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Quartet channel

Ref. 4ap–d (fm)

van Oers, Brockman (1967) 11.4+1.8
−1.2

Arvieux (1973) 11.88 ± 0.4
Huttel et al. (1983) ≈ 11.1
Kievsky et al. (1997) 13.8
Black et al. (1999) 14.7 ± 2.3
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Quartet channel Doublet channel

Ref. 4ap–d (fm)

van Oers, Brockman (1967) 11.4+1.8
−1.2

Arvieux (1973) 11.88 ± 0.4
Huttel et al. (1983) ≈ 11.1
Kievsky et al. (1997) 13.8
Black et al. (1999) 14.7 ± 2.3

Ref. 4ap–d (fm)

van Oers, Brockman (1967) 1.2 ± 0.2
Arvieux (1973) 2.73 ± 0.10

Huttel et al. (1983) ≈ 4.0
Black et al. (1999) −0.13 ± 0.04

Orlov, Orevkov (2006) ≈ 0.024
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Motivation

Goal

Precise and controlled extraction from EFT calculation!
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Motivation

Goal

Precise and controlled extraction from EFT calculation!

Scope of method
Nuclear astrophysics

Low-energy nuclear reactions in Halo-EFT
→ one-neutron halo states in 11Be
→ one-proton halo state in 8B ?

Cold-atom systems

EFT with van-der-Waals tails?
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Outline

1 Pionless effective field theory

2 Coulomb-modified effective range expansion

3 Quartet-channel scattering length

4 Doublet-channel scattering length

5 Summary and outlook

SK, H.-W. Hammer, arXiv:1312.2573

SK, Ph.D. thesis (Bonn U, 2013)

SK, H.-W. Hammer, PRC 83 (2011) 064001
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Part I

Pionless effective field theory

Effective Lagrangian

Power counting

Integral equations
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Foundation and basic features
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Foundation and basic features

at very low energies even pions can be integrated out

→֒ only nucleons left as effective degrees of freedom

non-relativistic framework

large scattering lengths in N -N scattering

→֒ additional low-energy scale

Kaplan, Savage, Wise 1998; van Kolck 1997/98

q
2

≪ m
2

π −→

γd = 1
ad

(

1 + O(a0/rd)
)

3S1 −→ convenient description of three-body sector
with dibaryon fields

Bedaque, Hammer, van Kolck 1998
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Effective Lagrangian

L =
N †

(

iD0 +
~D2

2MN

)

N
+ Lphoton + L3

− di† [σd + . . .] di − tA† [σt + . . .] tA

− yd

[

di†
(

NTP i
dN
)

+ h.c.
]

− yt

[

tA†
(

NTPA
t N

)

+ h.c.
]

nucleon field N , doublet in spin and isospin space

auxiliary dibaryon fields di (3S1, I = 0) and tA (1S0, I = 1)
↔ channels in N–N scattering

coupling constants yd,t and σd,t

dibaryon propagators are just constants at leading order
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Dibaryon propagators

Bubble chains

3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

Fix parameters from N-N scattering!

=

iAd,t(k) = −y2
d,t∆d,t(p0 =

k2

2MN
,p = 0) =

4π

MN

i

k cot δd,t − ik

k cot δd(k) = −γd + ρd

2 (k2 + γ2
d) + . . . −→ yd, σd

k cot δt(k) = −γt + r0t

2 k
2 + . . . with γt ≡ 1

at
−→ yt, σt
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Range corrections

Dibaryon kinetic-energy terms

∼ i∆LO
d (p) × (−i)

(

p0 −
p2

4MN

)

× i∆LO
d (p)

→֒ effective-range corrections

∆d(p) ∼
1

−γd +
√

p2

4 −MNp0 − iε− ρd

2

(

p2

4 −MNp0 − γ2
d

)

O(Q/Λ) ∼ O(γdρd) expand in ρd, r0t → NLO, N2LO, . . .
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Range corrections

Dibaryon kinetic-energy terms

∼ i∆LO
d (p) × (−i)

(

p0 −
p2

4MN

)

× i∆LO
d (p)

→֒ effective-range corrections

∆d(p) ∼
1

−γd +
√

p2

4 −MNp0 − iε− ρd

2

(

p2

4 −MNp0 − γ2
d

)

O(Q/Λ) ∼ O(γdρd) expand in ρd, r0t → NLO, N2LO, . . .

Dd(E; q) = D
(0)
d (E; q) + D

(1)
d (E; q) + · · ·

= −
4π

MN y2
d

1

−γd +
√

3q2/4 − MN E − iε
×

[

1 +
ρd

2

(

3q2/4 − MN E − γ2
d

)

−γd +
√

3q2/4 − MN E − iε
+ · · ·

]
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Resummations

Power counting →֒ resum certain classes of diagrams!

Full dibaryon propagators
3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

Proton–deuteron scattering lengths in pionless effective field theory – p. 10



Resummations

Power counting →֒ resum certain classes of diagrams!

Full dibaryon propagators
3S1 : ∆d = = + + + · · ·

1S0 : ∆t = = + + + · · ·

Scattering amplitude

∼ ∼ · · · all of same order → Integral equation!

= +

Lippmann–Schwinger equation  solve numerically!
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Charged-particle sector

What about Coulomb effects?
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Charged-particle sector

What about Coulomb effects?

2-body sector

p–p scattering Kong, Ravndal 1999, 2000

. . . at higher order Ando, Shin, Hyun, Hong 2007

3-body sector

p–d quartet-channel scattering Rupak, Kong 2003

3He binding energy (LO only) Ando, Birse 2010

p–d scattering (quartet + doublet) and 3He SK, Hammer, 2011
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Coulomb contributions

Coulomb photons: ∼ (ie)
i

q2
(ie) −→ (ie)

i

q2+λ2
(ie)

O(α) diagrams

k p

Coulomb peak

0 100 200

PSfrag replaements� (MeV)k (MeV)Æ (deg)

p (MeV)
K(k;p)

q (MeV)[D̂B℄(q)� (MeV)EB (MeV)H(�)�E (MeV)p{d LOp{d NLOp{d N2LOp{d Exp.n{d N2LOp{d N2LO (new)LONLON2LOExp.from WFfull al.Exp.Ando+Birse
→ re-shuffle mesh points!

SK, Hammer, 2011
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SK, Hammer, 2011

generated by dibaryon kinetic term!

L ⊃ di†

[

σd +

(

iD0 +
D

2

4MN

)]

di

→֒ range correction!
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Part II

Coulomb-modified effective range expansion

Coulomb-subtracted phase shifts

Modified effective range expansion

The Gamow factor
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Coulomb-subtracted phase shifts

Coulomb force

long (infinite) range → very strong at small momentum transfer

pure Coulomb scattering can be solved analytically

→֒ use Coulomb wave functions as reference states!
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Coulomb-subtracted phase shifts

Coulomb force

long (infinite) range → very strong at small momentum transfer

pure Coulomb scattering can be solved analytically

→֒ use Coulomb wave functions as reference states!

Bottom line

= + +

+ ×
(

+ +
)

→ full amplitude Tfull

→ Coulomb amplitude Tc

δ̃(k) ≈ δdiff(k) ≡ δfull(k) − δc(k) 0 20 40 60 80 100

-100

-80

-60

-40

-20

0

k (MeV)

δ
(d
eg
)

p–d LO
p–d NLO
p–d N2LO

p–d Exp.
p–d Exp.

n–d N2LO

=

Rupak, Kong (2001); SK, Hammer (2011)
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Modified effective range expansion

Ordinary effective range expansion

k cot δ(k) = −
1

a0
+
r0

2
k2 + · · ·

a = scattering length
r = effective range
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Modified effective range expansion

Ordinary effective range expansion

k cot δ(k) = −
1

a0
+
r0

2
k2 + · · ·

a = scattering length
r = effective range

Modified effective range expansion

C2
η,0 k cot δdiff(k) + αµh0(η) = −

1

aC
0

+ · · ·

Gamow factor

C2
η,0 =

2πη

e2πη − 1

η = αµ/k
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Modified effective range expansion

Ordinary effective range expansion

k cot δ(k) = −
1

a0
+
r0

2
k2 + · · ·

a = scattering length
r = effective range

Modified effective range expansion

C2
η,0 k cot δdiff(k) + αµh0(η) = −

1

aC
0

+ · · ·

Gamow factor

C2
η,0 =

2πη

e2πη − 1

η = αµ/k
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The Gamow factor

C2
η,0 =

2πη

e2πη − 1

But we have a screened Coulomb potential!

1

q2 + λ2
↔

e−λr

r
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The Gamow factor

C2
η,0 =

2πη

e2πη − 1

But we have a screened Coulomb potential!

1

q2 + λ2
↔

e−λr

r

note: C2
η,0 =

∣

∣

∣
ψ

(+)
k

(r = 0)
∣

∣

∣

2
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The Gamow factor

C2
η,0 =

2πη

e2πη − 1

But we have a screened Coulomb potential!

1

q2 + λ2
↔

e−λr

r

note: C2
η,0 =

∣

∣

∣
ψ

(+)
k

(r = 0)
∣

∣

∣

2

|Fℓ(k)|−2k2ℓ+1
(

cot δM
ℓ (k) − i

)

+Mℓ(k) = −1/aM
ℓ + · · · van Haeringen, Kok 1982
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The Gamow factor

C2
η,0 =

2πη

e2πη − 1

But we have a screened Coulomb potential!

1

q2 + λ2
↔

e−λr

r

note: C2
η,0 =

∣

∣

∣
ψ

(+)
k

(r = 0)
∣

∣

∣

2

|Fℓ(k)|−2k2ℓ+1
(

cot δM
ℓ (k) − i

)

+Mℓ(k) = −1/aM
ℓ + · · · van Haeringen, Kok 1982

furthermore: ψ
(+)
k,0 (p) =

2π2

k2
δ(k − p) −

2µZ0T (E; p, k)

k2 − p2 + iε
, E = E(k)
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The Gamow factor

C2
η,0 =

2πη

e2πη − 1

But we have a screened Coulomb potential!

1

q2 + λ2
↔

e−λr

r

note: C2
η,0 =

∣

∣

∣
ψ

(+)
k

(r = 0)
∣

∣

∣

2

|Fℓ(k)|−2k2ℓ+1
(

cot δM
ℓ (k) − i

)

+Mℓ(k) = −1/aM
ℓ + · · · van Haeringen, Kok 1982

furthermore: ψ
(+)
k,0 (p) =

2π2

k2
δ(k − p) −

2µZ0T (E; p, k)

k2 − p2 + iε
, E = E(k)

Solution

 C2
η,λ =

∣

∣

∣

∣

1 +
2MN

3π2

∫ Λ

0

dp p2

p2 − k2 − iε
Z0Tc(E; p, k)

∣

∣

∣

∣

2

= +

+ ×
(

+
)

→֒ consistent extraction from numerical calculation!
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Part III

Quartet channel

Convergence pattern

Fully perturbative calculation

Results
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Quartet-channel scattering length
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Convergence pattern
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Fully perturbative calculation (I)

So far. . .

Partial-resummation approach Bedaque, Grießhammer, Hammer, Rupak

TLO = KLO + TLO ⊗ (DLOKLO)

TNLO = KNLO + TNLO ⊗ (DNLOKNLO)

etc. →֒ resums certain higher-order corrections!

Better (cleaner) approach

Fully perturbative calculation see, e.g., Ji, Phillips 2012

TNLO = TLO + ∆TNLO ∆TNLO = TLO ⊗(D(1)KLO)⊗TLO + · · ·

δ(k) = δ(0) + δ(1) + · · ·

complicated at N2LO!
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Fully perturbative calculation (I)

So far. . .

Partial-resummation approach Bedaque, Grießhammer, Hammer, Rupak

TLO = KLO + TLO ⊗ (DLOKLO)

TNLO = KNLO + TNLO ⊗ (DNLOKNLO)

etc. →֒ resums certain higher-order corrections!

Better (cleaner) approach

Fully perturbative calculation see, e.g., Ji, Phillips 2012

TNLO = TLO + ∆TNLO ∆TNLO = TLO ⊗(D(1)KLO)⊗TLO + · · ·

δ(k) = δ(0) + δ(1) + · · ·

complicated at N2LO!

Much more efficient calculation with re-shuffling of terms!
Vanasse 2013

Proton–deuteron scattering lengths in pionless effective field theory – p. 20



Fully perturbative calculation (II)

T
(0)

full = K(0) + T
(0)

full ⊗D
(0)
d K(0)

T
(1)

full = K(1) + T
(0)

full ⊗
[

D
(0)
d K(1) +D

(1)
d K(0)

]

+ T
(1)

full ⊗D
(0)
d K(0)

T
(2)

full = T
(0)

full ⊗
[

D
(1)
d K(1) +D

(2)
d K(0)

]

+ T
(1)

full ⊗
[

D
(0)
d K(1) +D

(1)
d K(0)

]

+ T
(2)

full ⊗D
(0)
d K(0)

K(0) = + + , K(1) =
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Fully perturbative calculation (II)

T
(0)

full = K(0) + T
(0)

full ⊗D
(0)
d K(0)

T
(1)

full = K(1) + T
(0)

full ⊗
[

D
(0)
d K(1) +D

(1)
d K(0)

]

+ T
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(0)
d K(0)

T
(2)

full = T
(0)

full ⊗
[

D
(1)
d K(1) +D

(2)
d K(0)

]

+ T
(1)

full ⊗
[

D
(0)
d K(1) +D

(1)
d K(0)

]

+ T
(2)

full ⊗D
(0)
d K(0)

K(0) = + + , K(1) =

[k cot δdiff ](0) =
2π

µ

e2iδ
(0)
c

T
(0)
diff

+ ik

[k cot δdiff ](1) =
2π

µ
e2iδ

(0)
c ×

[

2iδ
(1)
c

T
(0)
diff

−
T

(1)
diff

(T
(0)
diff)2

]

[k cot δdiff ](2) = −
2π

µ
e2iδ

(0)
c ×

[

2(δ
(1)
c )2 − 2iδ

(2)
c

T
(0)
diff

+
2iδ

(1)
c T

(1)
diff + T

(2)
diff

(T
(0)
diff)2

−
(T

(1)
diff)2

(T
(0)
diff)3

]
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Fully perturbative calculation (II)
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diff
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T

(1)
diff

(T
(0)
diff)2
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[k cot δdiff ](2) = −
2π

µ
e2iδ

(0)
c ×

[

2(δ
(1)
c )2 − 2iδ
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(0)
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+
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(1)
c T
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diff + T
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diff
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(0)
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−
(T
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(T
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]

Scattering lenth

C2
η,λ [k cot δdiff(k)] + γ h(η) = −

1

ap–d

+ O(k2)

Combine with C2
η,λ = [C2

η,λ](0) + [C2
η,λ](1) + · · ·
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Fully perturbative result
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Fully perturbative result
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10.9± 0.4 fm

=

“RK”

as Q/Λ correction

“O(α)”

already at LO

Older experimental determinations

a4
p–d = 11.88 ± 0.4 fm Arvieux (1973)

a4
p–d = 11.1 fm Huttel et al. (1983)

More recent result

a4
p–d = 14.7 ± 2.3 fm

Black et al. (1999)

Proton–deuteron scattering lengths in pionless effective field theory – p. 22



Part IV

Doublet channel

Coupled channels

Three-nucleon forces

Results (preliminary)
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Complications

1. coupled channels! = + +

= + +

Λ

H(
Λ)
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Complications

1. coupled channels! = + +

= + +

2. strong cutoff dependence!

→֒ renormalize with leading order 3N-force force (SU(4)-symmetric)
Bedaque, Hammer, van Kolck 1999

L3 = −MN
H(Λ)

Λ2

(

y2
dN

†(~d · ~σ)†(~d · ~σ)N + . . .

)

−→ +

−→ +

1000 10000 1e+05
-10

-5

0

5

10

15

Λ

H(
Λ)

. . . fix H(Λ) with three-body input → triton binding energy, 2an−d
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Coulomb effects in the proton–proton channel

In doublet channel, the singlet dibaryon can be in a pure p− p state

= + + + · · ·

= + + + · · ·

∆t,pp(p) ∼
1

−1/aC − 2κH(κ/p′)
, κ =

αMN

2
, p′ = i

√

p2/4 −MNp0 − iε

Kong, Ravndal 1999

→ Coulomb-modified effective range expansion Bethe 1949

cf. Ando, Birse 2010

The third nucleon neccessarily has to be a neutron!

→ no additional Coulomb-photon exchange!

→֒ 3-channel integral equation
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Full doublet-channel integral equation

Include all O(α) Coulomb diagrams. . .

= + + + ×
(

+ +
)

+ ×
(

+
)

+ ×
(

+
)

= + + ×
(

+
)

+ ×
(

+ +
)

+ ×
(

+
)

= + + ×
(

+
)

+ ×
(

+
)
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He-3 binding energy (LO)

bound-sate regime: ∼

E + EB

+ regular terms
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He-3 binding energy (LO)

bound-sate regime: ∼

E + EB

+ regular terms

→֒ predict 3He binding energy!

1000 10000
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)

H
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)

from WF (pure Coulomb)

from WF (all contrib.)

nonpert. calc.

Ando+Birse

exp. EB(
3He)

exp. EB(
3H)

=
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He-3 binding energy (NLO)

At NLO, things don’t work so well. . .

1000 10000
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H
(Λ

)

from WF (pure Coulomb)

from WF (all contrib.)

nonpert. calc.

exp. EB(
3He)

exp. EB(
3H)

=

→֒ incomplete renormalization!
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New “Coulomb” counterterm

Re-fit H(Λ) to 3He energy at NLO
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Proton–deuteron scattering lengths in pionless effective field theory – p. 29



New “Coulomb” counterterm

Re-fit H(Λ) to 3He energy at NLO
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Can be shown analytically!
Vanasse, Egolf, Kerin, SK, Springer 2014

H(Λ) = H0(Λ)+H1(Λ) +H
(α)
1 (Λ)
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Doublet-channel scattering length

Back to the fully perturbative approach. . .

fit H
(α)
1 (Λ) to 3He binding energy

predict doublet-channel p–d scattering length
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Doublet-channel scattering length
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Doublet-channel scattering length

Back to the fully perturbative approach. . .

fit H
(α)
1 (Λ) to 3He binding energy

predict doublet-channel p–d scattering length
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Other determinations

Ref. 4ap–d (fm)

van Oers, Brockman (1967) 1.2 ± 0.2
Arvieux (1973) 2.73 ± 0.10

Huttel et al. (1983) ≈ 4.0
Black et al. (1999) −0.13 ± 0.04

Orlov, Orevkov (2006) ≈ 0.024
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Summary and outlook

Coulomb effects are well under control

Clean perturbative expansion very important at low energies

Quartet-channel scattering length agrees well with older
experimental determinations

Need to go to higher orders to nail down doublet-channel
scattering length

Proton–deuteron scattering lengths in pionless effective field theory – p. 31



Summary and outlook

Coulomb effects are well under control

Clean perturbative expansion very important at low energies

Quartet-channel scattering length agrees well with older
experimental determinations

Need to go to higher orders to nail down doublet-channel
scattering length

Outlook: N2LO doublet channel, p–d Phillips line
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Clean perturbative expansion very important at low energies

Quartet-channel scattering length agrees well with older
experimental determinations

Need to go to higher orders to nail down doublet-channel
scattering length

Outlook: N2LO doublet channel, p–d Phillips line

***

Thanks for your attention!
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