Proton–deuteron scattering lengths in pionless effective field theory

Sebastian König in collaboration with H-W. Hammer

INT Program 14-1, University of Washington

Seattle, WA

April 2, 2014

Proton–deuteron scattering lengths in pionless effective field theory - p. 1

*֒***→ two S-wave channels:**

$$
1 \otimes \frac{1}{2} = \frac{3}{2} \left(\sim \biglozenge \varphi \biglozenge \biglozenge \right) \oplus \frac{1}{2} \left(\sim \biglozenge \varphi \biglozenge \varphi + \cdots \right)
$$

*֒***→ two S-wave channels:**

$$
1 \otimes \frac{1}{2} = \frac{3}{2} \left(\sim \bigoplus \varphi \right) \oplus \frac{1}{2} \left(\sim \bigoplus \varphi \right) + \cdots \right)
$$

*֒***→ two S-wave channels:**

$$
1 \otimes \frac{1}{2} = \frac{3}{2} \left(\sim \bigoplus \bigoplus \bigoplus \bigoplus \frac{1}{2} \left(\sim \bigoplus \bigoplus \bigoplus + \cdots \right)
$$

Goal

Precise and controlled extraction from EFT calculation!

Goal

Precise and controlled extraction from EFT calculation!

Scope of method

- **Nuclear astrophysics**
	- Low-energy nuclear reactions in Halo-EFT
	- $\bullet \rightarrow$ one-neutron halo states in 11 Be
	- $\bullet \rightarrow$ one-proton halo state in ${}^{8}B$?
- **Cold-atom systems**
	- **EFT** with van-der-Waals tails?

Outline

- \bullet **Pionless effective field theory**
- ² **Coulomb-modified effective range expansion**
- \bullet Quartet-channel scattering length
- ⁴ **Doublet-channel scattering length**
- ⁵ **Summary and outlook**

SK, H.-W. Hammer, arXiv:1312.2573 SK, Ph.D. thesis (Bonn U, 2013) SK, H.-W. Hammer, PRC **83** (2011) 064001

Part I Pionless effective field theory

- **Effective Lagrangian**
- **Power counting**
- **Integral equations**

Foundation and basic features

Foundation and basic features

- at very low energies even pions can be integrated out *֒*→ only nucleons left as effective degrees of freedom
- **•** non-relativistic framework
- large scattering lengths in *N*-*N* scattering ۰
	- *֒*→ additional low-energy scale

$$
\gamma_d = \frac{1}{a_d} \big(1 + \mathcal{O}(a_0/r_d) \big)
$$

$$
^3S_1\ \, \longrightarrow\,\, \dots
$$

● convenient description of three-body sector with dibaryon fields

Bedaque, Hammer, van Kolck 1998

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 6

Effective Lagrangian

$$
\mathcal{L} = \frac{N^{\dagger} \left(iD_0 + \frac{\vec{D}^2}{2M_N} \right) N}{-d^{i\dagger} \left[\sigma_d + \ldots \right] d^i - t^{A\dagger} \left[\sigma_t + \ldots \right] t^A}
$$

- $y_d \left[d^{i\dagger} \left(N^T P_d^i N \right) + \text{h.c.} \right] - y_t \left[t^{A\dagger} \left(N^T P_t^A N \right) + \text{h.c.} \right]$
...

nucleon field *N*, doublet in spin and isospin space

- auxiliary $\boldsymbol{\text{dibaryon}}$ fields $d^i\left(^3S_1,\ I=0 \right)$ and $t^A\left(^1S_0,\ I=1 \right)$ \leftrightarrow channels in $N-N$ scattering
- **e** coupling constants $y_{d,t}$ and $\sigma_{d,t}$
- dibaryon propagators are just constants at leading order

Dibaryon propagators

Bubble chains

³S¹ : ∆^d = = + + + · · · ¹S⁰ : ∆^t = = + + + · · ·

Fix parameters from *N***-***N* **scattering!**

$$
i\mathcal{A}_{d,t}(k) = -y_{d,t}^2 \Delta_{d,t}(p_0 = \frac{\mathbf{k}^2}{2M_N}, \mathbf{p} = 0) = \frac{4\pi}{M_N} \frac{\mathbf{i}}{k \cot \delta_{d,t} - \mathbf{i}k}
$$

 $k \cot \delta_d(k) = -\gamma_d + \frac{\rho_d}{2}(k^2 + \gamma_d^2) + \dots \longrightarrow y_d, \sigma_d$

 $k \cot \delta_t(k) = -\gamma_t + \frac{r_{0t}}{2}k^2 + \dots$ with $\gamma_t \equiv \frac{1}{a_t} \longrightarrow y_t, \sigma_t$

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 8

Range corrections

Dibaryon kinetic-energy terms

$$
\longrightarrow \longrightarrow \mathbf{i}\Delta_d^{\text{LO}}(p) \times (-\mathbf{i}) \left(p_0 - \frac{\mathbf{p}^2}{4M_N}\right) \times \mathbf{i}\Delta_d^{\text{LO}}(p)
$$

֒→ effective-range corrections

$$
\Delta_d(p) \sim \frac{1}{-\gamma_d + \sqrt{\frac{\mathbf{p}^2}{4} - M_N p_0 - i\varepsilon} - \frac{\rho_d}{2} \left(\frac{\mathbf{p}^2}{4} - M_N p_0 - \gamma_d^2\right) \cdot \mathcal{O}(Q/\Lambda) \sim \mathcal{O}(\gamma_d \rho_d)}
$$
\n
$$
\text{expand in } \rho_d, r_{0t} \to \text{NLO, N}^2\text{LO}, \dots
$$

Range corrections

Dibaryon kinetic-energy terms

$$
\longrightarrow \longrightarrow \mathbf{i}\Delta_d^{\text{LO}}(p) \times (-\mathbf{i}) \left(p_0 - \frac{\mathbf{p}^2}{4M_N}\right) \times \mathbf{i}\Delta_d^{\text{LO}}(p)
$$

֒→ effective-range corrections

$$
\Delta_d(p) \sim \frac{1}{-\gamma_d + \sqrt{\frac{\mathbf{p}^2}{4} - M_N p_0 - i\varepsilon} - \frac{\rho_d}{2} \left(\frac{\mathbf{p}^2}{4} - M_N p_0 - \gamma_d^2\right)}}\n\frac{\partial(Q/\Lambda) \sim \mathcal{O}(\gamma_d \rho_d)}{\partial(E; q) - D_d^{(0)}(E; q) + D_d^{(1)}(E; q) + \cdots}\n= -\frac{4\pi}{M_N y_d^2} \frac{1}{-\gamma_d + \sqrt{3q^2/4 - M_N E - i\varepsilon}} \times \left[1 + \frac{\rho_d}{2} \frac{\left(3q^2/4 - M_N E - \gamma_d^2\right)}{-\gamma_d + \sqrt{3q^2/4 - M_N E - i\varepsilon}} + \cdots\right]
$$

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 9

Resummations

Power counting \leftrightarrow resum certain classes of diagrams!

Resummations

Power counting \leftrightarrow resum certain classes of diagrams!

Lippmann–Schwinger equation solve numerically!

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) $-$ p. 10

Charged-particle sector

What about Coulomb effects?

Charged-particle sector

What about Coulomb effects?

3-body sector

- \bullet $p-d$ quartet-channel scattering \bullet $p-d$ Rupak, Kong 2003
- \bullet ³He binding energy (LO only) \bullet Ando, Birse 2010

-
- $p-d$ scattering (quartet $+$ doublet) and ³He SK, Hammer, 2011

Coulomb contributions

$$
\text{Coulomb photons: } \quad \overline{\text{ or } } \text{ (ie) } \frac{\text{i}}{\mathbf{q}^2} \text{ (ie) } \longrightarrow \text{ (ie) } \frac{\text{i}}{\mathbf{q}^2 + \lambda^2} \text{ (ie)}
$$

Coulomb contributions

100 200 ^p (MeV)

SK, Hammer, 2011

 \rightarrow re-shuffle mesh points!

$$
\text{Coulomb photons: } \quad \overline{\text{ or } } \text{ (ie) } \frac{\text{i}}{\mathbf{q}^2} \text{ (ie) } \longrightarrow \text{ (ie) } \frac{\text{i}}{\mathbf{q}^2 + \lambda^2} \text{ (ie)}
$$

$$
\mathcal{L} \supset d^{i\dagger} \bigg[\sigma_d + \bigg(i D_0 + \frac{D^2}{4 M_N} \bigg) \bigg] d^i
$$

*֒***→ range correction!**

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 12

Part II

Coulomb-modified effective range expansion

- **Coulomb-subtracted phase shifts**
- **Modified effective range expansion**
- **The Gamow factor**

Coulomb-subtracted phase shifts

Coulomb force

- long (infinite) range \rightarrow very strong at small momentum transfer
- **•** pure Coulomb scattering can be solved analytically

*֒***→ use Coulomb wave functions as reference states!**

Coulomb-subtracted phase shifts

Coulomb force

- long (infinite) range \rightarrow very strong at small momentum transfer
- **•** pure Coulomb scattering can be solved analytically

*֒***→ use Coulomb wave functions as reference states!**

Rupak, Kong (2001); SK, Hammer (2011)

Modified effective range expansion

Ordinary effective range expansion

$$
k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots \quad a = \text{scattering length}
$$

$$
r = \text{effective range}
$$

Modified effective range expansion

Ordinary effective range expansion

$$
k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots \quad a = \text{scattering length}
$$

$$
r = \text{effective range}
$$

Modified effective range expansion

$$
C_{\eta,0}^2 k \cot \delta_{\text{diff}}(k) + \alpha \mu h_0(\eta) = -\frac{1}{a_0^C} + \cdots
$$

Gamow factor

$$
C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta} - 1}
$$

$$
\eta = \alpha\mu/k
$$

Modified effective range expansion

Ordinary effective range expansion
\n
$$
k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots
$$
\n
$$
a = \text{scattering length}
$$
\n
$$
r = \text{effective range}
$$

Gamow factor

$$
C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta} - 1}
$$

$$
\eta = \alpha\mu/k
$$

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 15

$$
C_{\eta,0}^2=\frac{2\pi\eta}{\mathrm{e}^{2\pi\eta}-1}
$$

But we have a screened Coulomb potential! 1 $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{e^{-\lambda r}}{r}$ *r*

$$
C_{\eta,0}^2=\frac{2\pi\eta}{\mathrm{e}^{2\pi\eta}-1}
$$

But we have a screened Coulomb potential!
\n
$$
\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{e^{-\lambda r}}{r}
$$

• note:
$$
C_{\eta,0}^2 = |\psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0})|^2
$$

 $C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta}}$

But we have a screened Coulomb potential! 1 $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{e^{-\lambda r}}{r}$ *r*

 \mathbf{n} ote: $C_{\eta,0}^2 = \left| \psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0}) \right|$ 2

 $e^{2\pi\eta}-1$

 $|\mathcal{F}_{\ell}(k)|^{-2}k^{2\ell+1} (\cot \delta_{\ell}^{M}(k) - i) + M_{\ell}(k) = -1/a_{\ell}^{M}$ van Haeringen, Kok 1982

 $C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta}}$

 $e^{2\pi\eta}-1$

But we have a screened Coulomb potential! 1 $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{e^{-\lambda r}}{r}$ *r*

\n- \n
$$
\text{Note: } C_{\eta,0}^2 = \left| \psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0}) \right|^2
$$
\n
\n- \n
$$
|\mathcal{F}_{\ell}(k)|^{-2} k^{2\ell+1} \left(\cot \delta_{\ell}^M(k) - i \right) + M_{\ell}(k) = -1/a_{\ell}^M + \cdots
$$
\n van Haeningen, Kok 1982\n
\n- \n
$$
\text{Furthermore: } \psi_{\mathbf{k},0}^{(+)}(p) = \frac{2\pi^2}{k^2} \delta(k-p) - \frac{2\mu Z_0 \mathcal{T}(E;p,k)}{k^2 - p^2 + i\varepsilon} \quad , \quad E = E(k)
$$
\n
\n

 $C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta}}$

 $e^{2\pi\eta}-1$ **But we have a screened Coulomb potential!** 1 $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{e^{-\lambda r}}{r}$ *r*

• note:
$$
C_{\eta,0}^2 = |\psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0})|^2
$$

 $|\mathcal{F}_{\ell}(k)|^{-2}k^{2\ell+1} \left(\cot\delta_{\ell}^M(k)-\mathrm{i}\right) +M_{\ell}(k)=-1/a_{\ell}^M+\cdots \quad\quad$ van Haeringen, Kok 1982

• furthermore:
$$
\psi_{\mathbf{k},0}^{(+)}(p) = \frac{2\pi^2}{k^2} \delta(k-p) - \frac{2\mu Z_0 \mathcal{T}(E;p,k)}{k^2 - p^2 + i\varepsilon}
$$
, $E = E(k)$

Solution
\n
$$
\mathcal{L} = \frac{-\mathcal{L}}{\mathcal{L}} + \frac{1}{\mathcal{L}} \times (\frac{-\mathcal{L}}{\mathcal{L}} + \frac{1}{\mathcal{L}})
$$
\n
$$
\sim C_{\eta,\lambda}^2 = \left| 1 + \frac{2M_N}{3\pi^2} \int_0^{\Lambda} \frac{dp \, p^2}{p^2 - k^2 - i\epsilon} Z_0 \mathcal{T}_c(E; p, k) \right|^2
$$
\n
$$
\Rightarrow \text{ consistent extraction from numerical calculation!}
$$

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 16

Part III Quartet channel

- **Convergence pattern**
- **Fully perturbative calculation**
- **Results**

Quartet-channel scattering length

Convergence pattern

- right order of magnitude \checkmark
- \bullet nice (weak) photon-mass dependence \checkmark

Convergence pattern

- right order of magnitude \checkmark
- \bullet nice (weak) photon-mass dependence \checkmark
- **but:** strange convergence pattern!

Convergence pattern

- right order of magnitude \checkmark
- \bullet nice (weak) photon-mass dependence \checkmark
- **but:** strange convergence pattern!

Fully perturbative calculation (I)

Better (cleaner) approach

Fully perturbative calculation see, e.g., Ji, Phillips 2012

 \bullet $\mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} + \Delta \mathcal{T}_{\mathsf{NLO}}$ \bullet $\Delta \mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} \otimes (D^{(1)} K_{\mathsf{LO}}) \otimes \mathcal{T}_{\mathsf{LO}} + \cdots$

$$
\bullet \ \delta(k) = \delta^{(0)} + \delta^{(1)} + \cdots
$$

• complicated at N^2 LO!

Fully perturbative calculation (I)

Better (cleaner) approach

Fully perturbative calculation see, e.g., Ji, Phillips 2012

$$
\bullet \ \mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} + \Delta \mathcal{T}_{\mathsf{NLO}} \qquad \bullet \ \Delta \mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} \otimes (D^{(1)} K_{\mathsf{LO}}) \otimes \mathcal{T}_{\mathsf{LO}} + \cdots
$$

$$
\bullet \ \delta(k) = \delta^{(0)} + \delta^{(1)} + \cdots
$$

• complicated at N^2 LO!

Much more efficient calculation with re-shuffling of terms!

Vanasse 2013

Fully perturbative calculation (II)

$$
\begin{split} \mathcal{T}_{\text{full}}^{(0)} &= K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(1)} &= K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(2)} &= \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right] \\ &+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)} \end{split}
$$

$$
K^{(0)} = \frac{1}{\sqrt{1-\frac{1}{2}}} + \frac{1}{
$$

Fully perturbative calculation (II)

$$
\begin{split} \mathcal{T}_{\text{full}}^{(0)} &= K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(1)} &= K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(2)} &= \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right] \\ &+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)} \end{split}
$$

$$
K^{(0)} = \underbrace{\underbrace{\qquad}_{\qquad \qquad}} + \underbrace{\underbrace{\qquad}_{\qquad \qquad}} + \underbrace{\underbrace{\qquad}_{\qquad \qquad}} + \underbrace{\qquad \qquad}_{\qquad \qquad}, \ \ K^{(1)} = \underbrace{\qquad \qquad}_{\qquad \qquad}
$$

1

$$
\begin{split} \left[k\cot\delta_{\rm diff}\right]^{(0)} &= \frac{2\pi}{\mu}\frac{{\rm e}^{2{\rm i}\delta_{\rm c}^{(0)}}}{T_{\rm diff}^{(0)}} + {\rm i}k \\ \left[k\cot\delta_{\rm diff}\right]^{(1)} &= \frac{2\pi}{\mu}{\rm e}^{2{\rm i}\delta_{\rm c}^{(0)}} \times \left[\frac{2{\rm i}\delta_{\rm c}^{(1)}}{T_{\rm diff}^{(0)}} - \frac{T_{\rm diff}^{(1)}}{(T_{\rm diff}^{(0)})^2}\right] \\ \left[k\cot\delta_{\rm diff}\right]^{(2)} &= -\frac{2\pi}{\mu}{\rm e}^{2{\rm i}\delta_{\rm c}^{(0)}} \times \left[\frac{2(\delta_{\rm c}^{(1)})^2-2{\rm i}\delta_{\rm c}^{(2)}}{T_{\rm diff}^{(0)}} \\ &+\frac{2{\rm i}\delta_{\rm c}^{(1)}T_{\rm diff}^{(1)}+T_{\rm diff}^{(2)}}{(T_{\rm diff}^{(0)})^2} - \frac{(T_{\rm diff}^{(1)})^2}{(T_{\rm diff}^{(0)})^2} \right. \end{split}
$$

Fully perturbative calculation (II)

$$
\mathcal{T}_{\text{full}}^{(0)} = K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)}
$$
\n
$$
\mathcal{T}_{\text{full}}^{(1)} = K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)}
$$
\n
$$
\mathcal{T}_{\text{full}}^{(2)} = \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right]
$$
\n
$$
+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)}
$$

$$
K^{(0)} = \overbrace{\text{---}} + \overbrace{\text{---}} + \overbrace{\text{---}} + \overbrace{\text{---}} + \overbrace{\text{---}} + K^{(1)} = \overbrace{\text{---}} + \overbrace{\text{---}} +
$$

$$
\begin{split} [k\cot\delta_{\rm diff}]^{(0)} &= \frac{2\pi}{\mu} \frac{\mathrm{e}^{2\mathrm{i}\delta_{\rm c}^{(0)}}}{T_{\rm diff}^{(0)}} + \mathrm{i}k \\ [k\cot\delta_{\rm diff}]^{(1)} &= \frac{2\pi}{\mu} \mathrm{e}^{2\mathrm{i}\delta_{\rm c}^{(0)}} \times \left[\frac{2\mathrm{i}\delta_{\rm c}^{(1)}}{T_{\rm diff}^{(0)}} - \frac{T_{\rm diff}^{(1)}}{(T_{\rm diff}^{(0)})^2}\right] \\ [k\cot\delta_{\rm diff}]^{(2)} &= -\frac{2\pi}{\mu} \mathrm{e}^{2\mathrm{i}\delta_{\rm c}^{(0)}} \times \left[\frac{2(\delta_{\rm c}^{(1)})^2 - 2\mathrm{i}\delta_{\rm c}^{(2)}}{T_{\rm diff}^{(0)}} \\ & + \frac{2\mathrm{i}\delta_{\rm c}^{(1)}T_{\rm diff}^{(1)} + T_{\rm diff}^{(2)}}{(T_{\rm diff}^{(0)})^2} \frac{(T_{\rm diff}^{(1)})^2}{(T_{\rm diff}^{(0)})^3} \right] \end{split}
$$

Scattering lenth

$$
C_{\eta,\lambda}^2 [k \cot \delta_{\text{diff}}(k)] + \gamma h(\eta) = -\frac{1}{a_{p-d}} + \mathcal{O}(k^2)
$$

Combine with $C_{\eta,\lambda}^2 = [C_{\eta,\lambda}^2]^{(0)} + [C_{\eta,\lambda}^2]^{(1)} + \cdots$

Fully perturbative result

Fully perturbative result

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 22

Part IV Doublet channel

- **Coupled channels**
- **Three-nucleon forces**
- **Results (preliminary)**

Complications

Complications

1. coupled channels!

- **2. strong cutoff dependence!**
	- \rightarrow renormalize with leading order 3N-force force $(SU(4))$ -symmetric)

Bedaque, Hammer, van Kolck 1999

... fix $H(\Lambda)$ with three-body input \to triton binding energy, $^{2}a_{n-d}$

Coulomb effects in the proton–proton channel

In doublet channel, the singlet dibaryon can be in a pure *p* − *p* state

$$
\bigcirc \mathbf{D} = \bigcirc \mathbf{D} + \bigcirc \mathbf{D} + \bigcirc \mathbf{D} + \cdots
$$

=
$$
\mathbf{D} = \mathbf{D} + \mathbf{D} \cdot \mathbf{D} + \mathbf{D} \cdot \mathbf{D} \cdot \mathbf{D} + \cdots
$$

$$
\Delta_{t,pp}(p) \sim \frac{1}{-1/a_C - 2\kappa H(\kappa/p')} , \ \ \kappa = \frac{\alpha M_N}{2} , \ \ p' = i\sqrt{\mathbf{p}^2/4 - M_N p_0 - i\varepsilon}
$$

Kong, Ravndal 1999

 \rightarrow Coulomb-modified effective range expansion Bethe 1949

cf. Ando, Birse 2010

The third nucleon neccessarily has to be a neutron!

 \rightarrow no additional Coulomb-photon exchange!

֒→ 3-channel integral equation

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 25

Full doublet-channel integral equation

Include all $\mathcal{O}(\alpha)$ Coulomb diagrams...

He-3 binding energy (LO)

bound-sate regime: ∼

He-3 binding energy (LO)

bound-sate regime: ∼

 \rightarrow predict ³He binding energy!

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 27

He-3 binding energy (NLO)

At NLO, things don't work so well. . .

*֒***→ incomplete renormalization!**

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 28

New "Coulomb" counterterm

Re-fit $H(\Lambda)$ to ³He energy at NLO

New "Coulomb" counterterm

Re-fit $H(\Lambda)$ to ³He energy at NLO

Can be shown analytically!

Vanasse, Egolf, Kerin, SK, Springer 2014

$$
H(\Lambda) = H_0(\Lambda) + H_1(\Lambda) + H_1^{(\alpha)}(\Lambda)
$$

[Proton–deuteron scattering lengths in pionless effective field theory](#page-0-0) – p. 29

Doublet-channel scattering length

Back to the fully perturbative approach. . .

- fit $H_1^{(\alpha)}$ $1^{(\alpha)}(\Lambda)$ to 3 He binding energy
- **•** predict doublet-channel $p-d$ scattering length

Doublet-channel scattering length

Back to the fully perturbative approach. . .

- fit $H_1^{(\alpha)}$ $1^{(\alpha)}(\Lambda)$ to 3 He binding energy
- **•** predict doublet-channel $p-d$ scattering length

Doublet-channel scattering length

Back to the fully perturbative approach. . .

- fit $H_1^{(\alpha)}$ $1^{(\alpha)}(\Lambda)$ to 3 He binding energy
- **•** predict doublet-channel $p-d$ scattering length

Other determinations

Summary and outlook

- **Coulomb effects are well under control**
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length

Summary and outlook

- **Coulomb effects are well under control**
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length
- **Outlook:** N ²LO doublet channel, *p*–*d* Phillips line

Summary and outlook

- **Coulomb effects are well under control**
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length
- **Outlook:** N ²LO doublet channel, *p*–*d* Phillips line

Thanks for your attention!