Proton-deuteron scattering lengths in pionless effective field theory

Sebastian König in collaboration with H.-W. Hammer

INT Program 14-1, University of Washington

Seattle, WA

April 2, 2014

 \hookrightarrow two S-wave channels:

$$1\otimes \frac{1}{2} = \frac{3}{2}\left(\sim \oint \oint \oint \right) \oplus \frac{1}{2}\left(\sim \oint \oint \oint + \cdots\right)$$

 \hookrightarrow two S-wave channels:

$$\mathbf{1}\otimes\frac{\mathbf{1}}{\mathbf{2}}=\frac{\mathbf{3}}{\mathbf{2}}\left(\sim \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}}\right)\oplus\frac{\mathbf{1}}{\mathbf{2}}\left(\sim \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}}\right)$$

Quartet channel

Ref.	$ {}^{4}a_{p-d}$ (fm)
van Oers, Brockman (1967)	$11.4^{+1.8}_{-1.2}$
Arvieux (1973)	11.88 ± 0.4
Huttel <i>et al.</i> (1983)	≈ 11.1
Kievsky <i>et al.</i> (1997)	13.8
Black <i>et al.</i> (1999)	14.7 ± 2.3

 \hookrightarrow two S-wave channels:

$$\mathbf{1}\otimes\frac{\mathbf{1}}{\mathbf{2}}=\frac{\mathbf{3}}{\mathbf{2}}\left(\sim \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}}\right)\oplus\frac{\mathbf{1}}{\mathbf{2}}\left(\sim \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}} \mathbf{\diamondsuit \mathbf{0}}+\cdots\right)$$

Quartet channel		nel Doublet channel	
Ref.	${}^4a_{p-d}$ (fm)	Ref.	${}^4a_{p\!-\!d}$ (fm)
van Oers, Brockman (1967)	$11.4^{+1.8}_{-1.2}$	van Oers, Brockman (1967)	1.2 ± 0.2
Arvieux (1973)	11.88 ± 0.4	Arvieux (1973)	2.73 ± 0.10
Huttel <i>et al.</i> (1983)	≈ 11.1	Huttel <i>et al.</i> (1983)	≈ 4.0
Kievsky <i>et al.</i> (1997)	13.8	Black <i>et al.</i> (1999)	-0.13 ± 0.04
Black <i>et al.</i> (1999)	14.7 ± 2.3	Orlov, Orevkov (2006)	≈ 0.024

Goal

Precise and controlled extraction from EFT calculation!

Goal

Precise and controlled extraction from EFT calculation!

Scope of method

- Nuclear astrophysics
 - Low-energy nuclear reactions in Halo-EFT
 - ullet ightarrow one-neutron halo states in $^{11}{
 m Be}$
 - \rightarrow one-proton halo state in $^8\mathrm{B}$?
- Cold-atom systems
 - EFT with van-der-Waals tails?

Outline

- Pionless effective field theory
- Oulomb-modified effective range expansion
- Quartet-channel scattering length
- Doublet-channel scattering length
- Summary and outlook

SK, H.-W. Hammer, arXiv:1312.2573
SK, Ph.D. thesis (Bonn U, 2013)
SK, H.-W. Hammer, PRC 83 (2011) 064001

Part I Pionless effective field theory

- Effective Lagrangian
- Power counting
- Integral equations

Foundation and basic features

Foundation and basic features

- at very low energies even pions can be integrated out
 → only nucleons left as effective degrees of freedom
- non-relativistic framework
- large scattering lengths in N-N scattering
 - \hookrightarrow additional low-energy scale

$$\gamma_d = \frac{1}{a_d} \left(1 + \mathcal{O}(a_0/r_d) \right)$$

 ${}^{3}S_{1} \longrightarrow \cdots$

 convenient description of three-body sector with dibaryon fields

Bedaque, Hammer, van Kolck 1998

Proton-deuteron scattering lengths in pionless effective field theory - p. 6

Effective Lagrangian

$$\mathcal{L} = \underbrace{N^{\dagger} \left(iD_{0} + \frac{\vec{D}^{2}}{2M_{N}} \right) N}_{- \frac{d^{i\dagger} \left[\sigma_{d} + \ldots \right] d^{i}}{2M_{N}} + \mathcal{L}_{photon} + \mathcal{L}_{3}}_{- \frac{d^{i\dagger} \left[\sigma_{d} + \ldots \right] d^{i}}{2M_{N}} - t^{A\dagger} \left[\sigma_{t} + \ldots \right] t^{A}}_{- \frac{d^{i\dagger} \left[\sigma_{d} + \ldots \right] d^{i}}{2M_{N}} + h.c.} - y_{d} \left[d^{i\dagger} \left(N^{T} P_{d}^{i} N \right) + h.c. \right] - y_{t} \left[t^{A\dagger} \left(N^{T} P_{t}^{A} N \right) + h.c. \right]}_{- \frac{d^{i\dagger} \left[\sigma_{d} + \ldots \right] d^{i}}{2M_{N}} - \frac{d^{i\dagger} \left[\sigma_{d} + \ldots \right] d^{i}}{2M_{N}} + h.c.}$$

• nucleon field N, doublet in spin and isospin space

- auxiliary dibaryon fields d^i (${}^{3}S_1$, I = 0) and t^A (${}^{1}S_0$, I = 1) \leftrightarrow channels in N-N scattering
- coupling constants $y_{d,t}$ and $\sigma_{d,t}$
- dibaryon propagators are just constants at leading order

Dibaryon propagators

Bubble chains

Fix parameters from *N*-*N* scattering!

$$i\mathcal{A}_{d,t}(k) = -y_{d,t}^2 \Delta_{d,t}(p_0 = \frac{\mathbf{k}^2}{2M_N}, \mathbf{p} = 0) = \frac{4\pi}{M_N} \frac{i}{k \cot \delta_{d,t} - ik}$$

- $k \cot \delta_d(k) = -\gamma_d + \frac{\rho_d}{2}(k^2 + \gamma_d^2) + \dots \longrightarrow y_d, \sigma_d$
- $k \cot \delta_t(k) = -\gamma_t + \frac{r_{0t}}{2}k^2 + \dots$ with $\gamma_t \equiv \frac{1}{a_t} \longrightarrow y_t, \sigma_t$

Range corrections

Dibaryon kinetic-energy terms

$$\longrightarrow$$
 \sim $i\Delta_d^{LO}(p) \times (-i) \left(p_0 - \frac{\mathbf{p}^2}{4M_N} \right) \times i\Delta_d^{LO}(p)$

 $\hookrightarrow \mathsf{effective}\mathsf{-range}\ \mathsf{corrections}$

 $\mathcal{O}($

$$\begin{split} \Delta_d(p) &\sim \frac{1}{-\gamma_d + \sqrt{\frac{\mathbf{p}^2}{4} - M_N p_0 - \mathrm{i}\varepsilon} - \frac{\rho_d}{2} \left(\frac{\mathbf{p}^2}{4} - M_N p_0 - \gamma_d^2\right)} \\ \hline Q/\Lambda) &\sim \mathcal{O}(\gamma_d \rho_d) \end{split} \qquad \text{expand in } \rho_d, \ r_{0t} \to \mathsf{NLO}, \ \mathsf{N}^2\mathsf{LO}, \ \dots \end{split}$$

Range corrections

Dibaryon kinetic-energy terms

$$\longrightarrow$$
 \sim $i\Delta_d^{LO}(p) \times (-i) \left(p_0 - \frac{\mathbf{p}^2}{4M_N} \right) \times i\Delta_d^{LO}(p)$

$\hookrightarrow \mathsf{effective}\mathsf{-range}\ \mathsf{corrections}$

$$\Delta_d(p) \sim \frac{1}{-\gamma_d + \sqrt{\frac{\mathbf{p}^2}{4} - M_N p_0 - i\varepsilon} - \frac{\rho_d}{2} \left(\frac{\mathbf{p}^2}{4} - M_N p_0 - \gamma_d^2\right)}}$$

$$\underbrace{\mathcal{O}(Q/\Lambda) \sim \mathcal{O}(\gamma_d \rho_d)}_{D_d(E;q) = D_d^{(0)}(E;q) + D_d^{(1)}(E;q) + \cdots}$$

$$= -\frac{4\pi}{M_N y_d^2} \frac{1}{-\gamma_d + \sqrt{3q^2/4 - M_N E - i\varepsilon}} \times \left[1 + \frac{\rho_d}{2} \frac{\left(3q^2/4 - M_N E - \gamma_d^2\right)}{-\gamma_d + \sqrt{3q^2/4 - M_N E - i\varepsilon}} + \cdots\right]$$

Proton-deuteron scattering lengths in pionless effective field theory - p. 9

Resummations

Power counting \hookrightarrow resum certain classes of diagrams!

Resummations

Power counting \hookrightarrow resum certain classes of diagrams!

Lippmann–Schwinger equation ~> solve numerically!

Proton-deuteron scattering lengths in pionless effective field theory - p. 10

Charged-particle sector

What about Coulomb effects?

Charged-particle sector

What about Coulomb effects?

3-body sector

- *p*-*d* quartet-channel scattering
- ³He binding energy (LO only)

Rupak, Kong 2003

Ando, Birse 2010

• p-d scattering (quartet + doublet) and ³He

SK, Hammer, 2011

Coulomb contributions

Coulomb photons:
$$\sum$$
 ~ (ie) $\frac{i}{q^2}$ (ie) \rightarrow (ie) $\frac{i}{q^2 + \lambda^2}$ (ie)

Coulomb contributions

K(k, p)

100

 $p \, (MeV)$

 \rightarrow re-shuffle mesh points!

200

SK, Hammer, 2011

Coulomb photons:
$$\sum$$
 ~ (ie) $\frac{i}{q^2}$ (ie) \rightarrow (ie) $\frac{i}{q^2 + \lambda^2}$ (ie)

generated by dibaryon kinetic term!

$$\mathcal{L} \supset d^{i\dagger} \left[\sigma_d + \left(\mathrm{i} D_0 + \frac{\boldsymbol{D}^2}{4M_N} \right) \right] d^i$$

 \hookrightarrow range correction!

Proton-deuteron scattering lengths in pionless effective field theory - p. 12

Part II

Coulomb-modified effective range expansion

- Coulomb-subtracted phase shifts
- Modified effective range expansion
- The Gamow factor

Coulomb-subtracted phase shifts

Coulomb force

- \bullet long (infinite) range \rightarrow very strong at small momentum transfer
- pure Coulomb scattering can be solved analytically

 \hookrightarrow use Coulomb wave functions as reference states!

Coulomb-subtracted phase shifts

Coulomb force

- long (infinite) range \rightarrow very strong at small momentum transfer
- pure Coulomb scattering can be solved analytically

 \hookrightarrow use Coulomb wave functions as reference states!

Rupak, Kong (2001); SK, Hammer (2011)

Modified effective range expansion

Ordinary effective range expansion

$$k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots$$
 $a = \text{scattering length}$
 $r = \text{effective range}$

Modified effective range expansion

Ordinary effective range expansion
$$1 - r_0 = r_0$$

$$k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots \qquad \begin{array}{c} a = \text{scattering length} \\ r = \text{effective range} \end{array}$$

Modified effective range expansion

$$C_{\eta,0}^2 \, k \cot \delta_{\text{diff}}(k) + \alpha \mu \, h_0(\eta) = -\frac{1}{a_0^C} + \cdots$$

Gamow factor

$$C_{\eta,0}^2 = \frac{2\pi\eta}{\mathrm{e}^{2\pi\eta} - 1}$$
$$\eta = \alpha\mu/k$$

Modified effective range expansion

Ordinary effective range expansion

$$k \cot \delta(k) = -\frac{1}{a_0} + \frac{r_0}{2}k^2 + \cdots$$
 $a = \text{scattering length}$
 $r = \text{effective range}$

Proton-deuteron scattering lengths in pionless effective field theory - p. 15

$$C_{\eta,0}^2 = \frac{2\pi\eta}{\mathrm{e}^{2\pi\eta}-1}$$

But we have a screened Coulomb potential! $\frac{1}{q^2+\lambda^2}\leftrightarrow \frac{{\rm e}^{-\lambda r}}{r}$

$$C_{\eta,0}^2 = \frac{2\pi\eta}{\mathrm{e}^{2\pi\eta}-1}$$

But we have a screened Coulomb potential! $\frac{1}{q^2+\lambda^2}\leftrightarrow \frac{{\rm e}^{-\lambda r}}{r}$

• note:
$$C_{\eta,0}^2 = \left|\psi^{(+)}_{\mathbf{k}}(\mathbf{r}=\mathbf{0})\right|^2$$

• note:
$$C_{\eta,0}^2 = \left| \psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0}) \right|^2$$

• $|\mathcal{F}_\ell(k)|^{-2}k^{2\ell+1}\left(\cot\delta_\ell^M(k)-\mathrm{i}\right)+M_\ell(k)=-1/a_\ell^M+\cdots$ van Haeringen, Kok 1982

 $C_{\eta,0}^2 = \frac{2\pi\eta}{\mathrm{e}^{2\pi\eta} - 1}$ But we have a screened Coulomb potential! $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{\mathrm{e}^{-\lambda r}}{r}$

• note:
$$C_{\eta,0}^2 = \left| \psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0}) \right|^2$$

• $|\mathcal{F}_{\ell}(k)|^{-2}k^{2\ell+1} \left(\cot \delta_{\ell}^M(k) - \mathbf{i} \right) + M_{\ell}(k) = -1/a_{\ell}^M + \cdots$ van Haeringen, Kok 1982
• furthermore: $\psi_{\mathbf{k},0}^{(+)}(p) = \frac{2\pi^2}{k^2} \delta(k-p) - \frac{2\mu Z_0 \mathcal{T}(E; p, k)}{k^2 - p^2 + \mathbf{i}\varepsilon}$, $E = E(k)$

But we have a screened Coulomb potential! $C_{\eta,0}^2 = \frac{2\pi\eta}{e^{2\pi\eta} - 1}$ $\frac{1}{q^2 + \lambda^2} \leftrightarrow \frac{\mathrm{e}^{-\lambda r}}{r}$

• note:
$$C_{\eta,0}^2 = \left| \psi_{\mathbf{k}}^{(+)}(\mathbf{r} = \mathbf{0}) \right|^2$$

• $|\mathcal{F}_{\ell}(k)|^{-2}k^{2\ell+1} \left(\cot \delta_{\ell}^M(k) - \mathbf{i} \right) + M_{\ell}(k) = -1/a_{\ell}^M + \cdots$ van Haeringen, Kok 1982
• furthermore: $\psi_{\mathbf{k},0}^{(+)}(p) = \frac{2\pi^2}{k^2} \delta(k-p) - \frac{2\mu Z_0 \mathcal{T}(E; p, k)}{k^2 - p^2 + \mathbf{i}\varepsilon}$, $E = E(k)$
olution
 $\mathbf{v} = \mathbf{v} + \mathbf{v} + \mathbf{v}$

Solution

$$\rightsquigarrow C_{\eta,\lambda}^2 = \left| 1 + \frac{2M_N}{3\pi^2} \int_0^\Lambda \frac{\mathrm{d}p \, p^2}{p^2 - k^2 - \mathrm{i}\varepsilon} Z_0 \mathcal{T}_{\mathrm{c}}(E;p,k) \right|^2$$

\hookrightarrow consistent extraction from numerical calculation!

Proton-deuteron scattering lengths in pionless effective field theory - p. 16

Part III Quartet channel

- Convergence pattern
- Fully perturbative calculation
- Results

Quartet-channel scattering length

Convergence pattern

- right order of magnitude \checkmark
- nice (weak) photon-mass dependence \checkmark

Convergence pattern

- right order of magnitude \checkmark
- nice (weak) photon-mass dependence \checkmark
- but: strange convergence pattern!

Convergence pattern

- right order of magnitude \checkmark
- nice (weak) photon-mass dependence \checkmark
- but: strange convergence pattern!

Fully perturbative calculation (I)

Better (cleaner) approach

Fully perturbative calculation

see, e.g., Ji, Phillips 2012

• $\mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} + \Delta \mathcal{T}_{\mathsf{NLO}}$ • $\Delta \mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} \otimes (D^{(1)}K_{\mathsf{LO}}) \otimes \mathcal{T}_{\mathsf{LO}} + \cdots$

•
$$\delta(k) = \delta^{(0)} + \delta^{(1)} + \cdots$$

complicated at N²LO!

Fully perturbative calculation (I)

Better (cleaner) approach

Fully perturbative calculation

see, e.g., Ji, Phillips 2012

•
$$\mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} + \Delta \mathcal{T}_{\mathsf{NLO}}$$
 • $\Delta \mathcal{T}_{\mathsf{NLO}} = \mathcal{T}_{\mathsf{LO}} \otimes (D^{(1)}K_{\mathsf{LO}}) \otimes \mathcal{T}_{\mathsf{LO}} + \cdots$

•
$$\delta(k) = \delta^{(0)} + \delta^{(1)} + \cdots$$

complicated at N²LO!

Much more efficient calculation with re-shuffling of terms!

Vanasse 2013

Fully perturbative calculation (II)

$$\begin{split} \mathcal{T}_{\text{full}}^{(0)} &= K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(1)} &= K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(2)} &= \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right] \\ &+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)} \end{split}$$

$$K^{(0)} = \underbrace{\qquad} + \underbrace{\qquad} + \underbrace{\qquad} + \underbrace{\qquad} , \quad K^{(1)} = \underbrace{\qquad} \\ \underbrace{\qquad} \\ \\ \\ \end{array}$$

Fully perturbative calculation (II)

$$\begin{split} \mathcal{T}_{\text{full}}^{(0)} &= K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(1)} &= K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(2)} &= \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right] \\ &+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)} \end{split}$$

$$K^{(0)} = \underbrace{\qquad} + \underbrace{\qquad} + \underbrace{\qquad} + \underbrace{\qquad} , \quad K^{(1)} = \underbrace{\qquad} \\ \underbrace{\qquad} \\ \\ \\ \end{array}$$

$$\begin{split} [k \cot \delta_{\text{diff}}]^{(0)} &= \frac{2\pi}{\mu} \frac{e^{2i\delta_c^{(0)}}}{T_{\text{diff}}^{(0)}} + ik \\ [k \cot \delta_{\text{diff}}]^{(1)} &= \frac{2\pi}{\mu} e^{2i\delta_c^{(0)}} \times \left[\frac{2i\delta_c^{(1)}}{T_{\text{diff}}^{(0)}} - \frac{T_{\text{diff}}^{(1)}}{(T_{\text{diff}}^{(0)})^2} \right] \\ [k \cot \delta_{\text{diff}}]^{(2)} &= -\frac{2\pi}{\mu} e^{2i\delta_c^{(0)}} \times \left[\frac{2(\delta_c^{(1)})^2 - 2i\delta_c^{(2)}}{T_{\text{diff}}^{(0)}} + \frac{2i\delta_c^{(1)}T_{\text{diff}}^{(1)} + T_{\text{diff}}^{(2)}}{(T_{\text{diff}}^{(0)})^2} - \frac{(T_{\text{diff}}^{(1)})^2}{(T_{\text{diff}}^{(0)})^2} \right] \end{split}$$

Fully perturbative calculation (II)

$$\begin{split} \mathcal{T}_{\text{full}}^{(0)} &= K^{(0)} + \mathcal{T}_{\text{full}}^{(0)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(1)} &= K^{(1)} + \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(1)} \otimes D_d^{(0)} K^{(0)} \\ \mathcal{T}_{\text{full}}^{(2)} &= \mathcal{T}_{\text{full}}^{(0)} \otimes \left[D_d^{(1)} K^{(1)} + D_d^{(2)} K^{(0)} \right] \\ &+ \mathcal{T}_{\text{full}}^{(1)} \otimes \left[D_d^{(0)} K^{(1)} + D_d^{(1)} K^{(0)} \right] + \mathcal{T}_{\text{full}}^{(2)} \otimes D_d^{(0)} K^{(0)} \end{split}$$

$$K^{(0)} = \underbrace{ \begin{array}{c} \\ \end{array}} + \underbrace{ \begin{array}{c} \\ \end{array}} + \underbrace{ \begin{array}{c} \\ \end{array}} + \underbrace{ \begin{array}{c} \\ \end{array}} , \quad K^{(1)} = \underbrace{ \begin{array}{c} \\ \end{array}}$$

$$\begin{split} [k \cot \delta_{\text{diff}}]^{(0)} &= \frac{2\pi}{\mu} \frac{e^{2i\delta_c^{(0)}}}{T_{\text{diff}}^{(0)}} + ik \\ [k \cot \delta_{\text{diff}}]^{(1)} &= \frac{2\pi}{\mu} e^{2i\delta_c^{(0)}} \times \left[\frac{2i\delta_c^{(1)}}{T_{\text{diff}}^{(0)}} - \frac{T_{\text{diff}}^{(1)}}{(T_{\text{diff}}^{(0)})^2} \right] \\ [k \cot \delta_{\text{diff}}]^{(2)} &= -\frac{2\pi}{\mu} e^{2i\delta_c^{(0)}} \times \left[\frac{2(\delta_c^{(1)})^2 - 2i\delta_c^{(2)}}{T_{\text{diff}}^{(0)}} \right. \\ &+ \frac{2i\delta_c^{(1)}T_{\text{diff}}^{(1)} + T_{\text{diff}}^{(2)}}{(T_{\text{diff}}^{(0)})^2} - \frac{(T_{\text{diff}}^{(1)})^2}{(T_{\text{diff}}^{(0)})^2} \right] \end{split}$$

Scattering lenth

$$C_{\eta,\lambda}^{2}\left[k\cot\delta_{\text{diff}}(k)\right] + \gamma h(\eta) = -\frac{1}{a_{p-d}} + \mathcal{O}(k^{2})$$

Combine with $C_{\eta,\lambda}^{2} = [C_{\eta,\lambda}^{2}]^{(0)} + [C_{\eta,\lambda}^{2}]^{(1)} + \cdots$

Fully perturbative result

Fully perturbative result

Proton-deuteron scattering lengths in pionless effective field theory - p. 22

Part IV Doublet channel

- Coupled channels
- Three-nucleon forces
- Results (preliminary)

Complications

1. coupled channels!

Complications

1. coupled channels!

- 2. strong cutoff dependence!
 - \hookrightarrow renormalize with leading order 3N-force force (SU(4)-symmetric)

Bedaque, Hammer, van Kolck 1999

 \ldots fix $H(\Lambda)$ with three-body input o triton binding energy, $^2a_{n-d}$

Coulomb effects in the proton-proton channel

In doublet channel, the singlet dibaryon can be in a pure p - p state

$$\Delta_{t,pp}(p) \sim \frac{1}{-1/a_C - 2\kappa H(\kappa/p')} \quad , \quad \kappa = \frac{\alpha M_N}{2} \quad , \quad p' = i\sqrt{\mathbf{p}^2/4 - M_N p_0 - i\varepsilon}$$

Kong, Ravndal 1999

Bethe 1949

cf. Ando, Birse 2010

The third nucleon neccessarily has to be a neutron!

 \rightarrow no additional Coulomb-photon exchange!

 \rightarrow Coulomb-modified effective range expansion

 $\hookrightarrow \text{3-channel integral equation}$

Proton-deuteron scattering lengths in pionless effective field theory - p. 25

Full doublet-channel integral equation

Include all $\mathcal{O}(\alpha)$ Coulomb diagrams...

He-3 binding energy (LO)

bound-sate regime:

He-3 binding energy (LO)

bound-sate regime:

 \hookrightarrow predict ³He binding energy!

He-3 binding energy (NLO)

At NLO, things don't work so well...

\hookrightarrow incomplete renormalization!

New "Coulomb" counterterm

Re-fit $H(\Lambda)$ to ³He energy at NLO

New "Coulomb" counterterm

Re-fit $H(\Lambda)$ to ³He energy at NLO

Can be shown analytically!

Vanasse, Egolf, Kerin, SK, Springer 2014

$$H(\Lambda) = H_0(\Lambda) + H_1(\Lambda) + H_1^{(\alpha)}(\Lambda)$$

Proton-deuteron scattering lengths in pionless effective field theory - p. 29

Doublet-channel scattering length

Back to the fully perturbative approach...

- fit $H_1^{(lpha)}(\Lambda)$ to ${}^3 ext{He}$ binding energy
- predict doublet-channel p-d scattering length

Doublet-channel scattering length

Back to the fully perturbative approach...

- fit $H_1^{(\alpha)}(\Lambda)$ to ³He binding energy
- predict doublet-channel p-d scattering length

Doublet-channel scattering length

Back to the fully perturbative approach...

- fit $H_1^{(\alpha)}(\Lambda)$ to ³He binding energy
- predict doublet-channel *p*-*d* scattering length

Other determinations

Ref.	$^4a_{p-d}$ (fm)
van Oers, Brockman (1967)	1.2 ± 0.2
Arvieux (1973)	2.73 ± 0.10
Huttel <i>et al.</i> (1983)	≈ 4.0
Black <i>et al.</i> (1999)	-0.13 ± 0.04
Orlov, Orevkov (2006)	≈ 0.024

Summary and outlook

- Coulomb effects are well under control
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length

Summary and outlook

- Coulomb effects are well under control
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length
- Outlook: N²LO doublet channel, *p*-*d* Phillips line

Summary and outlook

- Coulomb effects are well under control
- Clean perturbative expansion very important at low energies
- Quartet-channel scattering length agrees well with older experimental determinations
- Need to go to higher orders to nail down doublet-channel scattering length
- Outlook: N²LO doublet channel, *p*-*d* Phillips line

Thanks for your attention!