li} n_{CS}^2 - L_3^{CS} n_{CS}^3$$

Three-body loss coefficient L_3^{LiCsCs}

Conversion $N_{CS} \rightarrow n_{CS}$ depends on trap frequencies and temperatures of Li and Cs as well as on overlap

$$\dot{n}_{CS} = -L_1^{CS} n_{CS} - L_3^{LiCSCS} n_{Li} n_{CS}^2 - L_3^{CS} n_{CS}^3$$

Three-body loss coefficient L_3^{LiCsCs}

Observation: $B_0 = 848.90(6)_{stat}(3)_{sys} G$ $B_1 = 843.85(1)_{stat}(3)_{sys} G$

Comparison with atom loss $B_0 = 849.12(6)_{stat}(3)_{sys} G$ $B_1 = 843.89(1)_{stat}(3)_{sys} G$

included: reduction due to 80 % overlap

Three-body loss coefficient L_3^{LiCsCs}

Observation: $B_0 = 848.90(6)_{stat}(3)_{sys} G$ $B_1 = 843.85(1)_{stat}(3)_{sys} G$

$$a(B) = a_{bg} \left(\frac{\Delta}{B - B_{FR}} + 1 \right)$$

$$a_{-}^{(0)} = -320(3)_{stat}(2)_{sys}(10)_{rf} a_0$$
$$a_{-}^{(1)} = -1871(19)_{stat}(58)_{sys}(388)_{rf} a_0$$

 B_{FR} = 842.90(20) G Δ = 61.4(7) G with rf spectroscopy of dimers

Three-body loss coefficient L_3^{LiCsCs}

$$a_{-}^{(0)} = -320(3)_{\text{stat}}(2)_{\text{sys}}(10)_{\text{rf}} a_{0}$$
$$a_{-}^{(1)} = -1871(19)_{\text{stat}}(58)_{\text{sys}}(388)_{\text{rf}} a_{0}$$

$$\frac{a_{-}^{(1)}}{a_{-}^{(0)}} = 5.8(0.1)_{\text{stat}}(0.2)_{\text{sys}}(1.0)_{\text{rf}}$$

Summary

- Feshbach resonances in Li-Cs
- Atomic loss curves show loss features associated with Efimov states
- These features are measurable in both species
- Third resonance is in the deep universal regime
- Measurement of L_3^{LiCsCs}
- The first two resonances leads to a scaling

$$\frac{a_{-}^{(1)}}{a_{-}^{(0)}} = 5.8(0.1)_{\text{stat}}(0.2)_{\text{sys}}(1.0)_{\text{rf}}$$

Outlook

- Binding energies of Feshbach dimers
- Mixture at lower temperatures: L_3 of the third resonance
- ... or need a finite-range correction?
- Binding energies of Efimov states
- ...

Li-Cs team

Prof. Matthias Weidemüller (PI)

Rico Pires (PhD student) Juris Ulmanis (PhD student) Stephan Häfner (PhD student) Alda Arias (Master student) Carmen Renner (Lehramt) Arthur Schönhals (former master student) Robert Heck (former master student) Marc Repp (former postdoc) Eva Kuhnle (postdoc)

<u>Cooperations</u> Prof. Eberhard Tiemann (Hannover) Dr. Tobias Tiecke (Harvard) Prof. Chris Greene (Purdue) Prof. John Bohn (JILA) Dr. Jose d'Incao () Yujun Wang ()

€€€: DAAD IMPRS-QD CQD

Center for Quantum Dynamics

